3,404 research outputs found

    Gait Verification using Knee Acceleration Signals

    Get PDF
    A novel gait recognition method for biometric applications is proposed. The approach has the following distinct features. First, gait patterns are determined via knee acceleration signals, circumventing difficulties associated with conventional vision-based gait recognition methods. Second, an automatic procedure to extract gait features from acceleration signals is developed that employs a multiple-template classification method. Consequently, the proposed approach can adjust the sensitivity and specificity of the gait recognition system with great flexibility. Experimental results from 35 subjects demonstrate the potential of the approach for successful recognition. By setting sensitivity to be 0.95 and 0.90, the resulting specificity ranges from 1 to 0.783 and 1.00 to 0.945, respectively

    Non-ideal iris recognition

    Get PDF
    Of the many biometrics that exist, iris recognition is finding more attention than any other due to its potential for improved accuracy, permanence, and acceptance. Current iris recognition systems operate on frontal view images of good quality. Due to the small area of the iris, user co-operation is required. In this work, a new system capable of processing iris images which are not necessarily in frontal view is described. This overcomes one of the major hurdles with current iris recognition systems and enhances user convenience and accuracy. The proposed system is designed to operate in two steps: (i) preprocessing and estimation of the gaze direction and (ii) processing and encoding of the rotated iris image. Two objective functions are used to estimate the gaze direction. Later, the off-angle iris image undergoes geometric transformations involving the estimated angle and is further processed as if it were a frontal view image. Two methods: (i) PCA and (ii) ICA are used for encoding. Three different datasets are used to quantify performance of the proposed non-ideal recognition system

    Postmortem iris recognition and its application in human identification

    Full text link
    Iris recognition is a validated and non-invasive human identification technology currently implemented for the purposes of surveillance and security (i.e. border control, schools, military). Similar to deoxyribonucleic acid (DNA), irises are a highly individualizing component of the human body. Based on a lack of genetic penetrance, irises are unique between an individual’s left and right iris and between identical twins, proving to be more individualizing than DNA. At this time, little to no research has been conducted on the use of postmortem iris scanning as a biometric measurement of identification. The purpose of this pilot study is to explore the use of iris recognition as a tool for postmortem identification. Objectives of the study include determining whether current iris recognition technology can locate and detect iris codes in postmortem globes, and if iris scans collected at different postmortem time intervals can be identified as the same iris initially enrolled. Data from 43 decedents involving 148 subsequent iris scans demonstrated a subsequent match rate of approximately 80%, supporting the theory that iris recognition technology is capable of detecting and identifying an individual’s iris code in a postmortem setting. A chi-square test of independence showed no significant difference between match outcomes and the globe scanned (left vs. right), and gender had no bearing on the match outcome. There was a significant relationship between iris color and match outcome, with blue/gray eyes yielding a lower match rate (59%) compared to brown (82%) or green/hazel eyes (88%), however, the sample size of blue/gray eyes in this study was not large enough to draw a meaningful conclusion. An isolated case involving an antemortem initial scan collected from an individual on life support yielded an accurate identification (match) with a subsequent scan captured at approximately 10 hours postmortem. Falsely rejected subsequent iris scans or "no match" results occurred in about 20% of scans; they were observed at each PMI range and varied from 19-30%. The false reject rate is too high to reliably establish non-identity when used alone and ideally would be significantly lower prior to implementation in a forensic setting; however, a "no match" could be confirmed using another method. Importantly, the data showed a false match rate or false accept rate (FAR) of zero, a result consistent with previous iris recognition studies in living individuals. The preliminary results of this pilot study demonstrate a plausible role for iris recognition in postmortem human identification. Implementation of a universal iris recognition database would benefit the medicolegal death investigation and forensic pathology communities, and has potential applications to other situations such as missing persons and human trafficking cases

    Biometric Systems

    Get PDF
    Biometric authentication has been widely used for access control and security systems over the past few years. The purpose of this book is to provide the readers with life cycle of different biometric authentication systems from their design and development to qualification and final application. The major systems discussed in this book include fingerprint identification, face recognition, iris segmentation and classification, signature verification and other miscellaneous systems which describe management policies of biometrics, reliability measures, pressure based typing and signature verification, bio-chemical systems and behavioral characteristics. In summary, this book provides the students and the researchers with different approaches to develop biometric authentication systems and at the same time includes state-of-the-art approaches in their design and development. The approaches have been thoroughly tested on standard databases and in real world applications

    Multimodal Biometric Systems for Personal Identification and Authentication using Machine and Deep Learning Classifiers

    Get PDF
    Multimodal biometrics, using machine and deep learning, has recently gained interest over single biometric modalities. This interest stems from the fact that this technique improves recognition and, thus, provides more security. In fact, by combining the abilities of single biometrics, the fusion of two or more biometric modalities creates a robust recognition system that is resistant to the flaws of individual modalities. However, the excellent recognition of multimodal systems depends on multiple factors, such as the fusion scheme, fusion technique, feature extraction techniques, and classification method. In machine learning, existing works generally use different algorithms for feature extraction of modalities, which makes the system more complex. On the other hand, deep learning, with its ability to extract features automatically, has made recognition more efficient and accurate. Studies deploying deep learning algorithms in multimodal biometric systems tried to find a good compromise between the false acceptance and the false rejection rates (FAR and FRR) to choose the threshold in the matching step. This manual choice is not optimal and depends on the expertise of the solution designer, hence the need to automatize this step. From this perspective, the second part of this thesis details an end-to-end CNN algorithm with an automatic matching mechanism. This thesis has conducted two studies on face and iris multimodal biometric recognition. The first study proposes a new feature extraction technique for biometric systems based on machine learning. The iris and facial features extraction is performed using the Discrete Wavelet Transform (DWT) combined with the Singular Value Decomposition (SVD). Merging the relevant characteristics of the two modalities is used to create a pattern for an individual in the dataset. The experimental results show the robustness of our proposed technique and the efficiency when using the same feature extraction technique for both modalities. The proposed method outperformed the state-of-the-art and gave an accuracy of 98.90%. The second study proposes a deep learning approach using DensNet121 and FaceNet for iris and faces multimodal recognition using feature-level fusion and a new automatic matching technique. The proposed automatic matching approach does not use the threshold to ensure a better compromise between performance and FAR and FRR errors. However, it uses a trained multilayer perceptron (MLP) model that allows people’s automatic classification into two classes: recognized and unrecognized. This platform ensures an accurate and fully automatic process of multimodal recognition. The results obtained by the DenseNet121-FaceNet model by adopting feature-level fusion and automatic matching are very satisfactory. The proposed deep learning models give 99.78% of accuracy, and 99.56% of precision, with 0.22% of FRR and without FAR errors. The proposed and developed platform solutions in this thesis were tested and vali- dated in two different case studies, the central pharmacy of Al-Asria Eye Clinic in Dubai and the Abu Dhabi Police General Headquarters (Police GHQ). The solution allows fast identification of the persons authorized to access the different rooms. It thus protects the pharmacy against any medication abuse and the red zone in the military zone against the unauthorized use of weapons

    Eye Detection and Face Recognition Across the Electromagnetic Spectrum

    Get PDF
    Biometrics, or the science of identifying individuals based on their physiological or behavioral traits, has increasingly been used to replace typical identifying markers such as passwords, PIN numbers, passports, etc. Different modalities, such as face, fingerprint, iris, gait, etc. can be used for this purpose. One of the most studied forms of biometrics is face recognition (FR). Due to a number of advantages over typical visible to visible FR, recent trends have been pushing the FR community to perform cross-spectral matching of visible images to face images from higher spectra in the electromagnetic spectrum.;In this work, the SWIR band of the EM spectrum is the primary focus. Four main contributions relating to automatic eye detection and cross-spectral FR are discussed. First, a novel eye localization algorithm for the purpose of geometrically normalizing a face across multiple SWIR bands for FR algorithms is introduced. Using a template based scheme and a novel summation range filter, an extensive experimental analysis show that this algorithm is fast, robust, and highly accurate when compared to other available eye detection methods. Also, the eye locations produced by this algorithm provides higher FR results than all other tested approaches. This algorithm is then augmented and updated to quickly and accurately detect eyes in more challenging unconstrained datasets, spanning the EM spectrum. Additionally, a novel cross-spectral matching algorithm is introduced that attempts to bridge the gap between the visible and SWIR spectra. By fusing multiple photometric normalization combinations, the proposed algorithm is not only more efficient than other visible-SWIR matching algorithms, but more accurate in multiple challenging datasets. Finally, a novel pre-processing algorithm is discussed that bridges the gap between document (passport) and live face images. It is shown that the pre-processing scheme proposed, using inpainting and denoising techniques, significantly increases the cross-document face recognition performance

    Establishing the digital chain of evidence in biometric systems

    Get PDF
    Traditionally, a chain of evidence or chain of custody refers to the chronological documentation, or paper trail, showing the seizure, custody, control, transfer, analysis, and disposition of evidence, physical or electronic. Whether in the criminal justice system, military applications, or natural disasters, ensuring the accuracy and integrity of such chains is of paramount importance. Intentional or unintentional alteration, tampering, or fabrication of digital evidence can lead to undesirable effects. We find despite the consequences at stake, historically, no unique protocol or standardized procedure exists for establishing such chains. Current practices rely on traditional paper trails and handwritten signatures as the foundation of chains of evidence.;Copying, fabricating or deleting electronic data is easier than ever and establishing equivalent digital chains of evidence has become both necessary and desirable. We propose to consider a chain of digital evidence as a multi-component validation problem. It ensures the security of access control, confidentiality, integrity, and non-repudiation of origin. Our framework, includes techniques from cryptography, keystroke analysis, digital watermarking, and hardware source identification. The work offers contributions to many of the fields used in the formation of the framework. Related to biometric watermarking, we provide a means for watermarking iris images without significantly impacting biometric performance. Specific to hardware fingerprinting, we establish the ability to verify the source of an image captured by biometric sensing devices such as fingerprint sensors and iris cameras. Related to keystroke dynamics, we establish that user stimulus familiarity is a driver of classification performance. Finally, example applications of the framework are demonstrated with data collected in crime scene investigations, people screening activities at port of entries, naval maritime interdiction operations, and mass fatality incident disaster responses

    Causality-Inspired Taxonomy for Explainable Artificial Intelligence

    Full text link
    As two sides of the same coin, causality and explainable artificial intelligence (xAI) were initially proposed and developed with different goals. However, the latter can only be complete when seen through the lens of the causality framework. As such, we propose a novel causality-inspired framework for xAI that creates an environment for the development of xAI approaches. To show its applicability, biometrics was used as case study. For this, we have analysed 81 research papers on a myriad of biometric modalities and different tasks. We have categorised each of these methods according to our novel xAI Ladder and discussed the future directions of the field
    • …
    corecore