42,354 research outputs found

    Adaptive space-time sharing with SCOJO.

    Get PDF
    Coscheduling is a technique used to improve the performance of parallel computer applications under time sharing, i.e., to provide better response times than standard time sharing or space sharing. Dynamic coscheduling and gang scheduling are two main forms of coscheduling. In SCOJO (Share-based Job Coscheduling), we have introduced our own original framework to employ loosely coordinated dynamic coscheduling and a dynamic directory service in support of scheduling cross-site jobs in grid scheduling. SCOJO guarantees effective CPU shares by taking coscheduling effects into consideration and supports both time and CPU share reservation for cross-site job. However, coscheduling leads to high memory pressure and still involves problems like fragmentation and context-switch overhead, especially when applying higher multiprogramming levels. As main part of this thesis, we employ gang scheduling as more directly suitable approach for combined space-time sharing and extend SCOJO for clusters to incorporate adaptive space sharing into gang scheduling. We focus on taking advantage of moldable and malleable characteristics of realistic job mixes to dynamically adapt to varying system workloads and flexibly reduce fragmentation. In addition, our adaptive scheduling approach applies standard job-scheduling techniques like a priority and aging system, backfilling or easy backfilling. We demonstrate by the results of a discrete-event simulation that this dynamic adaptive space-time sharing approach can deliver better response times and bounded relative response times even with a lower multiprogramming level than traditional gang scheduling.Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .H825. Source: Masters Abstracts International, Volume: 43-01, page: 0237. Adviser: A. Sodan. Thesis (M.Sc.)--University of Windsor (Canada), 2004

    Power efficient job scheduling by predicting the impact of processor manufacturing variability

    Get PDF
    Modern CPUs suffer from performance and power consumption variability due to the manufacturing process. As a result, systems that do not consider such variability caused by manufacturing issues lead to performance degradations and wasted power. In order to avoid such negative impact, users and system administrators must actively counteract any manufacturing variability. In this work we show that parallel systems benefit from taking into account the consequences of manufacturing variability when making scheduling decisions at the job scheduler level. We also show that it is possible to predict the impact of this variability on specific applications by using variability-aware power prediction models. Based on these power models, we propose two job scheduling policies that consider the effects of manufacturing variability for each application and that ensure that power consumption stays under a system-wide power budget. We evaluate our policies under different power budgets and traffic scenarios, consisting of both single- and multi-node parallel applications, utilizing up to 4096 cores in total. We demonstrate that they decrease job turnaround time, compared to contemporary scheduling policies used on production clusters, up to 31% while saving up to 5.5% energy.Postprint (author's final draft

    Learning Scheduling Algorithms for Data Processing Clusters

    Full text link
    Efficiently scheduling data processing jobs on distributed compute clusters requires complex algorithms. Current systems, however, use simple generalized heuristics and ignore workload characteristics, since developing and tuning a scheduling policy for each workload is infeasible. In this paper, we show that modern machine learning techniques can generate highly-efficient policies automatically. Decima uses reinforcement learning (RL) and neural networks to learn workload-specific scheduling algorithms without any human instruction beyond a high-level objective such as minimizing average job completion time. Off-the-shelf RL techniques, however, cannot handle the complexity and scale of the scheduling problem. To build Decima, we had to develop new representations for jobs' dependency graphs, design scalable RL models, and invent RL training methods for dealing with continuous stochastic job arrivals. Our prototype integration with Spark on a 25-node cluster shows that Decima improves the average job completion time over hand-tuned scheduling heuristics by at least 21%, achieving up to 2x improvement during periods of high cluster load
    • …
    corecore