
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2004

Adaptive space-time sharing with SCOJO. Adaptive space-time sharing with SCOJO.

Xuemin Huang
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Huang, Xuemin, "Adaptive space-time sharing with SCOJO." (2004). Electronic Theses and Dissertations.
892.
https://scholar.uwindsor.ca/etd/892

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F892&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/892?utm_source=scholar.uwindsor.ca%2Fetd%2F892&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

ADAPTIVE SPACE-TIME SHARING WITH SCOJO

by

Xuemin Huang

A Thesis
Submitted to the Faculty of Graduate Studies and Research

through Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada

2004

© 2004 Xuemin Huang

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-92522-6
Our file Notre reference
ISBN: 0-612-92522-6

The author has granted a non­
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
dissertation.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Coscheduling is a technique used to improve the performance of parallel

computer applications under time sharing, i.e., to provide better response times

than standard time sharing or space sharing. Dynamic coscheduling and gang

scheduling are two main forms of coscheduling. In SCOJO (Share-based Job

Coscheduling), we have introduced our own original framework to employ loosely

coordinated dynamic coscheduling and a dynamic directory service in support of

scheduling cross-site jobs in grid scheduling. SCOJO guarantees effective CPU

shares by taking coscheduling effects into consideration and supports both time

and CPU share reservation for cross-site job. However, coscheduling leads to

high memory pressure and still involves problems like fragmentation and context-

switch overhead, especially when applying higher multiprogramming levels. As

main part of this thesis, we employ gang scheduling as more directly suitable

approach for combined space-time sharing and extend SCOJO for clusters to

incorporate adaptive space sharing into gang scheduling. We focus on taking

advantage of moldable and malleable characteristics of realistic job mixes to

dynamically adapt to varying system workloads and flexibly reduce

fragmentation. In addition, our adaptive scheduling approach applies standard

job-scheduling techniques like a priority and aging system, backfilling or easy

backfilling. W e demonstrate by the results of a discrete-event simulation that this

dynamic adaptive space-time sharing approach can deliver better response times

and bounded relative response times even with a lower multiprogramming level

than traditional gang scheduling.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

W e thank all committee members of this thesis for their many suggestions and

generous help to improve this thesis. We appreciate Dr. Schurko1’s, Mr. Ron

Dumouchelle2’s, and Dr. Sodan3’s additional assistance on polishing up the

English writing of this thesis.

1 External reader o f this thesis, Dept, o f Chemistry and Biochemistry, University o f Windsor
2 Staff, Academic Writing Center, University of Windsor
3 Advisor o f this thesis, Dept, o f Computer Science, University o f Windsor

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ABSTRACT.. iii

ACKNOWLEDGEMENTS..iv

LIST OF TABLES...viii

LIST OF FIGURES..viii

CHAPTER

I. CHAPTER 1 ..1

INTRODUCTION

II. CHAPTER 2 .. 5

BACKGROUND ISSUES

2.1 TIME SHARING VS. SPACE SHARING...5

2.2 NON-PREEMPTION VS. PREEMPTION... 6

2.3 PROCESSOR PARTITIONING...7

2.4 JOB FLEXIBILITY..8

2.5 WORKLOAD CHARACTERISTICS...10

2.6 APPLICATION INFORM ATION... 11

III. CHAPTER 3 ..13

COSCHEDULING

3.1 GANG SCHEDULING... 13

3.2 DYNAMIC COSCHEDULING.............. 14

IV. CHAPTER 4 .. 16

ADAPTIVE SCHEDULING

V. CHAPTER 5 .. 18

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SCOJO

5.1 GOALS AND SOLUTIO NS..18

5.2 STRUCTURE.. 19

5.3 GRID/LOCAL JOB SCHEDULER.. 20

5.4 DYNAMIC DIRECTORY SERVICE..26

5.5 COSCHEDULING ESTIMATOR... 27

5.6 EXPERIMENT RESULTS..29

VI. CHAPTER 6 .. 33

ADAPTIVE SPACE-TIME SHARING WITH SCOJO ALGORITHM

6.1 GOALS AND SOLUTIO NS... 33

6.2 SELECTED RELATED W O R K S ..35

6.3 OUSTERHOUT MATRIX... 36

6.3.1 MULTIPROGRAMMING LEVEL...38

6.3.2 CONTEXT SWITCH OVERHEAD.. 39

6.4 ADAPTIVE SCOJO SCHEDULING A LG O RITH M -......................... 39

6.5 SCHEDULING EVENT... 40

6.6 APPLICATION INFORMATION AND MODELING.......................... 41

6.7 PRIORITY AND FLEXIBILITY ASSIGNMENT...................................44

6.8 WORKLOAD MODELING AND GENERATION................................45

6.9 WORKLOAD CLASSIFICATION AND ADAPTATION.....................47

6.9.1 WORKLOAD CLASSIFICATION...47

6.9.2 DETERMINE THE JOB TARGET S IZ E49

6.9.3 WORKLOAD ADAPTATION..50

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.9.4 RECONFIGURATION INTERVAL AND ADAPTATION

OVERHEAD.. 51

6.10 GANG-SCHEDULING MATRIX FILLING.. 52

6.11 BACKFILLING OR EASY BACKFILLING.. 54

6.12 FRAGMENTATION ELIMINATION...55

6.13 TIME SLICE AND JOB EXECUTION TIME UPDATE--------------- 56

6.14 TIME COMPLEXITY ANALYSIS...57

VII. CHAPTER 7 ..58

IMPLEMENTATION AND EXPERIMENT

7.1 EXPERIMENTAL ENVIRONM ENT...58

7.2 WORKLOADS TESTED... 59

7.3 PERFORMANCE METRICS A PPLIED .. 60

7.4 SCHEDULING STRATEGIES TE S T E D ...61

7.5 EXPERIMENTAL RESULTS ANALYSIS... 62

7.6 SUMMARY AND DISCUSSION..69

VIII. CONCLUSION..74

REFERENCES...75

VITA AUCTORIS..79

v i i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table 5-1. A concrete SCOJO scheduling example...25

Table 5-2. Slowdowns in different application combinations.................................... 28

Table 6-1. Time complexity analysis...57

Table 7-1. Parameters used by the job scheduler..59

Table 7-2. Workloads tested..60

LIST OF FIGURES

Figure 2-1. Time sharing vs. space sharing...6

Figure 2-2. Preemption..7

Figure 3-1. An example of dynamic coscheduling..15

Figure 4-1. An example of size adaptation in adaptive scheduling......................... 16

Figure 5-1. Overall structure of SCO JO ..19

Figure 5-2-1. Potential Fragmentation of Coscheduling.. 23

Figure 5-2-2. Backfilling..23

Figure 5-2-3. Cleat cut for Jobs.. 23

Figure 5-3. A scheduling example of SCOJO..24

Figure 5-4. A sample schedule plan of SC O JO ..24

Figure 5-5. A concrete SCOJO scheduling diagram..25

Figure 5-6. Dynamic Directory Service System ..27

Figure 5-7. Average response time (Case 1 & 2) ... 31

Figure 5-8. Average relative response time (Case 1 & 2) .. 31

Figure 5-9. Average response time (Case 3) ..32

Figure 5-10. Average relative response time (Case 3) ..32

Figure 6-1. Ousterhout Matrix...37

Figure 6-2. Simple demonstration of Gang Scheduling.. 38

Figure 6-3. Adaptive SCOJO Scheduling Algorithm... 40

Figure 6-4. Scheduling event.. 41

Figure 6-5. Speedup Curve... 42

Figure 6-6. Speedup Curve Approximation..44

Figure 6-7. The workload classification algorithm... 47

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6-8. Time Slices (Time Share) Assignment.. 52

Figure 6-9. Non-continuous processor allotment.. 53

Figure 6-10. Fragmentation in space-time sharing.. 54

Figure 6-11. Backfilling... 55

Figure 7-1. Comparison on varying multiprogramming levels................................. 71

Figure 7-2. Comparison of all approaches on average response t im e - 72

Figure 7-3. Comparison of all approaches on average bounded slowdown 72

Figure 7-4. Average bounded slowdown for different job runtime classes and job
types...72

Figure 7-5. Comparison of all approaches on effective utilization of machine — 73

Figure 7-6. Comparison of all approaches on makespan... 73

Figure 7-7. Comparison of all approaches on accumulated job efficiency 73

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1: INTRODUCTION

The general job-scheduling problem in parallel-multiprogrammed systems

refers to assigning tasks from concurrent competing programs to multiple

processors, in order to minimize the makespan, i.e., largest task completion time

[Feitelson97] or average relative response time, i.e., the ratio of the response

time (the time from task submittal to task termination) to the task execution time

[Naik97]. One program can be thought of as one job or task, and each job can

contain several processes. Therefore, the job-scheduling problem is really a very

complex two-level issue: both on the operating system level and on application

level.

On the operating system level, job-scheduling involves allocation of multiple

resources among jobs, e.g. processors and memory, so as to decide when to run

which job on what processors. Because processors are the most important

resource, a lot of research only concentrates on processor allocation while

ignoring or simplifying other resources. There are three basic approaches to

processor allocation: time sharing, space sharing, and the combination of the

time sharing and space sharing, i.e., space-time sharing. Time sharing means all

processors serve the global job queue and the processors are quickly switched

from one job to another after a certain time interval. Space sharing means that

processors are partitioned statically or dynamically to satisfy different resource

requirements of different jobs and tends to provide each job a more dedicated or

exclusive processor allocation than time sharing [McCann93j. As the combination

of time sharing and space sharing, space-time sharing has been widely proved

[Tucker89][Feitelson97B] to gain better responsiveness and efficient use of

resources than pure time sharing and space sharing. On the application level,

job-scheduling involves scheduling all processes of a job among assigned

processors efficiently. This needs both effort from application developer and

runtime system support such as thread library, parallel compiler, etc.

[Feitelson95A]. There are lots of scheduling techniques and algorithms that have

been developed on both levels, and many factors affect their performance, such

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as machine architecture, characteristics of workload, job flexibility, application

information, etc. Such related issues will be discussed in Chapter 2.

Ousterhout [1982] introduced coscheduling to improve the performance of

parallel applications under time sharing, which tries to maximize coscheduled

tasks. When a task is coscheduled all processes of this task are executed

simultaneously on different processors. Gang scheduling and dynamic

coscheduling are two main forms of coscheduling. Gang scheduling

[Ousterhout82][Feitelson97] or explicit coscheduling ensures that no process will

wait for non-scheduled process of the same task for communication or

synchronization so as to minimize the waiting time at the synchronization point,

i.e., all processes of the same job are executing or suspending simultaneously.

On the other hand, dynamic coscheduling [Sobalvarro98][Sobalvarro97] tries to

take advantage of application communication behavior to approximate

coscheduled execution without the need for synchronization among processes,

i.e., to decrease the coordination effort. For example, if one job is blocked for I/O

operation, it can obviously improve overall job performance by overlapping

another job that is computationally intensive. This advantage of dynamic

coscheduling is also called latency (communication or I/O) hiding. Demand-

based coscheduling [Sobalvarro97] is one mechanism of dynamic coscheduling,

which only guarantees to coschedule those processes that communicate with

each other. Implicit coscheduling [Sobalvarro98][Sobalvarro97] is another

mechanism of dynamic coscheduling, which uses spin-block technique; this

means that a blocked process will spin a pre-determined time for messages. If

this blocking process can receive message before the time expires, then it will

continue to run. Otherwise, it will be blocked and another one is scheduled.

Details are described in Chapter 3.

Dynamic processor partitioning refers to dynamically changing the number of

processors allotted to jobs during job execution according to the system workload

changes and/or user requirement. It is fundamental to the design of adaptive

scheduling strategies. Some existing adaptive scheduling techniques such as the

general dynamic scheduling policy (DP) [McCann93] for shared-memory

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

multiprocessor systems and equipartition [McCann94] for distributed-memory

message-passing multiprocessor systems will be discussed in Chapter 4.

This thesis consists of two parts: one is SCOJO (Sharing-based Job

Coscheduling with Integrated Dynamic Resource Directory in Support of Grid

Scheduling) [SodanHuang03], and adaptive SCOJO (Adaptive Space-time

Sharing with SCOJO), which is a great improvement over SCOJO but with

different focus.

SCOJO provides a local framework in support of grid computing. It is our own

approach that combines time sharing and batch scheduling (scheduling a batch

of parallel jobs). We employ dynamic coscheduling with loose coordination which

takes coscheduling effects into consideration (i.e. takes advantage of dynamic

coscheduling, e.g. latency hiding) as well as application characteristics. In

addition, SCOJO guarantees the reservation in terms of both start time and CPU

share for cross-site jobs, which might be scheduled and executed on multiple

sites, and provides a dynamic directory service that keeps information about both

application and machine. SCOJO is briefly introduced in Chapter 5.

However, SCOJO still has problems like memory pressure, context-switching

overhead, and fragmentation, which are general problems of standard time

sharing. Moreover, we assume that all jobs require all processor resources in

SCOJO, which is not practical and needs to incorporate a certain degree of

space sharing. Therefore, based on SCOJO, adaptive SCOJO goes to next level

where it not only applies the combination of time sharing and space sharing but

also employs adaptive resource allocation, i.e., it dynamically changes the

number of processors allotted to jobs during runtime. However, due to the

complexity and different goals of such dynamic adaptive space-time sharing

approach from SCOJO, we keep all general considerations in SCOJO but

exclude reservation for cross-site jobs and explicit coscheduling effects

consideration; i.e., we use gang scheduling instead of dynamic coscheduling as

the more directly suitable approach for combined space-time sharing. Then, the

main focus of adaptive SCOJO is to try to achieve better job performance than

standard gang scheduling by dynamically changing the processor allotment

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

during job runtime to reduce fragmentation and adapt to the constant changes of

system workload. Adaptive SCOJO scheduling algorithm is proposed in Chapter

6 and the corresponding implementation and experimental results are shown in

Chapter 7.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2: BACKGROUND ISSUES

In this chapter, some important related background issues are explained. In

general, there are three basic dimensions to job scheduling scheme design: time

sharing vs. space sharing, non-preemption vs. preemption, and static partitioning

vs. dynamic partitioning. Adaptive scheduling can only take advantage of certain

types of jobs, e.g., moldable and malleable jobs. The more detailed and accurate

the workload characteristics and application information the job scheduler can

get either via runtime estimation or via application itself, then the more efficient

schedule plan the job scheduler can make; i.e., the higher the overall job

performance and system utilization.

2.1 TIME SHARING VS. SPACE SHARING

Time sharing is highly variable and can provide certain degree of fairness (e.g.

many commercial operating systems use unlimited time slices in time sharing,

i.e., jobs can be scheduled immediately after submission without starvation). It is

especially suitable if the exact runtime or runtime estimation of jobs is unknown.

However, if context switching and memory swapping are costly, time sharing will

introduce a lot of overhead and performance loss due to the synchronization

among processes of the same job.

Space sharing mainly tries to enhance the processor utilization by providing a

dedicated or exclusive processor allocation among jobs. Most approaches for

space sharing attempt to minimize the context-switching overhead against time

sharing and reduce the loss of performance due to the synchronization problem

of time sharing. The main drawback of space sharing is the fragmentation

introduced by fixed processor allocation in the execution environment

[CorbalanOI].

Space-time sharing is the combination of time sharing and space sharing,

which usually gains benefits from both time sharing and space sharing.

Figure 2-1 demonstrates the basic concept of time sharing, space sharing, and

space-time sharing. In this example, some processors (marked with X) are idle,

which means that these processors currently are not executing any jobs. W e call

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

such idle processors as fragmentation, which wastes system resources.

Therefore, fragmentation reduction is one of the main goals in job scheduling.

Time sharing

Time

Space

Space sharing j Fragmentation I

Space

Space-time
sharing

Processors

Space

PO P P2 P3 P4
Figure 2-1. Time sharing vs. space sharing

P5

2.2 NON-PREEMPTION VS. PREEMPTION

Non-preemption means that each job runs to completion without interruption

on the set of processors initially allocated to it [Chiang94j. Standard space

sharing implies non-preemption.

Preemption [Feitelson97B] means that job can be interrupted during its

execution and be resumed on the same or a different set of processors initially

allocated to it. Preemption will introduce significant overhead like context

switching, memory swapping, etc. Standard time sharing implies preemption.

In real job scheduling-policy design, non-preemption or limited preemption is a

general recommended direction [Feitelson97C][Chiang94] in order to avoid the

overhead introduced by preemption. However, if application characteristics like

execution time, are known before scheduling, then a scheduling policy that can

take advantage of knowledge of application characteristics and adopt certain

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

degree of preemption or even time sharing would gain better performance in the

situation where job parallelism is high [Majumdar88].

Figure 2-2 shows an example of preemption. Job 1 is executed in the first time

interval (in te rva l - the period of time between two time slices in time sharing),

preempted during the second and third time interval, and resumed in the fourth

time interval.

E
1

■ M - H

Job I

Job 2

Job 3

Figure 2-2. Preemption
Job 1 H

2.3 PROCESSOR PARTITIONING

Each parallel job is executed on all or a subset of processors. The number of

processors on which each job can run is called the size of the job. Processor

partitioning means to partition all available processors among concurrently

running jobs according to their sizes. Different computer architectures, operating

systems, and application behavior determine the classification of processor

partitioning. According to the work of D. G. Feitelson et al.

[Feitelson97A][Feitelson97B], there are four basic processor-partitioning types:

□ Static Partitioning

The partition is preset by the system administrator and can only be

changed by rebooting the system. It is simple and can keep high CPU

cache locality, but will introduce internal fragmentation and has a limited

degree of multiprogramming, i.e., limited number of jobs that can be

executed concurrently.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

□ Variable Partitioning

The partition is set based on the user request when the job is submitted. It

meets user’s requirement and also has high CPU cache locality; however,

it results in external fragmentation.

□ Adaptive Partitioning

The partition is determined by the scheduler according to the current

workload when the job is initialized and also takes the user request into

account. This approach can improve efficiency by its ability of adapting to

workload and high CPU cache locality. Both external and internal

fragmentation will be encountered.

□ Dynamic Partitioning

The partition can change dynamically during job execution to reflect the

changes of workload and user requirement. This approach introduces little

fragmentation, high efficiency, and extraordinary workload adaptation.

However, it sets limitations on the programming model, and the

communication cost associated with relocating code and data is very

expensive.

It is important to note that processor partitioning is mostly related to space

sharing. Moreover, processor partitioning can combine non-preemption or

preemption together resulting in several new derived scheduling policies (See

Majumdar88).

2.4 JOB FLEXIBILITY

Job flexibility refers to how applications are written, which determines what

class of processor allocation strategy or scheduling policy should be used to get

best performance. Feitelson and Rudolph [Feitelson96A] classify applications

into four categories:

□ Rigid job

The job requires certain number of processors explicitly and cannot run on

less or utilize more processors. The scheduler can do nothing but assign

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the required number of processors to jobs. Static or variable processor

partitioning might be suitable for scheduling rigid jobs.

□ Moidable job

The size of a moidable job can be determined by the job scheduler based

on the current workload when the job is first activated. Then moidable jobs

will use the same size through the entire execution. Adaptive processor

partitioning could be used to scheduling such kind of jobs.

□ Evolving job

The execution of an evolving job is divided into several phases. At the

beginning of each phase, the evolving job might require a different number

of processors; at the end of each phase, the job releases them. Variable

or dynamic processor partitioning is suitable.

□ Malleable job

W. Ludwig and P. Tiwari have stated [in Ludwig94] that a malleable job is

one that can be run on any number of processors, i.e., the size of a

malleable job can be dynamically changed during its execution. As a

result, the OS can ask a malleable job to release some processors when

the system workload is heavy; on the other hand, a malleable job can be

given additional processors by the OS if the system workload is light or

more processors are available. Much research has tried to take advantage

of malleable jobs in order to enhance processor utilization and improve

overall job performance. To make an application malleable, the application

itself should be written in such way that it could dynamically adjust the set

of processors initially assigned to it during execution. In addition, the job

scheduler should be constantly aware of the workload changes, then

expand or shrink the size of malleable jobs correspondingly. The dynamic

processor partitioning must be used to provide such size adaptation

capability.

It is important to note that some theoretical studies use different terminology.

For example, most pure algorithmic research [Ludwig94][Turek92][Dutot01] on

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the malleable job-scheduling problem speaks about “malleable” jobs that are

equivalent to “moidable” jobs because only non-preemptive scheduling is

considered. More detail is given in Chapter 6.

2.5 WORKLOAD CHARACTERISTICS

A lot of research on job scheduling is based on the simulation of system

workload - a mix of different sizes and types of jobs. Feitelson [1995B] and

Leutenegger [1990] show that most scheduling techniques only perform well only

on certain kinds of workload models. Therefore, experiments of realistic workload

become very important and the corresponding results determine the building of a

meaningful workload model.

D. G. Feitelson and B. Nitzberg [Feitelson95B] have traced and analyzed the

real parallel workload on a 128-node iPSC/860 located at NASA Ames. They

found that most of the system resources were consumed by parallel jobs and

most sequential jobs were for system administration. Statistics of experimental

data shows that the job submission rate and resource utilization over the

weekend are lower than on weekdays; the job submission rate during a peak day

is high and the average job size is small; at night, the job submission rate is low

but job size and system utilization are high. Finally, the jobs with high degree of

parallelism tend to run longer.

Besides the job mix information of workload stated above, speedup (for each

job, the ratio of its response time on a loaded system to the response time on a

dedicated system) and job efficiency (the ratio of the speedup of this job to the

number of processors allotted to it) [Nguyen96][SodanHuang03] information of

the workload are also very critical to the job scheduler. If such information is

available to the scheduler before scheduling, the overall performance will be

greatly improved compared with the situation where such information is

unknown. In fact, for simplicity, much research just assumes that such

information is already known to the scheduler as a precondition

[SodanHuang03]. On the other hand, Nguyen et al. [Nguyen96] have suggested

a way to get speedup and job efficiency information during job execution, then

provide such information to the job scheduler to make an efficient schedule plan.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Results show that this approach can achieve performance close to those

situations where such information is known beforehand.

2.6 APPLICATION INFORMATION

Parallelism in applications might be the most important application information

in parallel computing, and characterization of such parallelism is the only way to

make your application run in a multiprogrammed parallel system.

Characterization of parallelism mainly means decomposing the whole application

into several small tasks first, and then defining communications among tasks in

order to run them concurrently. Programmers can extract such parallelism

explicitly through analysis of the application, or through some high performance

parallel compiler such as OpenMP, which can extract parallelism from well-

structured loops (e.g. explicitly specified by using OpenMP compiler directives)

inside the application during execution.

Parallelism in the application can be represented by several parameters like

fraction sequential, the fraction of the overall execution time that cannot be

executed in parallel with other parts; average parallelism (avg), the average

number of busy processors during an execution of the application when an

unlimited number of processors are available [Sevcik89]; and, processor working

set (pws), “the number of processors associated with the knee [sic] of the

execution-time efficiency profile” [Ghosal91][Chiang94].

S.H. Chiang et al. [Chiang94] have improved several standard static non­

preemption scheduling policies such as ASP (adaptive static partitioning), FCFS

(first come first served), and SF (shortest job first) by integrating with avg, pws,

and limited preemption. K.C. Sevcik [Sevcik89] discovered various rules to

extract parallelism in applications and introduced two new parameters: the shape

of application (“the proportions of time that the application would use various

numbers of processors”) and the minimum length (“the total execution time when

the application has ample processors allocated”). He concluded that scheduling

policies using more parameters would perform better than those using less

parameters. Moreover, Julita Corbalan et al. [CorbalanOI] show that besides

those general parameters discussed above, job malleability (the capability of a

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

job to dynamically adapt its parallelism to the number of processors allotted to it)

and runtime-measured job performance (the job efficiency calculated based on

runtime measurements) can be used to greatly improve the original gang

scheduling technique.

However, how to get accurate and up-to-date application characteristics during

execution time is a very difficult and challenging task. Therefore, as is the case

with workload information, many researchers just assume that the job scheduler

knows such application characteristics before scheduling.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

CHAPTER 3: COSCHEDULING

In order to decrease the overhead of context switching associated with

standard time sharing and increase the processor utilization over standard space

sharing, J.K. Ousterhout [1982] originally developed the breakthrough

coscheduling technique under time sharing. A job is coscheduled if all processes

of this job are simultaneously running on distinct processors allotted to them;

otherwise this job is called a fragmented job. Normally, the coscheduling

algorithm involves two steps: the first step is processor allocation (determine the

size for jobs); and then the second step is scheduling. There are two main

concrete forms of coscheduling: gang scheduling and dynamic coscheduling.

3.1 GANG SCHEDULING

Gang scheduling [Ousterhout82] has several unique features. For example,

processes are grouped into gangs (all processes from the same job are treated

as a single gang); all processes in a gang will execute simultaneously on distinct

processors; time sharing is used among gangs. J.K. Ousterhout [1982] proposed

a Matrix algorithm, which is widely studied by many subsequent researchers to

continue improving the performance of the standard gang scheduling technique.

Details of the Ousterhout Matrix algorithm are explained in Section 3 of Chapter

6.

The packing scheme of gang scheduling defines the mapping between

processes of the same job and the set of processors (might contain one or more

distinct processors) allotted to this job. Processes can be mapped to a fixed set

of processors or migrated to a different set or even a set of different size from the

original set. Efficient packing schemes have been studied by many researchers

such as D.G. Feitelson [1997A][1996B].

Gang scheduling is a space-time sharing approach and has advantages such

as the avoidance of blocking synchronization problem [Feitelson92], better

system utilization and job responsiveness against standard time sharing and

space sharing. However, gang scheduling has disadvantages such as poor CPU

cache performance, fragmentation, and centralized scheduler

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Gupta91][Feitelson96B]. The fragmentation is the main problem of gang

scheduling and also is one of the main goals of the research herein

[Feitelson96B][Zhang00], which attempts to improve the performance of standard

gang scheduling. For instance, D.G. Feitelson and L. Rudolph [Feitelson90] first

addressed the potential efficiency and fairness problem associated with the

centralized scheduler by proposing a distributed hierarchy control scheme, and

then developed two approaches [Feitelson96B] focusing on solving

fragmentation: mapping based on a buddy system, and migration upon each job

arrival and termination, which can lead to a significant performance improvement.

3.2 DYNAMIC COSCHEDULING

Dynamic coscheduling [Sobalvarro97][Sobalvarro98] is another main

approach of coscheduling, which is suitable for use on a message-passing

distributed-memory multiprocessor system and does not require that all

processes of the same job to run simultaneously. Therefore, dynamic

coscheduling can decrease the coordination effort required by synchronization

among all processes of the same job, which is a significant overhead of gang

scheduling. This approach is dynamic, flexible, and decentralized; therefore it

promises better performance, especially in achieving latency hiding (might get

additional speedup by coscheduling one computation intensive job with another

one that is communication or I/O intensive).

Demand-based coscheduling [Sobalvarro97] is a concrete approach of

dynamic coscheduling. P. Sobalvarro treats the communication among

processes as a demand for synchronization; and demand-based coscheduling

only guarantees that those processes that communicate with each other will run

simultaneously. For instance, if a message arrives at a node and this message is

not addressed to the currently running process on that node, then preemption is

forced on the running process and the process that the message is addressed to

will run next. Figure 3-1 shows a simple example of such an approach. In this

diagram, the process 1 of the job 1 (currently running on the node 1) sends a

message to the process 2 of the same job, which is not currently running on the

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

node 2. Then the process 1 of the job 2 (currently running on the node 2) is

preempted and the process 2 of the job 1 will resume running on the node 2.

Context
switching

Waiting QueueWaiting Queue

Sending message

Figure 3-1. An example of dynamic coscheduling

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

CHAPTER 4: Adaptive scheduling

Adaptive scheduling mainly refers to dynamic processor partitioning under

space sharing, i.e., the processor partition can be dynamically changed during

job execution. The potential benefits of adaptive scheduling are size adaptation

of jobs to the constant changes of workload and user requirement, high resource

utilization, and little fragmentation. A number of researchers [Gupta91]

[Leutenegger90] [Naik93] have proved that many multiprocessor environments

would clearly benefit from adaptive scheduling. As described in Section 4 of

Chapter 2, only malleable jobs can dynamically adjust their sizes during

execution. In Figure 4-1 we show the size adaptation of a malleable job, JO. The

original size of JO is 4 at time Tx\ at time T2 suppose two new jobs, J1 and J2,

are arriving, and then the size of JO is shrunk to 2 in order to give a chance to

execute these two new jobs; at time r 3 suppose both jobs, J1 and J2, are

finished, and then the size of JO is expanded to 6 in order to fully utilize all

available processors.

________ A malleable job - JO__________________________Space

T ~

T 2-----

T3'

T i m e Figure 4-1. An example of size adaptation in adaptive scheduling

In addition, Cathy McCann et al. [1993] concluded that space sharing and

dynamic processor partitioning were preferable to time sharing and static

processor partitioning. In particular, they proposed an adaptive scheduling policy

(DP) by combining space sharing, coordinated preemption, dynamic processor

16

Shrunk size = 2

Expanded size = 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

partitioning, and a priority scheme. Compared to other general adaptive

scheduling policies, this policy had superior performance in a moderately loaded

system. They thought that this policy could even be further improved by taking

the CPU cache behavior of applications into account, i.e., to improve the CPU

cache locality. Moreover, I.H. Kazi et al. have done a lot of research on adaptive

scheduling policy design and implementation. Loop-Level Process Control

(LLPC) [KaziOO] is a dynamic processor-partitioning technique based on

parallelism of well-structured loops in applications, which can dynamically adjust

the number of application processes according to the system workload by

increasing or decreasing the number of iterations each process can have. K.K.

Yue [1998] suggested a way to incorporate such LLPC into the Sun Solaris

operating system, and then developed an adaptive scheduling policy [Kazi02],

which could dynamically change the number of processors assigned to a task

according to not only the system workload, but also the application behavior such

as the varying number of loop iterations.

All above-mentioned adaptive scheduling approaches are developed for

shared-memory machines. For distributed-memory message-passing machines,

C. McCann and J. Zahorjan [McCann94] have proposed two dynamic processor-

partitioning policies: equipartition (repartitioning all processors among currently

running jobs as equally as possible whenever a new job arrives or an existing job

departs) and folding (a new job is allocated on a partition of processors obtained

by dividing the largest currently allocated partition in half). On the one hand, Vijay

K. Naik et al. [Naik97] have proposed and examined a dynamic processor-

partitioning policy by exploiting user-supplied job characteristics like resource

requirements.

On the other hand, adaptive scheduling or dynamic processor partitioning

policies incur more system overhead [McCann93][Sevcik89], which may lead to a

degradation of system performance. Therefore, static scheduling or static

processor partitioning and its variations will still be preferred for the sake of

simplicity as will overhead avoidance in some environments or systems, where

the system overhead resulting from frequent processor reallocations is high.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5: SCOJO

SCOJO provides a local framework in support of grid computing, i.e., to share

geographically distributed computational resources. It is our own approach that

combines time sharing and batch scheduling. We assume that all jobs require all

processor resources in SCOJO; therefore no space sharing is considered.

5.1 GOALS AND SOLUTIONS

Our original intention to develop SCOJO is to meet the following goals:

□ Control of multiprogramming level

□ Choice between time sharing and exclusive execution

□ Flexibility of scheduling cross-site jobs in support of grid scheduling

□ Support start time and share reservation for cross-site jobs, which might

be scheduled and executed on multiple sites

□ Estimation of coscheduling cost

□ Maintenance of detailed information about both application and individual

site characteristics

In order to meet the above goals, we suggest the following solutions:

□ Using effective CPU share by taking the slowdown or speedup information

of applications into consideration

□ Offering two-level global reservation protocol for cross-site jobs, providing

multiple alternate scheduling choices

□ Keeping both applications and individual site characteristics in database

□ Combining NWS (Network Weather Service) [Wolski99] system to gather

detailed dynamic site information, e.g., system load

□ Estimating coscheduling cost by providing a performance model

□ Applying a priority and aging scheme along with other standard job-

scheduling techniques like backfilling

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 STRUCTURE

Network

Job Queue

Application

Model and Decision

User or scheduler agent Model and Schedule Plan

Information of both applications and
individual site characteristics

Local Job Scheduler

Database

Dynamic Directory Service System

Figure5-1. Overall structure o f SCOJO

Figure 5-1 shows the overall SCOJO system structure, which includes three

key components: a local batch job scheduler, the dynamic directory service, and

the coscheduling estimator. The operation mechanism of SCOJO consists of the

following procedures:

1. Remote users contact the SCOJO job scheduler to obtain current site

statistics such as load and available resources, which are gathered by the

SCOJO dynamic directory service system.

2. If the remote user satisfies the current site statistics and decides to run the

corresponding application; then the user needs to provide detailed

application characteristics such as runtime and required CPU share to the

SCOJO dynamic directory service system. Then, mainly based on

application characteristics and potential coscheduling effects among

applications, the coscheduling estimator will make a scheduling plan,

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which actually is a very complex procedure. A further description is

provided in section 5.4.

3. The SCOJO job scheduler will return multiple possible time slots together

with available CPU share and potential speedup or slowdown to the

remote user who is then asked to reserve or just pick a certain time slot for

corresponding application. Reservation means the start time and

associated CPU share can be guaranteed for the application, which

otherwise will be scheduled to run on the same site without guarantee,

i.e., might be executed earlier or later than its originally scheduled time.

4. The SCOJO system will keep application characteristics in a database

together with static machine information.

5. In addition, the SCOJO mostly needs to schedule local jobs, which are

treated similarly to cross-site jobs except for reservation.

Detailed information about each component is explained in the following

sections.

5.3 GRID/LOCAL JOB SCHEDULER

The local batch job scheduler needs to deal with both local jobs and cross-site

jobs. The main features of this job scheduler are:

□ Enforces priorities on all jobs, mainly according to their runtime classes

W e specify each job into four different runtime classes, which are special

(very short), short, medium, and long. Then we assign priorities of 15 for

special jobs, 10 for short jobs, 5 for medium jobs, and 0 for long jobs.

When a new job comes, it will be placed into a job queue based on its

priority, i.e., the job queue is sorted by priorities in a descending order. In

this way, we will create more chances for new special and short jobs to

avoid them being greatly delayed by medium and long jobs.

□ Applies aging scheme

Priority based queuing and scheduling has benefits such as no delaying

special and short jobs, i.e., to improve overall job responsiveness.

However, it would introduce a significant starvation problem for medium

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and long jobs if there were many special and short jobs. Therefore, we

apply an aging scheme on the priority-based queuing and scheduling. In

other words, after a certain amount of time - T age, all waiting jobs in the job

queue will be aged by increasing their original priorities into a higher level.

□ Guarantees requested CPU share

For all jobs including both local and cross-site jobs, their requested CPU

shares are guaranteed and reserved. However, we do not allow any job to

require 100% CPU share, which gives a chance for coscheduling several

jobs together, that is, to take advantage of the benefit of dynamic

coscheduling like latency hiding. For example, there may be a job that

requires a 40% CPU share and is scheduled (with a reservation of 40%

CPU share) to run next. If there is no other job scheduled at the same

time, this job can take 100% CPU share (i.e. to fully utilize all available

resources). However, if later there is a new job coming with equal or

higher priority, this implies there is a possibility for coscheduling this new

job with the old one. If the coschedule estimator determines that these two

jobs can be coscheduled, then the old job will continue running with

decreased CPU share down to the reserved one (40%) while the new job

is simultaneously running at least with its requested CPU share. More

detail is given in Section 5.7.

□ Guarantees start times for cross-site jobs

For cross-site jobs, in addition to CPU share, their start times can also be

guaranteed and reserved. Reservation of start times for cross-site jobs is

really a major burden for the job scheduler. This task requires the job

scheduler not only to apply a general job-scheduling algorithm for both

local and cross-site jobs, but also to treat those start-time reserved cross­

site jobs separately, which might involve the movement of these jobs in

the job queue from their originally scheduled positions to new positions.

When such a movement is necessary, several advanced movements for

other jobs might be required due to the need for re-estimating

coscheduling at new positions. In fact, start time reservation for cross-site

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

jobs results in several problems such as fragmentation, decreased overall

job performance, and increased time complexity.

□ Applies backfilling technique and allows flexible CPU share assignment

Coscheduling might introduce fragmentation of CPU share. For instance,

in Figure 5-2-1, job A is coscheduled with job B and job B finishes much

earlier than job A. Then, after the termination of job B, the CPU share

taken by job B can be considered as CPU share fragmentation along the

remaining execution of job A. We try to solve this kind of problem by trying

to follow two steps:

1. At first, we try to use backfilling [Feitelson97B], which is originally

developed for solving the space fragmentation problem in space

sharing (for more detail, see Section 10 of Chapter 6). Basically it is

a standard job scheduling technique, which allows a job to be

started earlier than its originally scheduled time to fill empty spaces

(unutilized processors) if this job does not delay other front jobs in

the job queue. Since SCOJO is a pure time sharing approach, we

exploit backfilling to fill empty CPU share. W e only allow those jobs,

which have the same or higher priority as current running job(s), to

be the candidates for backfilling. It is important to note here that

preventing a delay in other front jobs is not the only requirement for

backfilling in SCOJO; we also consider that any backfilled job must

be able to coschedule with the current running job(s).

For example, in Figure 5-2-2, job E, which can be coscheduled with

job A, is backfilled after the termination of job B. After the

termination of job E, if no more jobs can be backfilled and no CPU

share increase on job A, still some CPU share fragmentation will be

encountered along with the remaining execution of job A. Then we

do the second step - flexible CPU share assignment.

2. If no more jobs can be taken from the job queue for backfilling, we

allow running job(s) to take full utilization of all available resources

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

like CPU share so as to eliminate fragmentation and have a clear

time cut for the next job(s). See example in Figure 5-2-3.

Share

JobB ! Possible Fragmentation

Job A

Time
Figure 5-2-1. Potential Fragmentation o f Coscheduling (Job A & Job B)

Share

JobB JobE
r-
j Fragmentation

Job A
 ►

Time
Figure 5-2-2. Backfilling (with Job E)

i t Share

JobB JobE

Job A

Job C

Job D
 ►

Time
Figure 5-2-3. Cleat cut for Jobs (Job C & Job D)

Figure 5-3 gives a more complicated scheduling example to demonstrate

the backfilling and flexibility of the CPU share assignment. The CPU share of

job 0 (JO) varies from 40% to 100%, then 50%, and finally 40%. Job 5 (J5) is

backfilled (i.e., to be started earlier than job 3 and job 4) after the termination

of job 2 (J2); job 6 (J6) is backfilled (i.e., to be started earlier than job 3 and

job 4) after the termination of job 5 (J5); and job 9 (J9) and job 8 (J8) are

backfilled (i.e., to be started earlier than job 3 and job 4) after the termination

of job 7 (J7).

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Job Waiting Queue

Batch o f jobs, entry control

Figure 5-3. An example o f flexible share assignment (Job - 0) T im e
and backfilling (Job - 5,6,7,8,9) adopted in SCOJO

□ Makes updated schedule plan

The schedule plan specifies the execution order of all waiting jobs and is

represented by a list. Each element of this list is a coschedule plan, which

specifies either an exclusive execution of a single job (which currently

cannot coschedule with others) or a simultaneous execution of several

coscheduled jobs. In fact, at each time when an old job terminates or a

new job comes, the SCOJO job scheduler will update the current schedule

plan into a new schedule plan by considering the possibility of backfilling,

characteristics of new jobs, potential coscheduling effects, and the existing

start-time reservations of cross-site jobs. Figure 5-4 shows an example of

the schedule plan, which consists of four elements. The first element of

this plan specifies an exclusive execution of job 0 and the second element

specifies that job 4 and job 5 can start together after the termination of job

0. A similar explanation applies for the third and fourth elements.

Schedule Plan - [<coschedule: Oxcoschedule: 4,5xcoschedule: l,3,6xcoschedule: 2>]

Figure 5-4. A sample schedule plan of SCOJO

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

□ Schedules and runs real applications or simulated processes

When the schedule plan is complete, the SCOJO job scheduler will

schedule jobs to run according to this plan. As seen in Section 5.8, the

SCOJO can demonstrate its performance by scheduling real MPI

(Message Passing Library) applications or via simulation.

Table 5-1 and Figure 5-5 demonstrate the SCOJO scheduling by a real simple

test example. In Table 5-1, J O B represents the unique job ID given to each job;

P R I is the priority assigned to each job based on its execution time; S H A R E is

the CPU share consumed by each job during execution; T Y P E is used to

distinguish local and cross-site jobs (1 - a local job, 2 - a cross-site job);

S U B M I T , R E S _ T I M E , S T A R T , and F I N I S H represent the submission time,

reserved start time, actual start time, and finish time of each job correspondingly;

R E S is the response time.

JOB PRI RUNTIME SHARE TYPE SUBMIT RES_TIME START FINISH RES
1 0 300 40% 1 11 42:39 11 42:40 11:57:07 868
2 5 60 40% 1 11 43:09 11 43:10 11:46:23 193
3 5 60 20%-40% 1 11 43:39 11 43:40 11:50:02 382
4 15 10 20% 1 11 44:09 11 46:23 11:47:29 199
5 15 10 20% 1 11 44:39 11 47:29 11:48:34 234
6 15 10 40% 1 11 45:09 11 50:02 11:50:35 325
7 10 30 20%-40% 1 11 45:39 11 50:51 11:52:42 422
8 15 10 20%-40% 1 11 46:09 11 50:02 11:50:51 281
9 10 30 20%-40% 1 11 46:39 11 51:16 11:55:05 505

10 15 10 20%-40% 1 11 47:09 11 50:35 11:51:16 246
11 0 300 40% 2 11 56:49 11:57:00 11 57:07 12:12:56 966
12 5 60 40% 1 11 57:19 11 57:20 12:00:34 194

Table 5-1. A concrete SCOJO scheduling example

6 10 12

11

11:42:40AM Figure 5-5. A concrete SCOJO scheduling diagram 11:57:07AM

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 DYNAMIC DIRECTORY SERVICE

The dynamic directory service is designed to dynamically gather and store

application characteristics and machine statistics during runtime.

The following application characteristics are maintained and can be gathered

mainly from the application itself (or potential historical data from the database)

□ Owner (user)

□ Requested CPU share

□ Runtime estimation

□ Communication pattern and frequency that describes the communication

behavior among all processes of the same job

□ Other system resource requirements such as memory, I/O, etc.

Where machine statistics are concerned, SCOJO provides an interface to an

embedded resource monitoring system like NWS (Network Weather System)

[Wolski99], which can periodically monitor the system resources and dynamically

forecast the performance that could be delivered over a given time period. The

system statistics measured via NWS include

□ Available CPU percentage

□ Available non-paged memory

a Available disk storage

□ TCP-1 P performance (latency and bandwidth)

SCOJO will store user information, characteristics of frequently invoked

applications, and some static system information like the total number of CPUs,

the total amount of memory and the total disk storage into a database.

At last, we need to enforce a certain degree of security into this dynamic

directory service system. It means that, on the one hand, we could make use and

take advantage of application characteristics and system statistics; but on the

other hand, we should not disclose such information to other users or sites.

Figure 5-6 represents the structure of the SCOJO dynamic directory service

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

system, which keeps two kinds of information - general system information, and

application information that consists of two parts: registration-part (static

information like requested CPU share) and execution part (dynamic information

like runtime measurement).

Dynamic Directory Service

General System Information - accessible to ail legal users

Application Information - accessible only to the owner and system

Registration-time part: static application information

Execution-time part: dynamic application information

Figure 5-6. Dynamic Directory Service System Database

Network Weather
System (NWS)

Interaction with
Application

5.5 COSCHEDULING ESTIMATOR

As described in Chapter 4, benefits such as latency hiding can be obtained

from the dynamic coscheduling if I/O or long-distance communication delays are

involved. In order to take advantage of such benefits, we estimate the

coscheduling effect - the potential speedup or slowdown when coschedules

multiple jobs together. Table 5-2 1 shows different slowdowns measured from

coscheduling different application combinations where each application uses 9

CPUs of a Solaris shared-memory machine (SUN Ultra-Enterprise-6500 with 12

processors and 8 GB of SMP memory). The left value represents the slowdown

for corresponding row application and the right value represents the slowdown

for corresponding column application. The applications used are g r i d (heat

distribution calculation in a two dimensional matrix, 4-neighbor communication)

with different granularities (problem sizes, which are represented by the numbers

appearing in parenthesis) and different matrix sizes (e.g., Grid-300 means the

1 Directly took the experimental results from Dr. Sodan with permission

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

heat distribution calculation in a 300*300 matrix), c e n t r a l (synthetic, iterative

master-slave), s t r e a m (synthetic pipelining, one-way data dependency among

processes), and r a n d o m (synthetic, random point-to-point with probing).

Applications are implemented in MPI. As can be seen, a different combination

sometimes has a significant different coscheduling effect than other

combinations. For example, if Grid-1200 coschedules with Central, the slowdown

is 1.1; however, if Grid-1200 coschedules with Grid-2400, the slowdown is 1.4.

For more explanation, see Sodan & Riyadh [2002].

Grid-300

(1.3msec)

Grid-1200

(27.9msec)

Grid-2400

(116msec)

Central

(29.3msec)

Random

(4msec)

Stream

(3.5msec)

Grid-300 1.2 1.4/1.1 2.2/0.9 0.9/1.6 1/1.3 1.8/0.8

Grid-1200 1.2 1.4/0.8 1.1/1.7 1/1.4 1.3/0.8

Grid-2400 1.1 1/3.1 1.5/2.3 0.8/0.8

Central 1.3 1.3/0.9 2.5/0.8

Random 2 1.8/0.9

Stream 0.8

Table 5-2. Slowdowns in different application combinations

The coscheduling estimator that takes the coscheduling effects among

applications into consideration is responsible for:

□ Determining whether coscheduling is possible

If the job scheduler knows the coscheduling effects among applications

from the coscheduling estimator, it will make a schedule plan with

avoidance of coscheduling two applications together such that there is a

significant slowdown on their execution. In fact, the coscheduling

estimator can get the estimation of the coscheduling effects through a

performance model, which takes the application information and relevant

cost factors like Pncosched(Env) (the probability of not being coscheduled) into

consideration. This issue has been addressed in depth in previous

research of Sodan & Riyadh [2002]. For simplification, in SCOJO the

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

coscheduling effects provided by the coscheduling estimator are either

previous experimental results or assumptions if using mere simulations.

□ Calculating the effective CPU share

For each job, the coscheduling estimator calculates the effective CPU

share, which is the multiplication of this job’s real requested CPU share

and the potential coscheduling effect. Then the job scheduler will reserve

and assign the effective CPU share to this job.

SHActive = S H requesl * Slowdown

The above formula gives the calculation of the effective CPU share. For

example, if a job requests 40% of the CPU share (SHrequest = 40%) and the

slowdown with another coscheduled application is 1.2 {Slowdown = 1.2),

then 48% of the CPU share (SHeffecljve= 48%) - the effective CPU share will

be assigned to this job.

5.6 EXPERIMENT RESULTS

We have done two test cases (Casel and Case2) to demonstrate the

performance gained by the SCOJO scheduling algorithm compared with other

standard job scheduling policies like the first-come-first-served policy. Moreover,

we have tested the third test case (Case3) to show coscheduling benefits gained

by taking coscheduling effects into consideration. All test cases are experimented

on a SUN Ultra-Enterprise (6500) machine with 12 processors and 8 GB of SMP

memory. The performance metrics used in all test cases are: average response

time {ARtime), which is an average of the response times of all jobs, and average

relative response time (ARRtime), which is an average of relative response times

of all jobs. For definitions of the response time and the relative response time,

see Chapter 1.

For Casel and Case2, we have compared F C F S (first come first served), P r i

(mere priority-based scheduling), and P r i C o (priority + coscheduling) with our

SCOJO approach, which is P r i C o B (priority + coscheduling + backfilling). And

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the maximum multiprogramming level is set to 2; i.e., at most 2 jobs run at the

same time. The equal CPU share assignment is adopted.

□ Casel

In this test case, we use our real sample MPI programs (described in

Section 5.5) as jobs and submit them to the SCOJO job scheduler, and

the actual coscheduling effects - slowdowns are taken from Table 5-2.

Besides, the workload used in this test case is similar (with respect to

actual percentages of the different job runtime classes, however, not with

respect to actual runtimes) to a real workload measured in [Feitelson95B]

on a distributed-memory machine (iPSC/860).

W e have used 36 jobs: 11% of long jobs (G r i d - 2400, 30 min of runtime),

11% of medium jobs (R a n d o m and G r i d - 3 0 0 , 8-10 min), 16% of short

jobs (G r i d - 3 0 0 and C e n t r a l , 3-5 min), and 60% of special jobs (G r i d - 1200

and S t r e a m , 1-1.5 min). Two of the long jobs are cross-site jobs. Job

submission is such that the long job is submitted every 40 minutes and the

others are equally spread. As can be seen in Figure 5-7 and Figure 5-8,

P r i C o B provides the best performance both on A R time and A R R tim e . For

example, the former is reduced from 42.08 minutes to 25.57 minutes and

the latter is reduced from 14.47 to 3.22 against F C F S . However, due to

the slowdown effects of coscheduling, the total execution time of P r i C o B

is increased from 3.57 hours to 4.48 hours compared to F C F S . Moreover,

P r i C o performs worse than P r i , which means only coscheduling (even

taking coscheduling effects into consideration during scheduling) is not

enough (there is potential significant fragmentation left); and then

backfilling can play an important role (i.e. to reduce fragmentation).

□ Case2

In this test case, we use full simulation instead of scheduling actual

programs, and the workload is similar to the one in [ChiangOI] on a DSM

machine (Origin 2000). In addition, we assume that all applications have a

slowdown of 1.2.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

W e have simulated 40 jobs: 15% of long jobs (5 min of runtime), 20% of

medium jobs (1 min), 30% of short jobs (30 sec), and 35% of special jobs

(10 sec). The long jobs are submitted every 10 min followed by various

mixtures of other jobs. Also can be seen in Figure 5-7 and Figure 5-8,

P r i C o B provides the best performance again both on A R time and A R R lime

for this test case. For example, the former is reduced from 5.57 minutes to

3.27 minutes and the latter is reduced from 12.64 to 1.78 against F C F S .

However, the total execution time of P r i C o B is increased from 45 minutes

to 55 minutes compared to F C F S .

■ FCFS
■ Pri
■ PriCo
□ PriCoB

■ FCFS
■ Pri
■ PriCo
□ PriCoB

Casel Case2 Casel Case2

Figure 5-7. Average response time (case 1 & 2) Figure 5-8. Average relative response time (case 1 & 2)

For Case3, we have tested our SCOJO approach (P r i C o B) under flexible CPU

share assignment (40% for each of the first two coscheduled jobs and 20% for

the third coscheduled one) and different multiprogramming levels (maximum of 2

and maximum of 3) through simulation. Slowdown is set to 1.2 for all jobs if

coscheduling 2 jobs (C 2), and 1.3 if coscheduling 3 jobs (C 3). W e have

simulated 40 jobs: 10% of long jobs (5 min of runtime), 20% of medium jobs (1

min), 20% of short jobs (30 sec), and 50% of special jobs (10 sec). The long jobs

were submitted about every 14 min, immediately followed by medium jobs. Short

and special jobs were submitted arbitrarily. Figure 5-9 and Figure 5-10 have

shown that the coscheduling provides potential benefits (e.g. better performance

gained by properly taking coscheduling effects into consideration, even with

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

higher programming levels), especially if the percentage of short and special

(very short) jobs in the workload is high (i.e., there is more chance for

coscheduling or backfilling new short jobs with currently running long or medium

jobs). For instance, the average response time of C 3 drops from 8.49 minutes to

6.07 minutes and the corresponding average relative response time drops from

8.39 to 3.73 compared to C 2 .

BCo3

□ Co2

Figure 5-9. Average response time (case 3) Figure 5-10. Average relative response time (case 3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

CHAPTER 6: ADAPTIVE SPACE-TIME SHARING WITH SCOJO ALGORITHM

Based on SCOJO, adaptive SCOJO (Adaptive Space-Time Sharing with

SCOJO) incorporates adaptive resource allocation into gang scheduling, which is

the more directly suitable approach for combined space-time sharing.

6.1 GOALS AND SOLUTIONS

Adaptive SCOJO has the following goals:

□ Adaptive resource allocation

Adaptive resource allocation mainly means dynamic resource allocation,

which dynamically allocates system resources such as processors and

memory during job execution, and aims at improving the overall utilization

of system resources and providing better overall job performance. In

adaptive SCOJO, we only focus on job size adaptation; i.e., we only

consider to dynamically changing the number of processors assigned to

jobs during job execution. We also assume that the operating system can

provide enough support for dynamic processor partitioning.

□ Employ realistic workload

As described in Section 5 of Chapter 2, jobs are classified into three main

types: rigid, moldable, and malleable. In order to take advantage of size

adaptation, jobs must be either moldable, (i.e., the sizes can be decided at

startup), or malleable, (i.e., the sizes can be changed dynamically during

execution). Most other related research assumes that all jobs belong to

the same type, which is either moldable or malleable. However, this

assumption does not reflect the realistic workload, which is mixed with

various types of jobs. In addition, we cannot expect that all jobs are

malleable - this requires a significant effort from developers on

constructing and formulating their programs, which is very difficult and

sometimes is impossible. Therefore, adaptive SCOJO considers the

realistic workload, which is a mixture of rigid, moldable, and malleable

jobs. More precisely, we assume that most jobs are moldable, some are

rigid, and some are malleable.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

□ Adapt to workload

The workload keeps changing during job scheduling with the termination

of old jobs and arrival of new jobs. Sometimes the workload is high, and

sometimes it is low. If we can allocate system resources in a way to adapt

to such changing workload, i.e., to release some processors from currently

running jobs at high workload in order to schedule new jobs quickly and to

give more processors to currently running jobs at low workload in order to

take full utilization of all available processors, we might deliver overall

better job responsiveness, higher system utilization, and lower

multiprogramming level.

□ Reduce fragmentation

Fragmentation in space-time sharing means that not all processors and

CPU share can always be fully utilized by jobs, as this results in

decreased utilization of system resources. In addition to workload

adaptation, adaptive resource allocation can also be used to help solve

fragmentation problems, especially on space (unutilized processors).

□ Lower multiprogramming level to obtain good performance

Multiprogramming level (MPL) in space-time sharing means the number of

time slices that is applied on a physical processor, i.e., the maximum

number of jobs that can be run concurrently on this physical processor in a

time sharing manner. A higher MPL normally implies better job

responsiveness but severe context-switching overhead. Again, due to the

flexibility of dynamic adaptive resource allocation and other applied

standard job-scheduling techniques like backfilling, a lower

multiprogramming level is expected in adaptive SCOJO to still gain good

performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In adaptive SCOJO, we provide the following solutions to meet the above

goals:

□ Combine the adaptive resource allocation with gang scheduling

□ Employ size adaptation by taking advantage of both moldable and

malleable jobs

□ Treat fragmentation reduction and workload adaptation separately in order

to maximize the benefits of adaptive resource allocation while minimizing

the overhead associated with frequent context switching and intensive

resource adaptation

□ Exploit other standard job scheduling techniques like priority and aging

system, backfilling or EASY backfilling, etc.

□ Provide a clear criterion to determine when, to what degree and how to do

adaptive resource allocation

□ Take application characteristics like runtime estimation and processor

working set into consideration

6.2 SELECTED RELATED WORKS

Almost all work on adaptive scheduling is mere space sharing only.

Furthermore, most adaptive approaches only exploit moldable applications and

aim at minimizing the makespan while focusing on the provision of tight worst-

case bounds [Turek1992][Dutot2001].

Naik [1997] presents one of few approaches that exploit malleable applications

to adapt system resources assigned to jobs to varying workload. Resource

adaptation is only considered for medium and long running jobs; and a certain

reconfiguration time interval is applied to avoid configuration thrashing. EQUI

partitioning (i.e. evenly partitioning resources among jobs) is applied to adjust the

jobs’ sizes at each time of workload adaptation when the workload is high;

otherwise the jobs’ requested sizes are considered. There is another principal

approach to determine how to adjust the jobs’ sizes: efficiency-based partitioning,

which uses the concept of the processor working set [Ghosal91] to reflect the

applications’ different speedup curves.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There are several approaches [Zhang01][Zhang00][Frachtenberg03] proposed

to improve the performance of the traditional gang scheduling [Ousterhout82]

technique. For example, Zhang [2001] applies backfilling and migration and

Frachtenberg [2003] applies EASY backfilling to solve the fragmentation problem

associated with gang scheduling.

There is little work combining gang scheduling with adaptive resource

allocation. Corbalan [2001] presents two approaches to do so. The first approach

adapts the number of processors allotted to each job for its optimal efficiency

calculated based on runtime measurements. The second approach compresses

the sizes of both currently running jobs and any other non-started previously

scheduled jobs, and then allocates available processors to new jobs. However,

certain limitation and drawbacks exist in this work. For example, all jobs are

assumed to be malleable; no clear criterion is provided to decide when to stop

size adaptation; and no other standard job scheduling techniques are combined.

To summarize, the main contribution of this thesis is:

□ Apply to realistic workloads (i.e., mixture of all types of jobs)

□ Combine adaptive resource allocation with gang scheduling (space-time

sharing) on clusters

■ Employ adaptive resource allocation for both fragmentation reduction

and workload adaptation

■ Trade space vs. time based on a clear model (including overhead)

■ Apply other standard job-scheduling techniques like backfilling or

EASY backfilling, etc.

6.3 OUSTERHOUT MATRIX

As mentioned in Chapter 3, J.K. Ousterhout [1982] developed the original

coscheduling technique and proposed a two-dimensional Ousterhout Matrix,

which was used to visually represent the job-scheduling problem of a parallel

machine in space-time sharing. In the Ousterhout Matrix, rows represent the

number of time slices used or the multiprogramming level, that is, the number of

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

jobs coscheduled together on a physical processor, and columns represent the

total number of processors that a parallel machine has. We can view each row as

a virtual parallel machine, which has the same number of processors as the real

physical machine. Then the job-scheduling problem of space-time sharing is kind

of attempting to fill such Matrix with parallel jobs while keeping the Matrix as full

as possible to reduce fragmentation and enhance the system utilization. More

precisely, Ousterhout describes a two-step scheduling strategy for Matrix filling:

□ Processor allocation

Every parallel job requires certain number of processors and on each

assigned processor there is a process associated with this job. When

scheduling such a job, the job scheduler first tries to fill this job into the

Matrix at the first row if there is enough unused processors left; otherwise,

try the second row, and so on until a row is found that can accommodate

all processes of this job.

□ Scheduling

After filling the Matrix, scheduling all processes inside this Matrix is time

sharing enforced, which means at time slice 0, each process of row 0 is

executed on the corresponding processor. After a certain time period, at

time slice 1, each process of row 1 is executed on the corresponding

processor, and so on until the last row. Then, return to time slice 0 and

repeat.

Figure 6-1 gives an example of the Ousterhout Matrix representation of a

parallel machine, which consists of 16 physical processors and applies the

multiprogramming level of 5.

k
Time slice 0

Time slice 4

k
MPL
(Degree of time sharing)

Processor 0 Figure 6-1. Ousterhout Matrix Processor 15

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As mentioned in Chapter 3, gang scheduling guarantees all processes of a job

are running or suspending simultaneously in a time-shared manner; i.e., all

processes of the same job are synchronous. A simple demonstration of gang

scheduling is described in Figure 6-2. Suppose there is a parallel machine of 10

physical processors, where Job 0 (JO) contains 8 processes that require 8

processors, and Job 1 (J1) contains 4 processes that require 4 processors. After

allotting JO at time slice 0 (TO) on processors from P0 to p7, instead of

continuously assigning two left unused processors (P8 and P9) at TO and two

front processors (P0 and P1) at time slice 1 (T1) to J1 in Choice A, Choice B is

the correct processor allocation in traditional gang scheduling that assigns four

processors from P0 to P3 at T1 to J1.

P0 PI P2 P3 P4 P5 P6 P7 P8 P9

JO JO JO JO JO JO JO JO J 1 J 1

J 1 J 1

Choice A

P0 PI P2 P3 P4 P5 P6 P7 P8 P9

JO JO JO JO JO JO JO JO

J 1 J 1 J 1 J 1

Choice B
Figure 6-2. Simple demonstration o f Gang Scheduling

6.3.1 MULTIPROGRAMMING LEVEL

As mentioned before, the Multiprogramming Level (MPL) of Ousterhout Matrix

refers to the degree of the time sharing, i.e., the total number of time slices

applied in gang scheduling. A MPL of 1 implies pure space sharing.

In general, the MPL determines the number of jobs that can run concurrently

and is limited by the system resources like memory. Higher MPL normally means

less job waiting time (the time period between the job submission time and the

job startup time); i.e., jobs can be scheduled sooner than that of lower MPL.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However, higher MPL also means more frequent context switching, i.e., more

context switching overhead, and higher memory pressure.

Moreira [1998] found that a multiprogramming level of 5 could provide almost

the same responsiveness as an infinitely high level applied in gang scheduling.

Therefore, we use maximum MPL of 5 in adaptive SCOJO.

6.3.2 CONTEXT SWITCHING OVERHEAD

In time sharing, when the time slice expires after certain time interval the

scheduler of the operating system needs to stop and exchange the running

process at the current time slice for the process at next time slice per processor.

This procedure is called context switching. The cost associated with it mainly

refers to the processor time needed on such operation. The more frequent the

context switches, the more processor time is needed (more context switching

overhead).

SCore-D [Ishikawa99] is a well-known operating system for workstation and

PC clusters. Ishikawa99 et al. conclude that the job scheduler of SCore-D can

get less than 10% overhead for 40 millisecond time intervals (the time period

between two time slices in time sharing) and there are few other research papers

addressing this issue. Therefore, we take the worst 10% of the time interval as

the context-switching cost in adaptive SCOJO.

6.4 ADAPTIVE SCOJO SCHEDULING ALGORITHM

In SCOJO, we have tested the performance of our approach via scheduling

real parallel applications. However, it is limited to the size of test cases.

Therefore, in order to comprehensively test various heavy loads of realistic job

mixes that consist of thousands of jobs and various combinations of different

scheduling strategies, we build our test through a discrete-event simulation in

adaptive SCOJO.

W e treat every new job arrival or every old job departure as an event, which

requires the job scheduler re-compute and re-update the scheduling Matrix. Then

the job scheduler will schedule jobs according to this updated Matrix.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The corresponding algorithm for re-computing and re-updating scheduling

Matrix is described in Figure 6-3, which consists of 9 steps. Detailed explanation

of each step and overall time complexity analysis are provided in the following

sections.

/ /Stepl: Sum up to this event, the fragmentation and the context switch overhead encountered.
sumFragmentationAndOverhead();

//Step2: I f this is a job departure event, free corresponding processors.
for i = 0 to number of processors assigned to this departure job

add the corresponding freed processor ID into the emptySlots at corresponding tim e slice
//Step3: Classify the current workload.

workloadStatus=classifyWorkload();
//Step4: Determine the job target size according to the current workload.

if(workloadStatus = = high)
jobTargetSize=(currentJobSize-minJobSize)/2+minJobSize;

else if(workloadStatus = = low)
jobTargetSize=(maxJobSize-currentJobSize)/2+currentJobSize;

else//w orkloadStatus = = normal
jobTargetSize=optimalJobSize;

/ /StepS: if the current workload is high, shrink running malleable jobs to the target size. Otherwise
I I expand running malleable jobs to the target size. This is called workload adaptation.

workloadAdaptation()
{

if(workloadStatus = = high) shrinkMalleableJobs();
if(workloadStatus = = low) expandMalleableJobs();

>
I/Step6: Populate Matrix with new jobs taken from the job waiting queue, using jobTargetSize.

populateMatrix()

while a new job with its target size fits into the Matrix
allocate this new job;

>
I/Step7: Reduce fragmentation by backfilling or EASY backfilling new jobs from the job waiting queue,
I I which could be scheduled earlier than their original scheduled time.

backfilling() or easyBackfilling();
I/Step8: Continue to reduce fragmentation by taking advantage of new started moldable and new
I I started medium malleable jobs.

eliminateFragmentaionO
{

for all new started moldable jobs and new started medium malleable jobs
reduce fragmentation per time slice by expanding the sizes of those corresponding jobs

>
//Step9: Update the time slice and job execution time correspondingly.

timeSliceChangeO;
executionTimeChanqeO;

Figure 6-3. Adaptive SCOJO Scheduling Algorithm

6.5 SCHEDULING EVENT

Although each job arrival or departure event can happen at any time, however

the job scheduler only considers interruptions at the beginning of the next time

interval, which is equal to or later than the actual event time; i.e., the job

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

scheduler can not be interrupted between two time slices. Figure 6-4 helps to

illustrate this.
PO P9

Time Slice 0

Time Slice 1

Time Slice 2

Time Slice 3

Time Slice 4

< —

< — 1

< = ■

Actual job arrival time

Round-up event time

Actual job departure time

Round-up event time

Figure 6-4. Scheduling event

6.6 APPLICATION INFORMATION AND MODELING

As mentioned in Section 7 of Chapter 2, accurate application information really

can help the job scheduler to make an efficient schedule plan, to improve job

performance and enhance system utilization. However, to acquire such

information about applications during execution time is difficult. Most research

assumes this information can be provided by the application itself, or can be

estimated during job runtime. In adaptive SCOJO, we assume that

□ The following general information is provided by every application:

■ TYPE - local job or cross-site job

■ PRIORITY - details in the next section

■ RUNTIME - execution time estimation

Although we assume accurate estimation of execution time of jobs, our

adaptive scheduling can deal with wrong or incorrect runtime

estimation as well because in adaptive SCOJO we ignore the

reservation for cross-site jobs.

■ FLEXIBILITY - the flexibility of job, i.e. rigid, moldable, or malleable

■ PROCESSOR WORKING SET - p w s

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Speedup
Ideal Speedup Curve

Real Speedup Curve

Number of Processors

optmin max

Figure 6-5. Speedup Curve

Figure 6-5 gives an example of the speedup curve of an application.

Ideally, if an application runs T x time to finish on single processor, it will

T
need T N = - ^ time to finish on N processors; i.e., the ideal speedup S

T
is defined as — , which is N. Therefore, the dashed line of an ideal

T1 N

speedup curve has linear shape as shown in Figure 6-5. However,

mainly due to the cost of communication and synchronization among

all processes or processes of the same application, the typical

speedup curve only has a convex and sub-linear shape like the solid

line of the real speedup curve in Figure 6-5; i.e., the speedup S can not

reach N when the application runs on N processors.

More precisely, in Figure 6-5 the sampled real speedup curve has the

following features:

1. When the corresponding application runs on fewer processors (less

than N m in) , its real speedup curve is close to the ideal speedup

curve, and can be thought of as linear.

2. When the corresponding application runs on an increased number

of processors (between N min and N max) , its real speedup curve

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

becomes flattened; i.e., the real speedup does not increase linearly

with the number of processors increased.

3. From a certain number of processors (greater than N mJ on, the

real speedup curve of the corresponding application drops, i.e., the

real speedup does not increase anymore.

The job efficiency E is the ratio of the speedup S to the number of
$

processors N allotted to the job (£ = —), which in turn reflects the

utilization of machine (for example, ideally S = N, then E = 1 or 100%;

i.e., machine is fully efficiently utilized). Then, the processor working

set - p w s is defined as the set of optimal number of processors on

which the job can gain best efficiency.

p w s = { N llsed| with (T Nused/ E) is minimal}

Where, N med is the number of processors (size) used by the job, T Nused

is the execution time (runtime) needed on size N med for the job, and E

is the job efficiency on size N m e d .

In addition, in adaptive SCOJO we useJV^to represent the number of

processors from which the increase of real speedup becomes

flattened, where Smjn is the corresponding speedup, N opt represents the

processor working set, Sopt represents the speedup at N opt,

N max represents the number of processors from which on the real

speedup drops and Smax is the corresponding speedup.

□ The speedup curve of each application has been estimated according to

the following application model

■ W e assume that the speedup Smin is 80% of the ideal speedup at N min,

i.e. S . =0.8*N . .

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■ W e assume that the speedup Sopt is 65% of the ideal speedup at N opl,

i.e. Sopt=0.65* N o p t.

■ We assume that the speedup Smax is 50% of the ideal speedup at N m(U.,

i.e. S =0.50 * N .max max

■ W e assume a linear approximation between N mi„ and N opt, and a linear

approximation between N 0/,,and N maxa .s shown in Figure 6-6. For

example, for any N in the processor interval { N m jn , N o p t) we can have

such approximation on the speedup curve: 0.8* N min +(0.65* N o p t-

0 .8*TV .) / (N , - N .)*(N - N ■)mm opt mm > \ mm /

Speedup

Ideal Speedup Curve
(Ideally, S = N)

o/tf

Approximated Speedup Curve

opt

N , N . N , Number of Processorsoptmm max

Figure 6-6. Speedup Curve Approximation

6.7 PRIORITY AND FLEXIBILTY ASSIGNMENT

The priority and aging scheme in adaptive SCOJO is the same as that in

SCOJO (see Section 4 of Chapter 5) except that in adaptive SCOJO we classify

jobs into three classes instead of four based on their runtimes, i.e., short job with

priority of 10, medium job with priority of 5, and long jobs with priority of 0.

With respect to flexibility, we permit

□ A rigid job can belong to any runtime class; i.e., any of short, medium, or

long jobs

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

□ A moldable job can be a short or a medium job

The reason that we do not permit long jobs being moldable is to avoid the

disadvantages of scheduling a small number of processors to long jobs at

the startup while the system workload is heavy. This will force long jobs

running to complete with squeezed sizes; i.e., the response time for long

jobs will be greatly increased and the system utilization will be possibly

decreased especially when the system workload becomes light, later.

□ A malleable job can be either a medium or a long job

Since a short job (short execution time) is supposed to finish within a small

amount of time, it is not worthy making effort to program the

corresponding application as malleable. For this reason, we only permit

medium and long jobs to be malleable jobs.

6.8 WORKLOAD MODELING AND GENERATION

W e are going to generate two different workloads: one is purely synthetic;

another is a loose copy of a real workload described in [ChiangOI] by

differentiating the runtimes of jobs (i.e., we model the same percentage of each

runtime class, however, only permit the longest job runtime to be 30 hours

instead of several hundred hours). Detailed information of these two workloads is

shown in Table 7-1 of Chapter 7. No matter what kind of workload we are

modeling, the following general features apply:

□ Realistic job mix

To reflect a realistic job mix, the modeled workload consists of lots of

moldable jobs, some rigid jobs, and some malleable jobs. Different job

mixes (wherein the contributed percentage of each job runtime class

varies in a small range) have been used and tested on different

workloads. In addition, the job runtime class (short, medium, long) and the

job flexibility (rigid, moldable, malleable) are totally randomly generated;

i.e., there is no forced or sequenced order on the combination or

generation of the whole workload.

□ Realistic processor size requirement

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

W e set a limitation on the optimal processor size (N o p t) interval for

different job runtime classes; e.g., the N opt interval of medium jobs is

[4,24] and the N opt interval of long jobs is [8,32]. The N opt for each job will

be randomly generated based on this interval, then the corresponding

N min is set to equal to N opt/2 (or 1 which is greater), and the

corresponding N max is set to equal to N opt *2 (or the total number of

physical processors which is less). By doing this, actually we allow the

processor size requirement for different kinds of jobs to be overlapped

with each other; i.e., short jobs can require more processors than medium,

even long jobs, and vice versa.

With respect to the workload generation, we intend to create a randomly

generated heavy workload in order to comprehensively test the performance of

our adaptive SCOJO scheduler, wherein an improved scheduling technique has

been adopted over the standard gang scheduling strategy. However, to avoid

overload at the beginning, we generate jobs one after another based on an

average of inter-arrival time { T inter_a rriva l)', i.e., the next job can be generated

randomly at any time in this time range [1, 2 * T inter_a r r im l] , in which 1 represents 1

second (the smallest time unit we have used in this thesis). T inter_arrjval is set by the

following formula

T . = (V A V G * A V G V Ninter-arrival weighted-size weighted-runtime / nodes

where £ means we calculate A V G weighled_size * A V G weighted_runtime per job runtime

class, i.e., short jobs, medium jobs, and long jobs are calculated separately, and

then take the sum. A V G weighted_slze is the average weighted processor size and

A V G weighted_rmtime is the average weighted job runtime. For instance, suppose every

medium job’s runtime is in this range (1min, 30min]; then the average runtime of

medium jobs is 15min. In addition, if medium jobs count for 35% of all jobs, then

we take the weight factor, which is 0.35, into consideration for medium jobs.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Therefore, for medium jobs, -^ G * ,SM-™»»«=15min*0 .35 . a similar calculation

applies for AVG,mtlrd_a :l. ,VW„ represents the total number of physical

processors (nodes).

6.9 WORKLOAD CLASSIFICATION AND ADAPTATION

The workload classification and adaptation is related to the Step3, Step4 and

Step5 of our adaptive scheduling algorithm. We discuss them separately in this

section.

6.9.1 WORKLOAD CLASSIFICATION

This is the Step3 of our adaptive scheduling algorithm. Workload classification

aims to check the current workload status of the system; e.g., whether the

current workload is high or low. W e then use the current workload status to direct

further actions fired in the following steps so that we can adapt our scheduling to

the frequent changes of the system workload in order to improve overall job

performance and system utilization.

We classify the system workload into three statuses - low, normal, and high

according to the algorithm described in Figure 6-7.

/ / S tep l: Calculate the Nodesneeded

N ° d e S needed = (N jobsR * A v g S i z e RwVShort) + (N jo b sw * AvgSizeWwVShort)

//S tep2: I f the following condition satisfies, then consider the current system
/ / workload is low

N ° d e S needed + N malleable * A v g S i z e increase ^ N nmjes

//S tep 3 : I f the following condition satisfies, then consider the current system
/ / workload is high

N ° d e S needed > N n o d es* M P L

//S tep4: If both above conditions fail, then consider the current system
/ / workload is normal

Figure 6-7. The workload classification algorithm

The workload classification algorithm includes the following 4 steps:

1. Estimate the number of nodes (processors) required during the next

scheduling interval; this gives the Stepl calculation

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N o d e S needed = (N jobsR * AvgSizeRwVShort) H N jobsW* AvgSizeWwVShort)

Nodesneeded is the estimation of the total number of nodes required during

the next scheduling interval for both running and waiting jobs.

N jobR * AvgSizeRwVShort estimates the number of nodes needed by the

currently running jobs (using R to represent) and N jobsW * AvgSizeWwVShort

estimates the number of nodes needed by the waiting jobs (using W to

represent). However, both estimations exclude very short jobs (V S h o r t)

because they are supposed to complete very quickly e.g. runtime is less

than the reconfiguration time interval, T reconflg{ T reconflg is explained in Section

6.9.3), and therefore do not contribute too much to the system workload.

N jobs represents the number of jobs, which are either currently running (R)

or waiting (W). AvgSizewVShort represents the average size (number of

processors) request for both currently running jobs (R) and waiting jobs

(W) without very short ones (w V S h o r t - without Very S h o r t) .

2. If all jobs that are currently in the system (either running or waiting) can be

scheduled to run during the next time interval without multiprogramming

(the total number of physical processors can accommodate the space

request of all jobs) and there is still sufficient empty space (unused

processors) left to expand all malleable jobs, the current workload can be

regarded as low.

N ° d e S needed + N malleable * ^ g S i z e increasg <

The above formula is the Step2 of the workload classification algorithm.

N maiieabie * A v S S iz e increase 9 ives the nodes request from all malleable (either

running or waiting) jobs. N malleable represents the total number of malleable

jobs and AvgSizeincrease is the average size increase when expanding these

malleable jobs to reduce fragmentation and adapt to the workload. More

detail is provided in Section 6.9.3. Again, N nodes represents the total

number of physical processors (nodes).

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. If all jobs that are currently in the system (either running or waiting) cannot

be scheduled to run during the next time interval even with the maximum

multiprogramming level, the current workload can be considered as high.

Nodes needed> N nodes*MPL

The above formula corresponds to the Step3 of the workload classification

algorithm. It is clear by itself. Again, MPL represents the maximum

multiprogramming level (we use 5 in our approach, which is described in

Section 6.3.1)

4. Otherwise, the current workload is classified as normal.

If both conditions for checking high workload and low workload fail, then

we consider the current workload status to be normal, i.e., there is no need to

do workload adaptation in the following steps.

6.9.2 DETERMINE THE JOB TARGET SIZE

After classifying the current workload status, the next step is to determine the

job target size for the new job, which are taken from the waiting job queue to

attempt to be scheduled next by the job scheduler. This is the Step4 of our

adaptive scheduling algorithm. As already described in previous section (Section

6.6), we assume the speedup curve of each job is known based on a simplified

application model; i.e., we can know the processor size interval [N m/„ , JVmaJ per

job according to the N opt that is provided by each job. We also know that moldable

jobs can determine their processor sizes at startup (then keep these sizes fixed

afterwards) and malleable jobs can change their sizes dynamically during

execution time. This implies that both moldable and malleable jobs have the

ability of size adaptation. Then we try to assign the number of processors to each

new moldable or new malleable job according to its optimal size request -

A/^when the workload is normal, and expand or shrink N opt when the workload

is low or high; i.e., the job target size is defined different from any of N min, N opt,

andiVmaias in the following:

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. When the current workload is normal

The job target size is set to equal to N opt for any kind of job (rigid,

moldable, or malleable)

2. When the current workload is low

The job target size for new moldable or malleable job is set to equal to the

middle of A ^ a n d N m ax, which is { N m ax- N o p l) / 2 + N o p t . The new rigid job

has no choice but N o p t.

3. When the current workload is high

The job target size for new moldable or malleable job is set to equal to the

middle of N minand N opt, which is { N o p t- N m m) l 2 + N m m . Again, the new rigid

job has no choice but N o p t-

The above procedure is used to determine the target sizes of new jobs that

are going to be scheduled to run in next time interval by fitting them into the

Matrix with their target sizes. The main reasons that we specify the size of new

moldable or malleable job in this way are: firstly, we try to take advantage of its

ability of size adaptation to workload; secondly, we leave space for further size

adaptation (take the middle instead of N minor N m ax) . For old jobs already

scheduled and currently running, their further size adaptation to the system

workload is discussed in the next section.

6.9.3 WORKLOAD ADAPTATION

This is the Step5 of our adaptive scheduling algorithm, which mainly concerns

the possibility of further size adaptation to the system workload for currently

scheduled and running jobs. However, not all kinds of jobs can do such size

adaptation after they have been scheduled - only malleable jobs have such an

advantage. Therefore, this step actually describes dynamically changing the

sizes (number of processors) of malleable jobs during their execution for

adapting to the changes of system workload, in order to improve overall job

performance and enhance the system utilization. We perform such size

adaptation to the workload by the following way:

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

□ If the current workload is low, then the size of running malleable jobs will

be expanded to { N max- N curren,) / 2 + N current. N current is the current size

(currently assigned number of processors) of running malleable jobs. If the

workload remains stably low, this size adaptation will lead the sizes of

running malleable jobs expand to N max eventually. The main reason why

we do not expand the size to N max immediately is to

1. Leave space for other jobs, especially a chance for new jobs so

that they can be scheduled to run earlier, i.e., more fair

2. Leave space for further size adaptation, i.e., more flexible

□ If the current workload is high, then the size of running malleable jobs will

be shrunk to { N currenl- N m in) / 2 + N m !n . If the workload remains stably high,

this size adaptation will lead the sizes of running malleable jobs shrink to

N mi„ eventually. The reason that we do not shrink the size to

N min immediately is the same as for expanding, which is explained above

□ If the current workload is normal, there is no size adaptation to workload

on running malleable jobs no matter what their current sizes (N currenl) are

6.9.4 RECONFIGURATION INTERVAL AND ADAPTATION OVERHEAD

The above subsection describes how to do size adaptation to the workload for

running malleable jobs. This subsection will talk about how often we do such

adaptation and how we deal with the overhead associated with it.

On the one hand, the main overhead of size adaptation is that it costs some

time and effort to reconfigure the program (repartitioning data among changed

processors, and so on). On the other hand, frequent reconfiguration of a program

might result in configuration thrashing (thrashing memory too much). Therefore,

we only allow size adaptation in certain time intervals - T reconflgure - to make sure

that the benefit of size adaptation overweighs the overhead associated with it. In

addition, we model the adaptation overhead by the following formula

N * 0nodes-difference reconfigure

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where N nodes_ difference represents the actual size change, which is the absolute

value of the difference between the size before adaptation and the size after

adaptation, and O reconflgure gives a fixed overhead per node.

6.10 GANG-SCHEDULING MATRIX FILLING

Gang-scheduling Matrix filling is Step6 of our adaptive scheduling algorithm. In

this step, the job scheduler tries to bring and fit new jobs with their target sizes

(determined according to current workload status) into the gang matrix. The

following main features applies:

□ Focus on allocation of CPU resources

W e focus on the allocation of CPU resources while ignoring the allocation

of other resources such as the memory, I/O devices, etc.

□ W e do not consider flexible time share assignment; instead, equal time

slices are used. Figure 6.8 shows the equal time slice assignment for all

jobs, which is Choice A; and flexible time share assignment for Job3,

Job5, and Job6, which is Choice B.

P0 p i P2 P3 P4 P5 P6 P7 P8 P9

TO
JO JO JO JO JO JO J1 J1 J1 J1

T1 J2 J2 J3 J3 J3 J3 J3 J3

T2
J4 J4 J5 J5 J5 J5

T3
J6 J6 J6 J6 J6 J6 J6 J6

Choice A: The equal time slices assignment

P0 PI P2 P3 P4 P5 P6 P7 P8 P9

JO JO JO
I

J 0 _ . JO
------1

JO J1 J1
|------- _J 1_ . J1

------1
J2 J2 j J3 J3 J3 | J4 J4

J 6
J6 J6]

D i
I

J5^
I

|_J3 J3 J3 | (j6 J6 J6 J6 J6 |

ll5 _

Choice B: The flexible time slices assignment
Figure 6-8. Time Slices (Time Share) Assignment

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

□ W e use first-fit strategy to allocate processors to new jobs

All new jobs are placed in the job waiting-queue and sorted by their

priorities in descending order. However, for those jobs that have the same

priority we place them in first-come, first-served order.

When scheduling new jobs, we take the first job in waiting queue and try

to allocate this job with its target size in the Matrix. The allocation attempt

begins from the first time slice of Matrix. If there is enough unused space

for this job then allocate it; otherwise, try the second time slice until find

the first time slice that can fit this job in. If the first job can be allocated in

the Matrix, then remove this job from the waiting queue (the previous

second job becomes the first job in current waiting queue) and place it into

the tail of the job working-queue. We then repeat all above procedures

until we cannot allocate the first job of waiting queue in Matrix.

□ Non-continuous allotment

For simplicity and also to avoid severe fragmentation problems associated

with continuous allotment (allocating continuous processors to each job) for

jobs, we allow non-continuous allotment (allocating non-continuous

processors to each job); however, each job must be at the same time slice.

Figure 6-9 demonstrates the idea.

PO p i P2 P3 P4 P5 P6 P7 P8 P9

TO JO JO JO JO JO JO J1 J1 J1 J1
T1 J2 J2 J3 J3 J3 J3 J3 J3

Time interval A: JO - J3 are scheduled

PO p i P2 P3 P4 P5 P6 P7 P8 P9

TO JO JO JO JO JO JO J1 J1 J1 J1
T1 J4 J4 J3 J3 J3 J3 J3 J3 J4 J4

Time interval B: J2 is finished; J4 is allocated at the T1 on non-continuous processors

Figure 6-9. Non-continuous processor allotment

□ Independent jobs

W e assume there is no any dependency relationship between two or more

jobs, i.e., only independent jobs are considered in this thesis.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

□ No preemption and migration

For current implementation, we do not consider either preemption (jobs

can be check-pointed and suspended during execution, then resumed at a

later time either on the same processor set or a different processor set) or

migration (move jobs from the current allocated processors at current time

slice to different processors even at different time slice) because of the

serious overhead associated with them, see details in Section 2 and

Section 3 of Chapter 2. However, by incorporating a certain degree of

preemption and a certain format of migration, our adaptive scheduling

algorithm might get additional benefits such as better overall job

performance and more efficient system utilization. This is potential future

work for our adaptive SCOJO scheduling system.

□ Fragmentation and context-switching overhead calculation

This is the first step of our adaptive scheduling algorithm. Before re­

computing and re-updating the scheduling Matrix for the next time interval,

we calculate the fragmentation and context-switching overhead during last

time interval, and then add up to the total fragmentation and context-

switching overhead encountered so far.

6.11 BACKFILLING OR EASY BACKFILLING

In space sharing or space-time sharing, not all physical processors in space

sharing or all virtual processors of the same time slice in space-time sharing can

be utilized all of the time, i.e., some of them have not been used during some

time interval, which is called as space fragmentation. Figure 6-10 shows the

fragmentation problem (marked with X) both in space sharing (left) and space­

time sharing (right).

PO PI P2 P3 P4 PO p i P2 P3 P4

JO JO J1 J1 X TO JO JO J1 J1 X

A. Space sharing T1 J2 J2 J2 X X

Figure 6-10. Fragmentation in space-time sharing
T2 J3 J3 J3 J3 X

B. Space-time sharing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Backfilling [Feitelson97B][Zhang00], originally developed for reducing space

fragmentation in space-time sharing, is a technique that allows those jobs being

scheduled earlier than their normal scheduled times to fill space holes (unused

processors) unless they do not delay other jobs. EASY backfilling [Lifka95]

[Frachtenberg03] is the same as backfilling except it does not guarantee there is

no delay for other jobs, i.e., only focus on reducing the fragmentation. Figure 6-

11 demonstrates the backfilling concept by en simple example. In this example

job waiting queue consists of 6 waiting jobs represented by job ID and size (the

number appears in bracket beside the job ID), and job 6 and Job 8 might be

backfilled (scheduled before job 4, job 5, and job 7) into the Matrix to reduce

fragmentation if they do not delay other jobs (for instance job 4, job 5, and job 7).
Waiting Queue

PO p i P2 P3 P4 PO p i P2 P3 P4

TO JO JO J1 X X TO JO JO J1 J6 J6

T1 J2 J2 J2 X X T1 J2 J2 J2 J8 J8

T2 J3 J3 J3 J3 X T2 J3 J3 J3 J3 X

6.12

Before backfilling
Figure 6-11. Backfilling

FRAGMENTATION ELIMINATION

After backfilling

This is the Step 8 of our adaptive scheduling algorithm. Although we already

use backfilling or EASY backfilling to reduce fragmentation in Step 7 of the

previous section, there still can be some fragmentation left in Matrix because of

some restrictions such as no-delay other jobs, suitable job size, etc. Especially

because we sort the job waiting queue in descending order by priority (classified

only according to job runtime class), there is little chance for those jobs at a rear

position in the waiting queue having a small processor size request than jobs at a

forward position in waiting queue. Although we allow the size interval of each

runtime class can overlap another, it is still commonly true that long runtime jobs

have more size requests than short runtime jobs.

Therefore, we continue to reduce fragmentation by taking advantage of newly

scheduled (scheduled but not started) moldable and medium malleable jobs.

Newly scheduled jobs refer to those jobs just taken from the job waiting-queue

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and allocated into the Matrix in previous steps for executing at next time interval.

More precisely,

□ Stepl - W e first try to expand the sizes of newly scheduled moldable jobs

If there is a fragmentation at a certain time slice and there is a newly

scheduled moldable job at the same time slice, we expand this job’s target

size (determined in previous step of our adaptive scheduling algorithm) up

to N m ax. If possible, repeat the same procedure for other newly scheduled

moldable jobs located at the same time slice.

□ Step2 - We then consider expanding the sizes of newly scheduled

medium malleable jobs (expand corresponding job target sizes up

to NmJ
A malleable job is either a long runtime job or a medium runtime job. The

reason that we exclude newly scheduled long malleable jobs here mainly

is to prevent a long malleable job from expanding its size to N max even with

the high workload.

6.13 TIME SLICE AND JOB EXECUTION TIME UPDATE

The last step of our adaptive scheduling algorithm is to update the

multiprogramming level and job runtime correspondingly after re-computing and

re-updating the scheduling Matrix each time.

The multiprogramming level varies from 1 to MPL (the maximum

multiprogramming level) by 1. For instance, when current time slices cannot

allocate any more new jobs, the multiprogramming level will be increased by 1 up

to MPL; and when certain time slice becomes empty (running jobs terminate and

no new jobs wait in job waiting-queue), the multiprogramming level will be

decreased by 1 down to 1.

The job runtime is influenced by many factors such as multiprogramming level,

different time share assignment, job size (number of processors on which the job

is running), etc. Currently, we only consider the multiprogramming level (equal

time share) and job size; i.e., the job runtime will increase when the

multiprogramming level is increased and the job size is decreased.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.14 TIME COMPLEXITY ANALYSIS

Time complexity analysis in computer science is normally expressed as an

order of magnitude, which reflects “the way in which the number of steps

required by an algorithm varies with the size of the problem it is solving”

[Ludwig94]. For example, if an algorithm has 0 (N 2) time complexity, it means

that if the size of the problem (N) doubles, then this algorithm will take four times

(22) as many steps to completely solving the corresponding problem.

As described in Section 6.4, the proposed adaptive SCOJO scheduling

algorithm consists of 9 steps. We will analyze the time complexity for each step

and sum them up to give the overall time complexity for the entire algorithm. In

the following analysis, the problem size N refers to the total number of jobs.

Then, the time complexity of the proposed adaptive SCOJO scheduling algorithm

is analyzed to be in the worst case as following:

Steps Time complexity Explanation

Stepl 0(1) Executes in constant time K

Step2 0 (N) Executes 0 (K * N) times

Step3 0 (N) Executes 0 (N) times

Step4 0 (N) Executes 0 { K * N) times

Step5 0 (N) Executes 0 (K * N) times

Step6 0 (N) Executes 0 (K * N) times

Step7 0 (N) / 0 (N 2) Executes 0 (K * N) times if using EASY backfilling,

otherwise executes 0 (N 2) if using backfilling

Step8 0 (N 2) Executes 0 (N 2) times

Step9 0 (N) Executes 0 (K * N) times

Table 6-1. Time complexity analysis

The sum of the time complexity of the above 9 steps gives us 0 (N 2) (no

matter what kind of backfilling is applied). Hence, the overall time complexity of

the adaptive SCOJO scheduling algorithm is 0 (N 2) .

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7: IMPLEMENTATION AND EXPERIMENT

W e have chosen a discrete-event simulation to demonstrate the performance

of our adaptive SCOJO scheduling algorithm, which is implemented in JAVA and

experimented with on a cluster. In order to fulfill the previously mentioned goals

and prove the promised better job performance and system utilization of our

approach, the major testing dimensions are:

□ Single vs. different multiprogramming levels

W e compare the performance of our approach with others by varying the

multiprogramming levels. The maximum multiprogramming level used is 5.

□ Different realistic job mixes

W e differentiate the realistic job mix by differentiating the percentage of

different job runtime classes and different job types.

□ Separate tests on each job runtime class and job type

In addition to the overall performance of entire workload, we also test the

individual performance of each job runtime class and job type.

□ Comparison of our approach and its variants with other relevant job

scheduling techniques

The main comparison will be between our approach and the standard

gang scheduling. Moreover, many variants of our approach and gang

scheduling are also generated and tested.

7.1 EXPERIMENTAL ENVIRONMENT

All experiments are performed on our research HoRus cluster. The cluster has

14 nodes each contains a 2.0 GHZ Intel Xeon processor with 512 Mbyte of

memory; and one front-end node that has four 700 MHZ Intel Pentium III Xeon

processors. All nodes are interconnected with Myrinet.

As described in previous sections, there are many environmental parameters

used by the job scheduler. The concrete values applied in simulation for these

parameters are listed in Table 7-1.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Parameter Modeled values Explanation

MPL 1-5 Maximum

multiprogramming level

C Cexpand > shrink O * Nreconfigure nodes-difference

(^ reconfigure = 0-0001 Sec)

Cost for size adaptation

(expanding or shrinking),

considering size difference

^nodes 64 The total number of nodes

in machine

Tslice 2 sec * MPL/ M P L current The time interval between

two time slices in gang

scheduling; it is increased if

M P L current (current MPL) is

different from MPL

T reconfigure
5 min The reconfiguration time

interval in which load is

reclassified and size

adaptation are allowed

Table 7-1. Parameters used by the job scheduler

7.2 WORKLOADS TESTED

W e have tested two different workloads: W o r k l o a d l and W o r k l o a d 2 , which

are described in Table 7-2. The W o r k l o a d l is purely synthetic and the

W o r k l o a d 2 is similar to the workload described in [Chiang2001]. Different

realistic job mixes are modeled in two workloads. More precisely, W o r k l o a d l

models a lower percentage of long jobs and less extreme job execution times

than W o r k l o a d 2 .

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Workload 1 Workload 2 Explanation

^ short 40% 30% The percentage of short jobs

0 /
medium 40% 35% The percentage of medium jobs

0/,°long 20% 35% The percentage of long jobs

T short [lsec, lmin] [lsec, 3min] Runtime interval for short jobs

T medium
(lm in, 30min] (3min, lh] Runtime interval for medium jobs

T long (30min, lh] (lh , 3Oh] Runtime interval for long jobs

S iZ e short [1,4] [1,4] Size interval for short jobs

& Z e medium [4,24] [4,24] Size interval for medium jobs

S iz e iong [8,32] [8,32] Size interval for long jobs

N jobs 8,000 3,000 Number of jobs in the workload

moldable 60% 60% The percentage of moldable jobs

^ malleable 30% 30% The percentage of malleable jobs

Table 7-2. Workloads tested

7.3 PERFORMANCE METRICS APPLIED

We have comprehensively tested and measured the performance of our

adaptive SCOJO scheduling algorithm. The performance metrics applied include:

□ Average response time and bounded slowdown

The average response time is the average of response times of all jobs.

The bounded slowdown is the average of relative response times of all

jobs; however, to avoid the misleading influence of very short jobs (i.e. in

our case, corresponding execution times below 1 minute), the actual

execution times of these very short jobs used in calculation are adjusted to

1 minute.

□ Utilization and effective utilization of machine

W e measure the overall utilization of the machine during the entire

execution of workload. The utilization of the machine is defined as the

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

percentage of the processing time utilized by jobs divided by the total

available processing time. The effective utilization of the machine is

defined as the difference between the utilization of machine and the cost

of context switching and size adaptation, which are represented in the

form of processing time. The effective utilization of the machine can reflect

how productive the machine is.

□ Accumulated job efficiency

The accumulated job efficiency (E accumulated) is defined as the flowing:

F = ^ S * Taccumulated ^ execution

Where, S represents the speedup and T execution represents the execution

time of an individual job, and the accumulated job efficiency is the sum of

the multiplication of the speedup and the execution time of all jobs. The

accumulated job efficiency expresses how effectively the machine is

utilized toward the entire computation progress of all jobs,

a Makespan

The makespan is defined as the time from the start of the first started job

to the termination of the last finished job. In other words, the makespan

reflects the total time needed to finish the execution of the entire workload.

7.4 SCHEDULING STRATEGIES TESTED

We have generated many variants of our approach and gang scheduling.

Since the standard gang scheduling applies the F C F S (first come first served)

policy to the job queue, we use F C F S to represent the standard gang scheduling

technique. Our approach - adaptive space-time sharing with SCOJO is

represented by P R I - B - W A - F A in which PRI means priority, B means backfilling,

WA means workload adaptation, and FA means adaptation for fragmentation

reduction.

For gang scheduling, the following variants are generated and tested:

□ F C F S - B

Gang scheduling with backfilling

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

□ P R I - B

Gang scheduling with priorities, and backfilling

□ P R I - E B

Gang scheduling with priorities, and EASY backfilling that is represented

by EB

For our approach, the following variants are generated and tested:

□ P R I - W A - F A

Adaptive SCOJO approach with priorities, workload adaptation, and

fragmentation adaptation

□ P R I - B - W A

Adaptive SCOJO approach with priorities, backfilling, and workload

adaptation

□ P R I - B - F A

Adaptive SCOJO approach with priorities, backfilling, and fragmentation

adaptation

□ F C F S - B - W A - F A

Adaptive SCOJO approach with FCFS, backfilling, workload adaptation,

and fragmentation adaptation

□ P R I - E B - W A - F A

Adaptive SCOJO approach with priorities, EASY backfilling, workload

adaptation, and fragmentation adaptation

7.5 EXPERIMENTAL RESULTS ANALYSIS

Our comprehensive experimental results provided sound evidence that the

adaptive SCOJO scheduling algorithm could deliver better overall performance

even with a lower multiprogramming level than the standard gang scheduling. All

results are shown in Figure 7-1 to Figure 7-7:

□ Figure 7-1

This figure compares our approach (P R I - B - W A - F A) and gang scheduling

(F C F S) by varying the multiprogramming level from 1 to 5. There are 8

diagrams. The left 4 diagrams show the average response time (in hours)

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and the right 4 diagrams show the average bounded slowdown. The upper

4 diagrams represent W o r k l o a d l and the lower 4 diagrams represent

W o r k l o a d 2 .

W e observe the following:

■ For both workloads, P R I - B - W A - F A performs much better than

F C F S for the same multiprogramming level with respect to both

average response time and average bounded slowdown. For

example, for W o r k l o a d 2 and a multiprogramming level of 2, the

average response time of P R I - B - W A - F A is 381.02 hours vs.

2203.99 hours and the corresponding average bounded slowdown

is 53.27 vs. 31017.44 of F C F S .

■ For both workloads, P R I - B - W A - F A performs best at a

multiprogramming level of 1 with respect to average response time.

This means 17.99 hours for W o r k l o a d l and 362.98 hours for

W o r k l o a d 2 . However, as regards the average bounded slowdown,

for W o r k l o a d l , P R I - B - W A - F A also performs best with a

multiprogramming level of 1; but for W o r k l o a d 2 , P R I - B - W A - F A

performs best with a multiprogramming level of 4. Since we

compare two different workloads but set the same percentage of

moldable and malleable jobs for them, this tells us that the

percentages of the different job runtime classes and the different

job execution times play a role for the average bounded slowdown

in our adaptive approach. For example, W o r k l o a d l consists of

20% long jobs vs. 35% long jobs of W o r k l o a d 2 , the maximum

execution time of long jobs in W o r k l o a d l is 1 hour vs. a maximum

of 30 hours in W o r k l o a d 2 . More precisely, the increase of the

multiprogramming level sometimes does not help to decrease the

average bounded slowdown, whereas it does help in conventional

time sharing.

■ For both workloads, F C F S performs best with a multiprogramming

level of 5 for both average response times and average bounded

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

slowdowns. This means 130.97 hours (the average response time)

and 3551.37 (the average bounded slowdown) for W o r k l o a d l , and

2102.03 hours (the average response time) and 29336.64 (the

average bounded slowdown) for W o r k l o a d 2 . The results confirm

that standard gang scheduling performs better with higher

multiprogramming levels as other research [Feitelson97C]

[Feitelson95A] discovered.

□ Figure 7-2 and Figure 7-3

These two figures show the comparison of all approaches with respect to

average response time (in hours, Figure 7-2) and average bounded

slowdown (Figure 7-3). A multiprogramming level of 5 is applied to gang

scheduling and its 3 variants; and a multiprogramming level of 2 is applied

to adaptive SCOJO scheduling and its 5 variants.

W e can observe that:

■ For both workloads and with respect to both average response time

and average bounded slowdown, several adaptive approaches like

P R I - B - W A - F A , P R I - E B - W A - F A , and P R I - B - W A perform similarly

and much better than the other approaches. Other adaptive

approaches like P R I - B - F A , F C F S - B - W A - F A , and P R I - W A - F A

perform badly, even worse than priority-based gang scheduling

variants like P R I - E B and P R I - B . This tells us that:

> In general, our adaptive approach (P R I - B - W A - F A) including

its variants performs much better than standard gang

scheduling (F C F S) . For example, in W o r k l o a d 2 , P R I - B - W A -

F A yields 404.12 hours of average response time and 62.26

of average bounded slowdown but F C F S yields

corresponding values of 2121 hours and 29001.63.

> Only using adaptive resource allocation for fragmentation

reduction (F A) is not enough and dose not improve the

performance much. For example, comparing P R I - B - W A - F A

with P R I - B - F A in W o r k l o a d l , the former yields 17.61 hours

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as the average response time and 26.61 as the average

bounded slowdown vs. 37.37 hours and 55.04 for the latter.

■ From the three best-performing approaches - P R I - B - W A - F A , P R I -

E B - W A - F A , and P R I - B - W A - , we can conclude that workload

adaptation (W A) , priority and corresponding aging scheme { P R I) ,

and backfilling (B) or EASY backfilling (EB) play an important role

in our adaptive scheduling approach. Furthermore, the combination

of them delivers the best results.

■ Comparing the performance of the gang scheduling variants, we

can see that priority { P R I) and backfilling (B) or EASY backfilling

(EB) can greatly improve the performance of the standard gang

scheduling approach (FCFS). For example, in W o r k l o a d l , P R I - B

yields 26.49 hours and 39.92 for the average response time and

the average bounded slowdown, whereas F C F S yields 129.4 hours

and 3473.02. This is consistent with previous research like

[ZhangOO] [Frachtenberg03].

■ From the comparison between identical approaches with backfilling

(B) or EASY backfilling (EB), we find that EASY backfilling and

backfilling perform similarly in our tested workloads. For example,

in W o r k l o a d l , EASY backfilling yields 17.05 hours of average

response time and 25.59 of average bounded slowdown, whereas

backfilling yields 26.61 hours and 17.61. However, due to the

fairness consideration and in order to keep the original order of the

job-waiting queue, backfilling is preferable than EASY backfilling.

□ Figure 7-4

This figure shows the average bounded slowdowns for different job

runtime classes (i.e. short, medium, and long) and different job flexibilities

(i.e. rigid, moldable, and malleable). Three approaches were tested; P R I -

E B , P R I - B - W A , and P R I - B - W A - F A . The left diagram represents

W o r k l o a d l and the right diagram represents W o r k l o a d 2 .

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

W e found that:

■ In general, for both workloads and for all three approaches, the

average bounded slowdowns for short jobs are smallest (i.e. short

jobs perform best) compared with medium and long jobs. The same

applies to moldable jobs if comparing them with rigid and malleable

jobs. It tells us that our adaptive approach favors short jobs and

moldable jobs. Moreover, long jobs perform worst compared with

medium and short jobs.

■ The priority plays the most important role here, which means higher

priority jobs generally can be scheduled quicker than lower priority

jobs.

■ Since moldable jobs mainly consist of short jobs that are assigned

the highest priority, both of them (moldable jobs and short jobs)

perform best and the results show consistency in both workloads as

regards average bounded slowdown. For example, in W o r k l o a d l

and for the P R I - B - W A - F A approach, the average bounded

slowdown for short jobs is 1.54 and for moldable jobs it is 2.73,

whereas the average bounded slowdown for long jobs is 118.4 and

for malleable jobs it is 80.79.

■ Malleable jobs perform worst compared with rigid and moldable

jobs. Firstly, malleable jobs consist of many long jobs and some

medium jobs and, therefore, lower priorities (vs. short jobs) are

assigned to them. Secondly, even malleable jobs have the ability of

dynamic size adaptation (i.e. shrinking or expanding) during

execution, they more often have to shrink their sizes during the high

workload since both simulated workloads are very heavy.

■ Comparing rigid jobs with malleable jobs, in W o r k l o a d l , the

average bounded slowdown for rigid jobs is 7.45 and for malleable

jobs it is 80.79, which means that rigid jobs perform much better

than malleable jobs; however, in W o r k l o a d 2 , the average bounded

slowdown for rigid jobs is 136.25 and for malleable jobs it is 139.78,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which means that rigid jobs perform worse than malleable jobs. The

reason is that rigid jobs have different percentages of the job

runtime classes for the two different workloads. For instance, for

W o r k l o a d l , rigid jobs (10% of all jobs) are only medium jobs (see

Table 7-2); and for W o r k l o a d 2 , rigid jobs (10% of all jobs) consist

of 5% long jobs and 5% medium jobs.

□ Figure 7-5, Figure 7-6, and Figure 7-7

These three figures show the comparison of all approaches as regards the

effective utilization of the machine (in percentage, Figure 7-5), the

makespan (in hours, Figure 7-6), and the accumulated job efficiency (in

percentage, Figure 7-7). A multiprogramming level of 5 is applied to gang

scheduling and its 3 variants; and a multiprogramming level of 2 is applied

to adaptive SCOJO scheduling and its 5 variants. In order to fit the two

workloads into one diagram, the time axis for W o r k l o a d 2 in Figure 7-6 is

scaled down by a factor of 10.

W e can observe that:

■ All approaches accomplish a very similar and high (above 90%)

effective utilization of the machine. For adaptive approaches, high

system utilization is one of the main goals and techniques like

adaptive resource allocation and backfilling are applied to help to

achieve this. Therefore, it is not surprising that all adaptive

approaches gain high system utilization. For example, in

W o r k l o a d l , the effective utilization of the machine is 90.32 for P R I -

B - W A - F A . However, even standard gang scheduling (F C F S)

obtains high system utilization (e.g. 91.44% in W o r k l o a d l). The

main reason is that the simulated workloads are very heavy and

always keep the machine very busy. Another reason is that we

apply a multiprogramming level of 5 to standard gang scheduling

and its variants, which is found to provide almost the same

responsiveness as an infinitely high level [Moreira1998j. The third

reason for both workloads is that we have a large percentage of

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

short and medium jobs (e.g., 80% in W o r k l o a d l and 65% in

W o r k l o a d 2) , which helps to decrease fragmentation.

■ In general, almost all adaptive approaches obtain slightly worse

effective system utilization than standard gang scheduling and its

variants. This is mainly due to the cost of adaptive resource

allocation. For example, in W o r k l o a d 2 , P R I - B - W A - F A obtains

90.31%; P R I - W A - F A obtains 90.78%; F C F S - B obtains 90.6%; and

F C F S obtains 91.67%.

■ Except P R I - B - F A , all other adaptive approaches have a smaller

makespan (see Figure 7-6) than standard gang scheduling and its

variants. For instance, in W o r k l o a d l , the makespan of P R I - B - W A -

F A is 506.2 hours and the makespan of F C F S - B is 560.46 hours.

■ Except P R I - B - F A , all other adaptive approaches yield higher

accumulated job efficiency (see Figure 7-7) than standard gang

scheduling and its variants because we take application information

(in this case, the speedup curves) into consideration. For instance,

in W o r k l o a d 2 , the accumulated job efficiency of P R I - B - W A is

71.41% and the accumulated job efficiency of P R I - B is 64.99%.

■ The reason why P R I - B - F A performs worst with respect to the

effective utilization of the machine, the makespan, and the

accumulated job efficiency mainly is that the fragmentation

reduction { F A) is so limited in our adaptive approach. For example,

the general procedure related to fragmentation in our adaptive

scheduling algorithm is: first do workload adaptation (e.g. shrinking

or expanding job sizes, which is Step 5); then do backfilling or

EASY backfilling (Step 7); at last do fragmentation reduction (Step

8). Therefore, firstly, after workload adaptation and backfilling, there

is not too much fragmentation left for the F A step. Secondly, since

F A only expands new moldable and new medium malleable job

sizes, there is little flexibility left. At last, there is no possibility to

shrink and expand the sizes of currently running malleable jobs

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(e.g. without W A - workload adaptation) in this approach (P R I - B -

F A) , long malleable jobs will stay with their optimal size (which is

not the maximum size they can have) along the entire execution.

This means there is no size adaptation for long malleable jobs at all

in P R I - B - F A .

7.6 SUMMARY AND DISCUSSION

The above experimental results can be summarized and discussed as

following:

□ Adaptive SCOJO scheduling delivers much better results than standard

gang scheduling for almost all performance metrics measured like

average response time, average bounded slowdown and accumulated job

efficiency, even with a lower multiprogramming level.

□ As regards another main performance metric - the effective utilization of

the machine - , the simulated workloads are very heavy, i.e., the total

number of jobs is very large, the inter-arrival times of the jobs are very

short, and the job sizes and job runtimes of long jobs are very large

especially for W o r k l o a d 2 . Therefore, a high efficient utilization of the

machine (i.e. around 90% to 92%) is provided by almost all approaches.

Fragmentation is typically less than 0.5% for all approaches and the rest is

overhead.

□ By considering real application characteristics like speedup curves in

adaptive resource allocation, the adaptive SCOJO scheduling provides a

great increase in overall productive usage of the machine (with respect to

the accumulated job efficiency) compared with standard gang scheduling.

□ Adaptive SCOJO scheduling performs best in most cases for a

multiprogramming level of 1, though the average bounded slowdown for

W o r k l o a d 2 is best for a multiprogramming level of 4. This demonstrates

our initial claims that the adaptive SCOJO scheduling can work well with a

lower multiprogramming level.

□ Adaptive SCOJO scheduling works well with realistic job mixes that

consist of many moldable, some rigid, and some malleable jobs.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

□ Adaptive SCOJO scheduling with workload adaptation (i.e. P R I - B - W A - F A ,

P R I - B - W A - F A , and P R I - B - W A) provides the best results. This

demonstrates that the benefit gained for the adaptive resource allocation

mainly comes from the workload adaptation { W A) .

□ Fragmentation adaptation (F A) by itself does not perform well because the

fragmentation adaptation is very limited in our approach. A better

approach to fragmentation is the potential future work for this thesis.

□ Priorities play a very important role in adaptive SCOJO scheduling and

also in variants of standard gang scheduling and deliver much better

results than the first-come, first-served policy (F C F S).

□ Backfilling or EASY backfilling can greatly improve the overall job

performance by giving benefits for short jobs and medium jobs. In our test

cases, the performance difference between them is little.

□ Short jobs and moldable jobs perform much better than jobs with other

runtime classes and other flexibilities. This indicates that we might be able

to further improve the overall job performance by giving additional benefits

to medium and long jobs via a more aggressive aging scheme to priorities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

17.7

1 7 .6 -|— Average response time, Workloadl —

17.5
_MPL

■PRI-B-WA-FA

26.5

26

Average response time, Workload2

_MPL

■ PRI-B-WA-FA

155

150

145

140

135

130

125

120

Average response time, Workloadl _

-FCFS

. MPL

4200

4000

„ 3800
3

% 3600

3400 - — Average response time, Workload2

3200
MPL

-FCFS

410

400

390

380

370

360

350

340

Average bounded slowdown, Workloadl

MPL1 2 3 4 5

■PRI-B-WA-FA

52 - — Average bounded slowdown, Workload2

MPL

PRI-B-WA-FA

2300

2250

2200

2150

2100

2050

2000

33000 -|

j i yjyjyj ■

1AAAA .

\ t
J Vvv v

N ------------ ♦

-----Average bounded slowdown, Workloadl -------- 28000 -

27000 ■

- Average bounded slowdown, Workload2 -----

------------- 1-------------1--------------1------------- 1---------—
MPL MPL

■FCFS ■FCFS

Figure 7-1. Comparison (of FCFS and PRI-B-WA-FA) on varying multiprogramming levels

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

§

Op$

&
$ £

££

$

£

$

£

$

£

i
9<

Sf
Figure 7-2. Comparison of ail approaches on average response time

□ Workloadl

□ Workload2

100000

10000

Workloadl

□ Workload2

Figure 7-3. Comparison of all approaches on average bounded slowdown

1000

IW1-short
1W 1-medium

□ W 1 -long

I W l-rigid

■ W l-m oldable

IW 1-malleable

lOOOH

W1-short
W 1 -medium

□ W 1 -long

■ W l-rigid

■ Wl-moldable

S W 1 -malleable

Figure 7-4. Average bounded slowdown for different job runtime classes and job types

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92-f

91.5-'

£ H Workloadl

? □ Workload2

Figure 7-5. Comparison o f all approaches on effective utilization of machine

700-

600

500'

£ 400'

-a 300'
200-

100'

&

■ Workloadl

□ Workload2

Figure 7-6. Comparison of all approaches on makespan

2P
I
ao
a.

H Workload 1

□ Woikload2

Figure 7-7. Comparison o f all approaches on accumulated job efficiency

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONCLUSION

We have presented a new approach - Adaptive Space-time Sharing with

SCOJO, which incorporates adaptive resource allocation into gang scheduling. It

also applies other standard job scheduling techniques like backfilling; and it

considers realistic job mixes of rigid, moldable, and malleable jobs. Our approach

adjusts job sizes to adapt to workload changes and reduces fragmentation based

on a clear model. Moreover, the relevant context-switching overhead and

adaptation cost are considered.

The experimental results show that our approach can deliver significantly

better average response times and average bounded slowdowns than standard

gang scheduling. The performance gained mainly comes from workload

adaptation; fragmentation adaptation contributes little. Moreover, our approach

works well with standard backfilling; and EASY backfilling does not yield much

improvement. Most importantly, our approach performs well even with a lower

multiprogramming level. This suggests that gang scheduling may not be needed

at all to avoid context-switching overhead and memory pressure. The mere

space sharing (the multiprogramming level equals to 1) in combination with

adaptive resource allocation may even provide the best result.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

REFERENCES

[ChiangOI] S.-H. Chiang and M. K. Vernon. “Characteristics of a large Shared
Memory Production Workload”. Procs. JSSP, 2001.

[Chiang94] S.-H. Chiang, R. K. Mansharamani, and M. K. Vernon. “Use of
Application Characteristics and Limited Preemption for Run-To-Completion
Parallel Processor Scheduling Policies”. In SIGMETRICS Conf. Measurement
& Modeling of Comput. Syst., pp. 33-44, May 1994.

[CorbalanOI] Julita Corbalan , Xavier Martorell, Jesus Labarta. “Improving Gang
Scheduling through job performance analysis and malleability”. Proceedings
of the 15th international conference on Supercomputing June 2001.

[DutotOI] Pierre-Frangois Dutot, Denis Trystram. “Scheduling on hierarchical
clusters using malleable tasks”. Proceedings of the thirteenth annual ACM
symposium on Parallel algorithms and architectures July 2001.

[Feitelson97A] Feitelson D., “Job scheduling in multiprogrammed parallel
systems”, Technical Report, IBM T.J. Watson Research Center, Second
Revision, 1997.

[Feitelson97B] D. G. Feitelson, L. Rudolph, U. Schweigelshohn, K. Sevcik, and
P. Wong, “Theory and practice in parallel job scheduling”. In Job Scheduling
Strategies for Parallel Processing D. G. Feitelson and L. Rudolph (Eds.), pp.
1-34, Springer-Verlag, 1997. Lecture Notes in Computer Science Vol. 1291.

[Feitelson97C] D. G. Feitelson, M. A. Jette, “Improved Utilization and
Responsiveness with Gang Scheduling”. In Job Scheduling Strategies for
Parallel Processing, Lecture Notes in Computer Science vol. 1291, pp. 238-
261, Springer-Verlag, 1997.

[Feitelson96A] D.G.Feitelson and L.Rudolph. "Toward convergence in job
schedulers for parallel supercomputers". In Job Scheduling Strategies for
Parallel Processing, pp. 1-26, Springer-Verlag, 1996. Lecture Notes in
Computer Science Vol. 1162.

[Feitelson96B] D. G. Feitelson, “Packing schemes for gang scheduling”. In Job
Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph
(Eds.), pp. 89-110, Springer-Verlag, 1996. Lecture Notes in Computer
Science Vol. 1162.

[Feitelson95A] D. G. Feitelson and L. Rudolph, “Parallel job scheduling: issues
and approaches”. In Job Scheduling Strategies for Parallel Processing, D. G.
Feitelson and L. Rudolph (Eds.), pp. 1-18, Springer-Verlag, 1995. Lecture
Notes in Computer Science Vol. 949.

[Feitelson95B] D. G. Feitelson and B. Nitzberg. “Job Characteristics of a
Production Parallel Scientific Workload on the NASA Ames iPSC/860”. In
Proceedings of the IPPS’95 Workshop on Job Scheduling Strategies for
Parallel Processing, pages 337-360, Apr. 1995.

[Feitelson92] D. G. Feitelson and L. Rudolph. "Gang Scheduling Performance
Benefits for Fine-Grained Synchronization". Journal of Parallel and Distributed
Computing, 16(4): 306-318, December 1992.

[Feitelson90] D. G. Feitelson and L. Rudolph, “Distributed hierarchical control for
parallel processing”. Computer 23(5), pp. 65-77, May 1990.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Frachtenberg03] Eitan Frachtenberg, G. Feitelson, Fabrizio Petrini, Juan
Fernandez. “Flexible Coscheduling: Mitigating Load Imbalance and Improving
Utilization of Heterogeneous Resources”. Proc. Int. Parallel and Distributed
Processing Symposium (IPDPS’03), Nice, France, April 2003.

[Ghosal91] Ghosal, D.; Serazzi, G.; Tripathi, S.K.; “The processor working set
and its use in scheduling multiprocessor systems”. Software Engineering,
IEEE Transactions on, Volume: 17 Issue: 5, May 1991 Page(s): 4 4 3 -4 5 3 .

[Gupta91] A. Gupta, A. Tucker, and S. Urushibara. “The impact of operating
system scheduling policies and synchronization methods on the performance
of parallel applications". ACM SIGMETRICS Conference on the Measurement
and Modeling of Computer Systems, Vol. 19, pp. 120-132, Assoc. Comput.
Mach., New York, 1991.

[Ishikawa99] Yutaka Ishikawa, Hiroshi Tezuka, Atsuhi Hori, Shinji Sumimoto,
Toshiyuki Takahashi, Francis O'Carroll, and Hiroshi Harada. “RWC PC
Cluster II and SCore Cluster System Software - High Performance Linux
Cluster”. Proceedings of the 5th Annual Linux Expo, pages 55 -- 62, 1999.

[Kazi02] Kazi, Iffat H.; Lilja, David J. “Dynamically adapting to system load and
program behavior in multiprogrammed multiprocessor systems”. Concurrency
and Computation: Practice and Experience Volume: 14, Issue: 12, October
2002, pp. 957 - 985.

[KaziOO] Kazi, I.H.; Lilja, D.J.; “A comprehensive dynamic processor allocation
scheme for multiprogrammed multiprocessor systems”. Parallel Processing
2000. Proceedings. Page(s): 153-161.

[Leutenegger90] S. Leutenegger and M. Vernon. "The performance of
multiprogrammed multiprocessor scheduling policies". ACM SIGMETRICS
Conference on the Measurement and Modeling of Computer Systems, Vol.
18, pp. 226-236, Assoc. Comput. Mach., New York, 1990.

[Lifka95] D. Lifka. “The ANL/IBM SP Scheduling System”. Proc. Job Scheduling
Strategies for Parallel Processing (JSSPP), Lecture Notes in Computer
Science, Springer Verlag, Vol. 949,1995.

[Ludwig94] W.T. Ludwig and P. Tiwari. “Scheduling malleable and nonmalleable
parallel tasks”. In Proceedings of the Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms. ACM-SIAM, 1994.

[Majumdar88] S. Majumdar, D. Eager and R.B.Bunt. "Scheduling in
multiprogrammed parallel systems". Proceedings of the 1988 ACM
SIGMETRICS Conference on Measurement and Modeling of Computer
Systems (May 1988), pp. 104-113.

[McCann94] Cathy McCann, John Zahorjan. “Processor allocation policies for
message-passing parallel computers”. ACM SIGMETRICS Performance
Evaluation Review, v.22 n.1, p. 19-32, May 1994.

[McCann93] Cathy McCann, Raj Vaswani, John Zahorjan. “A dynamic processor
allocation policy for multiprogrammed shared-memory multiprocessors”. ACM
Transactions on Computer Systems (TOCS) May 1993 Volume 11 Issue 2.

[Moreira98] Jose E. Moreira, Waiman Chan, Liana L. Fong, Hubertus Franke,
and Morris A. Jette. “An Infrastructure for Efficient Parallel Job Execution in
Terascale Computing Environments”. Supercomputing’98, Nov. 1998

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Naik97] Vijay K. Naik, Sanjeev Setia, Mark S. Squillante. “Processor Allocation
in Multiprogrammed Distributed-Memory Parallel Computer Systems”. Journal
of Parallel and Distributed Computing, pp. 28-47, Volume 46, 1997.

[Naik93] V.K.Naik, S.K.Setia and M.S.Squillante. "Performance analysis of job
scheduling policies in parallel supercomputing environments". In
Supercomputing'93, pp. 824-833, Nov 1993.

[Nguyen96] Thu D. Nguyen, Raj Vaswani, and John Zahorjan. "Using Runtime
Measured Workload Characteristics in Parallel Processor Scheduling". In D.
G. Feitelson and L. Rudolph, editor, Proc. of 2nd Workshop on Job
Scheduling Strategies for Parallel Processing, volume 1162. Springer Verlag,
1996.

[Ousterhout82] Ousterhout, J.K. "Scheduling Techniques for Concurrent
Systems". In Third International Conference on Distributed Computing
Systems, pp. 22-30. 1982.

[Sevcik89] K.C.Sevcik. "Characterizations of parallelism in applications and their
use in scheduling". In SIGMETRICS Conf. Measurement & Modeling of
Comput. Syst., pp. 171-180, May 1989.

[Sobalvarro98] P.G.Sobalvarro, S.Pakin, W.E.Weihl and A.A.Chien. "Dynamic
coscheduling on workstation clusters". In Job Scheduling Strategies for
Parallel Processing, pp.231-256, Springer-Verlag, 1998.

[Sobalvarro97] Patrick Sobalvarro. “Demand-based Coscheduling of Parallel
Jobs on Multiprogrammed Multiprocessors”. Job Scheduling Strategies for
Parallel Processing, 1997.

[Sodan03] Angela C. Sodan. “Loosely Coordinated Coscheduling in the Context
of Other Dynamic Approaches for Job Scheduling - A Survey”. Technical
Report 03-006, May 2003.

[SodanHuang03] Angela C. Sodan, Xuemin Huang. “SCOJO - Share-Based Job
Co-scheduling With Integrated Dynamic Resource Directory In Support Or
Grid Scheduling”. Proc. Ann. Int. Symposium on High Performance
Computing (HPCS), Sherbrooke, Canada, May 2003, pp. 213-221.

[Tucker89] A. Tucker, A. Gupta. “Process control and scheduling issues for
multiprogrammed shared-memory multiprocessors”. Proceedings of the
twelfth ACM symposium on Operating systems principles, p. 159-166,
November 1989.

[Turek92] John Turek, Joel L. Wolf, Krishna R. Pattipati, Philip S. Yu. “Scheduling
parallelizable tasks: putting it all on the shelf”. ACM SIGMETRICS
Performance Evaluation Review, Proceedings of the 1992 ACM
SIGMETRICS joint international conference on Measurement and modeling of
computer systems June 1992, Volume 20 Issue 1.

[Wolski99] Rich Wolski, Neil Spring, and Jim Hayes. “The Network Weather
Service: A Distributed Resource Performance Forecasting Service for
Metacomputing”. Journal of Future Generation Computing Systems, Volume
15, Numbers 5-6, pp. 757-768, October, 1999.

[Yue98] Yue, K.K.; Lilja, D.J.; “Dynamic processor allocation with the Solaris
operating system”. Parallel Processing Symposium, 1998. 1998 IPPS/SPDP.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proceedings of the First Merged International...and Symposium on Parallel
and Distributed Processing 1998, 30 Mar-3 Apr 1998 Page(s): 392 -397 .

[ZhangOI] Y. Zhang, H. Franke, J. E. Moreira, A. Sivasubramaniam. “An
Intergrated Approach to Parallel Scheduling Using Gang Scheduling,
Backfilling and Migration”. Proc. JSSPP, 2001.

[ZhangOO] Y. Zhang, H. Franke, J. E. Moreira, A. Sivasubramaniam, “Improving
Parallel Job Scheduling by Combining Gang Scheduling and Backfilling
Techniques”, IPDPS2000, Cancun, Mexico, May 2000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

NAME:

PLACE OF BIRTH:

YEAR OF BIRTH:

EDUCATION:

VITA AUCTORIS

Xuemin Huang

Lanzhou, Gansu Province, China

1971

The Third High School, Lanzhou
1985-1988

Hohai University, Nanjing, Jiangsu Province, China
1988-1992 B.Sc.

University of Windsor, Windsor, Ontario
2000-2001 B.Sc.

University of Windsor, Windsor, Ontario
2002-2004 M.Sc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Adaptive space-time sharing with SCOJO.
	Recommended Citation

	tmp.1614268987.pdf.o0BVJ

