36 research outputs found

    An adaptive scalloping suppression method for ScanSAR images based on the Kalman filter

    Get PDF

    Design Options For Low Cost, Low Power Microsatellite Based SAR.

    Get PDF
    This research aims at providing a system design that reduces the mass and cost of spaceborne Synthetic Aperture Radar (SAR) missions by a factor of two compared to current (TecSAR - 300 kg, ~ £ 127 M) or planned (NovaSAR-S — 400 kg, ~ £ 50 M) mission. This would enable the cost of a SAR constellation to approach that of the current optical constellation such as Disaster Monitoring Constellation (DMC). This research has identified that the mission cost can be reduced significantly by: focusing on a narrow range of applications (forestry and disasters monitoring); ensuring the final design has a compact stowage volume, which facilitates a shared launch; and building the payload around available platforms, rather than the platform around the payload. The central idea of the research has been to operate the SAR at a low instantaneous power level—a practical proposition for a micro-satellite based SAR. The use of a simple parabolic reflector with a single horn at L-band means that a single, reliable and efficient Solid State Power Amplifier (SSPA) can be used to lower the overall system cost, and to minimise the impact on the spacecraft power system. A detailed analysis of basic pulsed (~ 5 - 10 % duty cycle) and Continuous Wave (CW) SAR (100 % duty cycle) payloads has shown their inability to fit directly into existing microsatellite buses without involving major changes, or employing more than one platform. To circumvent the problems of pulsed and CW techniques, two approaches have been formulated. The first shows that a CW SAR can be implemented in a mono-static way with a single antenna on a single platform. In this technique, the SAR works in an Interrupted CW (ICW) mode, but these interruptions introduce periodic gaps in the raw data. On processing, these gapped data result in artefacts in the reconstructed images. By applying data based statistical estimation techniques to “fill in the gaps” in the simulated raw SAR data, this research has shown the possibility of minimising the effects of these artefacts. However, once the same techniques are applied to the real SAR data (in this case derived from RADARSAT-1), the artefacts are shown to be problematic. Because of this the ICW SAR design technique it is—set aside. The second shows that an extended chirp mode pulsed (ECMP) SAR (~ 20 - 54 % duty cycle) can be designed with a lowered peak power level which enables a single SSPA to feed a parabolic Cassegrain antenna. The detailed analysis shows the feasibility of developing a microsatellite based SAR design at a comparable price to those of optical missions

    Proceedings of the Third Spaceborne Imaging Radar Symposium

    Get PDF
    This publication contains summaries of the papers presented at the Third Spaceborne Imaging Radar Symposium held at the Jet Propulsion Laboratory (JPL), California Institute of Technology, in Pasadena, California, on 18-21 Jan. 1993. The purpose of the symposium was to present an overview of recent developments in the different scientific and technological fields related to spaceborne imaging radars and to present future international plans. This symposium is the third in a series of 'Spaceborne Imaging Radar' symposia held at JPL. The first symposium was held in Jan. 1983 and the second in 1986

    High resolution radargrammetry with COSMO-SkyMed, TerraSAR-X and RADARSAT-2 imagery: development and implementation of an image orientation model for Digital Surface Model generation

    Get PDF
    Digital Surface and Terrain Models (DSM/DTM) have large relevance in several territorial applications, such as topographic mapping, monitoring engineering, geology, security, land planning and management of Earth's resources. The satellite remote sensing data offer the opportunity to have continuous observation of Earth's surface for territorial application, with short acquisition and revisit times. Meeting these requirements, the SAR (Synthetic Aperture Radar) high resolution satellite imagery could offer night-and-day and all-weather functionality (clouds, haze and rain penetration). Two different methods may be used in order to generate DSMs from SAR data: the interferometric and the radargrammetric approaches. The radargrammetry uses only the intensity information of the SAR images and reconstructs the 3D information starting from a couple of images similarly to photogrammetry. Radargrammetric DSM extraction procedure consists of two basic steps: the stereo pair orientation and the image matching for the automatic detection of homologous points. The goal of this work is the definition and the implementation of a geometric model in order to orientate SAR imagery in zero Doppler geometry. The radargrammetric model implemented in SISAR (Software per Immagini Satellitari ad Alta Risoluzione - developed at the Geodesy and Geomatic Division - University of Rome "La Sapienza") is based on the equation of radar target acquisition and zero Doppler focalization Moreover a tool for the SAR Rational Polynomial Coefficients (RPCs) generation has been implemented in SISAR software, similarly to the one already developed for the optical sensors. The possibility to generate SAR RPCs starting from a radargrammetric model sounds of particular interest since, at present, the most part of SAR imagery is not supplied with RPCs, although the RPFs model is available in several commercial software. Only RADARSAT-2 data are supplied with vendors RPCs. To test the effectiveness of the implemented RPCs generation tool and the SISAR radargrammetric orientation model the reference results were computed: the stereo pairs were orientated with the two model. The tests were carried out on several test site using COSMO-SkyMed, TerraSAR-X and RADARSAT-2 data. Moreover, to evaluate the advantages and the different accuracy between the orientation models computed without GCPs and the orientation model with GCPs a Monte Carlo test was computed. At last, to define the real effectiveness of radargrammetric technique for DSM extraction and to compare the radrgrammetric tool implemented in a commercial software PCI-Geomatica v. 2012 and SISAR software, the images acquired on Beauport test site were used for DSM extraction. It is important underline that several test were computed. Part of this tests were carried out under the supervision of Prof. Thierry Toutin at CCRS (Canada Centre of Remote Sensing) where the PCI-Geomatica orientation model was developed, in order to check the better parameters solution to extract radargrammetric DSMs. In conclusion, the results obtained are representative of the geometric potentialities of SAR stereo pairs as regards 3D surface reconstruction

    Identifying areas of neotectonic activity using radar remote sensing in the northern foothills of the Alaska Range

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2013The tectonically active northern foothills of the Alaska Range display obvious uplift and deformation, making the area an attractive place to conduct research. Research has been done in this area of Alaska in the recent past, most of which required intensive fieldwork. This study analyzes if modern radar remote sensing technology is useful in identifying neotectonic activity and in determining where future work should be conducted. Radar remote sensing data is used in two ways to support the identification of tectonically active areas: First, I incorporated available geologic maps with polarimetric and interferometric radar remote sensing data to create a classification scheme to identify and map the preserved depositional surface of the Nenana Gravel. This surface, successfully mapped and overlain on a newly available high-resolution DEM, highlighted the topographic expression of deformation in the area. Second, the high-resolution DEMs were used to create and analyze longitudinal river profiles, and a Stream Length-gradient Index Map, both of which correlate well with known active structures. This study indicates that radar remote sensing can be used to identify tectonically active areas before employing extensive fieldwork and used in combination with traditional geological procedures enhances the amount and quality of the derived information

    SAR (Synthetic Aperture Radar). Earth observing system. Volume 2F: Instrument panel report

    Get PDF
    The scientific and engineering requirements for the Earth Observing System (EOS) imaging radar are provided. The radar is based on Shuttle Imaging Radar-C (SIR-C), and would include three frequencies: 1.25 GHz, 5.3 GHz, and 9.6 GHz; selectable polarizations for both transmit and receive channels; and selectable incidence angles from 15 to 55 deg. There would be three main viewing modes: a local high-resolution mode with typically 25 m resolution and 50 km swath width; a regional mapping mode with 100 m resolution and up to 200 km swath width; and a global mapping mode with typically 500 m resolution and up to 700 km swath width. The last mode allows global coverage in three days. The EOS SAR will be the first orbital imaging radar to provide multifrequency, multipolarization, multiple incidence angle observations of the entire Earth. Combined with Canadian and Japanese satellites, continuous radar observation capability will be possible. Major applications in the areas of glaciology, hydrology, vegetation science, oceanography, geology, and data and information systems are described

    Elevation and Deformation Extraction from TomoSAR

    Get PDF
    3D SAR tomography (TomoSAR) and 4D SAR differential tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to provide an essential innovation of SAR Interferometry for many applications, sensing complex scenes with multiple scatterers mapped into the same SAR pixel cell. However, these are still influenced by DEM uncertainty, temporal decorrelation, orbital, tropospheric and ionospheric phase distortion and height blurring. In this thesis, these techniques are explored. As part of this exploration, the systematic procedures for DEM generation, DEM quality assessment, DEM quality improvement and DEM applications are first studied. Besides, this thesis focuses on the whole cycle of systematic methods for 3D & 4D TomoSAR imaging for height and deformation retrieval, from the problem formation phase, through the development of methods to testing on real SAR data. After DEM generation introduction from spaceborne bistatic InSAR (TanDEM-X) and airborne photogrammetry (Bluesky), a new DEM co-registration method with line feature validation (river network line, ridgeline, valley line, crater boundary feature and so on) is developed and demonstrated to assist the study of a wide area DEM data quality. This DEM co-registration method aligns two DEMs irrespective of the linear distortion model, which improves the quality of DEM vertical comparison accuracy significantly and is suitable and helpful for DEM quality assessment. A systematic TomoSAR algorithm and method have been established, tested, analysed and demonstrated for various applications (urban buildings, bridges, dams) to achieve better 3D & 4D tomographic SAR imaging results. These include applying Cosmo-Skymed X band single-polarisation data over the Zipingpu dam, Dujiangyan, Sichuan, China, to map topography; and using ALOS L band data in the San Francisco Bay region to map urban building and bridge. A new ionospheric correction method based on the tile method employing IGS TEC data, a split-spectrum and an ionospheric model via least squares are developed to correct ionospheric distortion to improve the accuracy of 3D & 4D tomographic SAR imaging. Meanwhile, a pixel by pixel orbit baseline estimation method is developed to address the research gaps of baseline estimation for 3D & 4D spaceborne SAR tomography imaging. Moreover, a SAR tomography imaging algorithm and a differential tomography four-dimensional SAR imaging algorithm based on compressive sensing, SAR interferometry phase (InSAR) calibration reference to DEM with DEM error correction, a new phase error calibration and compensation algorithm, based on PS, SVD, PGA, weighted least squares and minimum entropy, are developed to obtain accurate 3D & 4D tomographic SAR imaging results. The new baseline estimation method and consequent TomoSAR processing results showed that an accurate baseline estimation is essential to build up the TomoSAR model. After baseline estimation, phase calibration experiments (via FFT and Capon method) indicate that a phase calibration step is indispensable for TomoSAR imaging, which eventually influences the inversion results. A super-resolution reconstruction CS based study demonstrates X band data with the CS method does not fit for forest reconstruction but works for reconstruction of large civil engineering structures such as dams and urban buildings. Meanwhile, the L band data with FFT, Capon and the CS method are shown to work for the reconstruction of large manmade structures (such as bridges) and urban buildings

    Spaceborne sensors (1983-2000 AD): A forecast of technology

    Get PDF
    A technical review and forecast of space technology as it applies to spaceborne sensors for future NASA missions is presented. A format for categorization of sensor systems covering the entire electromagnetic spectrum, including particles and fields is developed. Major generic sensor systems are related to their subsystems, components, and to basic research and development. General supporting technologies such as cryogenics, optical design, and data processing electronics are addressed where appropriate. The dependence of many classes of instruments on common components, basic R&D and support technologies is also illustrated. A forecast of important system designs and instrument and component performance parameters is provided for the 1983-2000 AD time frame. Some insight into the scientific and applications capabilities and goals of the sensor systems is also given
    corecore