74,660 research outputs found

    An investigation of the research evidence relating to ICT pedagogy

    Get PDF

    Applying science of learning in education: Infusing psychological science into the curriculum

    Get PDF
    The field of specialization known as the science of learning is not, in fact, one field. Science of learning is a term that serves as an umbrella for many lines of research, theory, and application. A term with an even wider reach is Learning Sciences (Sawyer, 2006). The present book represents a sliver, albeit a substantial one, of the scholarship on the science of learning and its application in educational settings (Science of Instruction, Mayer 2011). Although much, but not all, of what is presented in this book is focused on learning in college and university settings, teachers of all academic levels may find the recommendations made by chapter authors of service. The overarching theme of this book is on the interplay between the science of learning, the science of instruction, and the science of assessment (Mayer, 2011). The science of learning is a systematic and empirical approach to understanding how people learn. More formally, Mayer (2011) defined the science of learning as the ā€œscientific study of how people learnā€ (p. 3). The science of instruction (Mayer 2011), informed in part by the science of learning, is also on display throughout the book. Mayer defined the science of instruction as the ā€œscientific study of how to help people learnā€ (p. 3). Finally, the assessment of student learning (e.g., learning, remembering, transferring knowledge) during and after instruction helps us determine the effectiveness of our instructional methods. Mayer defined the science of assessment as the ā€œscientific study of how to determine what people knowā€ (p.3). Most of the research and applications presented in this book are completed within a science of learning framework. Researchers first conducted research to understand how people learn in certain controlled contexts (i.e., in the laboratory) and then they, or others, began to consider how these understandings could be applied in educational settings. Work on the cognitive load theory of learning, which is discussed in depth in several chapters of this book (e.g., Chew; Lee and Kalyuga; Mayer; Renkl), provides an excellent example that documents how science of learning has led to valuable work on the science of instruction. Most of the work described in this book is based on theory and research in cognitive psychology. We might have selected other topics (and, thus, other authors) that have their research base in behavior analysis, computational modeling and computer science, neuroscience, etc. We made the selections we did because the work of our authors ties together nicely and seemed to us to have direct applicability in academic settings

    The psychological dimension of transformation in teacher learning

    Get PDF
    Against a background which recognises pedagogical content knowledge as the distinctive element of teacher competence/expertise, this theoretical essay argues for its central construct - that of transformation ā€“ to be understood by teachers and teacher-educators in psychological terms (as was originally proposed by Dewey). Transformation requires teachers to fashion disciplinary knowledge such that it is accessible to the learner. It is argued that for transformation to happen, teacher thinking must include a sophisticated grasp of cognition and metacognition if teachers are to be characterised as competent, let alone expert. This article is written within a context of considerable social and academic scrutiny in the United Kingdom of the form and content of professional teacher preparation and development. In recent years the contribution of psychological knowledge to teacher-education has been filtered through procedural lenses of how best to 'manage classrooms', 'assess learning', 'build confidence' or whatever without a matched concern for psychological constructs through which such issues might be interpreted; thus leaving teachers vulnerable in their professional understandings of learning and its complexities. That society now requires high-level cognitive engagement amongst its participants places cognitive and metacognitive demands on teachers which can only be met if they themselves are conceptually equipped

    Reflecting on the development of a new school subject: the development of technology education in New Zealand.

    Get PDF
    The last 10 years have seen the production of curricula in Australia, the United Kingdom, USA, Canada, Hong Kong and New Zealand that emphasise the importance of students developing technological literacy. This paper traces the development of a new subject - technology education - in the New Zealand curriculum and explores the politics of development of a new subject as well as the theoretical stances and research that contributed to its development from 1992 until 2005. This paper outlines the various stages of development including curriculum development, teacher development, and the move to creating a classroom research agenda to enhance the teaching and learning in technology education. The paper reinforces the notion that significant gains can be made in curriculum, teaching, learning and assessment when research and development are conducted in an ongoing manner

    Science teachers' transformations of the use of computer modeling in the classroom: using research to inform training

    Get PDF
    This paper, from the UK group in the STTIS (Science Teacher Training in an Information Society) project, describes research into the nature of teachers' transformations of computer modeling, and the development of related teacher training materials. Eight teacher case studies help to identify factors that favor or hinder the take-up of innovative computer tools in science classes, and to show how teachers incorporate these tools in the curriculum. The training materials use the results to provide activities enabling teachers to learn about the tools and about the outcomes of the research into their implementation, and help them to take account of these ideas in their own implementation of the innovations

    Developing the scales on evaluation beliefs of student teachers

    Get PDF
    The purpose of the study reported in this paper was to investigate the validity and the reliability of a newly developed questionnaire named ā€˜Teacher Evaluation Beliefsā€™ (TEB). The framework for developing items was provided by the two models. The first model focuses on Student-Centered and Teacher-Centered beliefs about evaluation while the other centers on five dimensions (what/ who/ when/ why/ how). The validity and reliability of the new instrument was investigated using both exploratory and confirmatory factor analysis study (n=446). Overall results indicate that the two-factor structure is more reasonable than the five-factor one. Further research needs additional items about the latent dimensions ā€œwhatā€ ā€whoā€ ā€whenā€ ā€whyā€ ā€œhowā€ for each existing factor based on Student-centered and Teacher-centered approaches

    Impact of change on Attitudes, Skills and Professional Learning Requirements: Survey of secondary teachers of Craft, Design, Engineering and Graphics

    Get PDF
    This is an independent report based on a national survey. It forms part of a funded project with Education Scotland. It is designed to capture the attitudes and thoughts of teachers currently involved in the implementation of the new curriculum arrangements and the teaching, learning and assessment inherent in delivery. The purpose of this report is to guide and inform future support, advice and guidance for professional learning and further research enquiry. Critically, it offers an overview of current thoughts, as a snap shot of time, set in the context of the roll out of the senior phase of DET

    Modelling human teaching tactics and strategies for tutoring systems

    Get PDF
    One of the promises of ITSs and ILEs is that they will teach and assist learning in an intelligent manner. Historically this has tended to mean concentrating on the interface, on the representation of the domain and on the representation of the studentā€™s knowledge. So systems have attempted to provide students with reifications both of what is to be learned and of the learning process, as well as optimally sequencing and adjusting activities, problems and feedback to best help them learn that domain. We now have embodied (and disembodied) teaching agents and computer-based peers, and the field demonstrates a much greater interest in metacognition and in collaborative activities and tools to support that collaboration. Nevertheless the issue of the teaching competence of ITSs and ILEs is still important, as well as the more specific question as to whether systems can and should mimic human teachers. Indeed increasing interest in embodied agents has thrown the spotlight back on how such agents should behave with respect to learners. In the mid 1980s Ohlsson and others offered critiques of ITSs and ILEs in terms of the limited range and adaptability of their teaching actions as compared to the wealth of tactics and strategies employed by human expert teachers. So are we in any better position in modelling teaching than we were in the 80s? Are these criticisms still as valid today as they were then? This paper reviews progress in understanding certain aspects of human expert teaching and in developing tutoring systems that implement those human teaching strategies and tactics. It concentrates particularly on how systems have dealt with student answers and how they have dealt with motivational issues, referring particularly to work carried out at Sussex: for example, on responding effectively to the studentā€™s motivational state, on contingent and Vygotskian inspired teaching strategies and on the plausibility problem. This latter is concerned with whether tactics that are effectively applied by human teachers can be as effective when embodied in machine teachers
    • ā€¦
    corecore