124 research outputs found

    Intrinsic and environmental factors modulating autonomous robotic search under high uncertainty

    Full text link
    Autonomous robotic search problems deal with different levels of uncertainty. When uncertainty is low, deterministic strategies employing available knowledge result in most effective searches. However, there are domains where uncertainty is always high since information about robot location, environment boundaries or precise reference points is unattainable, e.g., in cave, deep ocean, planetary exploration, or upon sensor or communications impairment. Furthermore, latency regarding when search targets move, appear or disappear add to uncertainty sources. Here we study intrinsic and environmental factors that affect low-informed robotic search based on diffusive Brownian, naive ballistic, and superdiffusive strategies (Lévy walks), and in particular, the effectiveness of their random exploration. Representative strategies were evaluated considering both intrinsic (motion drift, energy or memory limitations) and extrinsic factors (obstacles and search boundaries). Our results point towards minimum-knowledge based modulation approaches that can adjust distinct spatial and temporal aspects of random exploration to lead to effective autonomous search under uncertaintyThis work was supported in part by Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER), under Grants PGC2018-095895-B-I00, TIN2017-84452-R, and PID2020-114867RB-I0

    On the ecological approach to Information and control for roboticists

    Full text link
    The ongoing and increasingly important trend in robotics to conceive designs that decentralize control is paralleled by currently active research paradigms in the study of perception and action. James Gibson’s ecological approach is one of these paradigms. Gibson’s approach emerged in part as a reaction to representationalist and computationalist approaches, which devote the bulk of their resources to the study of internal processes. The ecological approach instead focuses on constraints and ambient energy patterns in the animal‐environment coalition. The present article reviews how the emphasis on the environment by ecological psychologists has given rise to the concepts of direct perception, higher order information, active information pick up, informationbased control laws, prospective control, and direct learning. Examples are included to illustrate these concepts and to show how they can be applied to the construction of robots. Action is described as emergent and self‐organized. It is argued that knowledge about perception, action, and learning as it occurs in living organisms may facilitate the construction of robots, more obviously so if the aim is to construct (to some extent) biologically plausible robots.This material is based upon work supported by grant FFI2009‐13416‐C02‐02 of the Spanish Ministry of Science and Innovation

    Autonomous Behaviors With A Legged Robot

    Get PDF
    Over the last ten years, technological advancements in sensory, motor, and computational capabilities have made it a real possibility for a legged robotic platform to traverse a diverse set of terrains and execute a variety of tasks on its own, with little to no outside intervention. However, there are still several technical challenges to be addressed in order to reach complete autonomy, where such a platform operates as an independent entity that communicates and cooperates with other intelligent systems, including humans. A central limitation for reaching this ultimate goal is modeling the world in which the robot is operating, the tasks it needs to execute, the sensors it is equipped with, and its level of mobility, all in a unified setting. This thesis presents a simple approach resulting in control strategies that are backed by a suite of formal correctness guarantees. We showcase the virtues of this approach via implementation of two behaviors on a legged mobile platform, autonomous natural terrain ascent and indoor multi-flight stairwell ascent, where we report on an extensive set of experiments demonstrating their empirical success. Lastly, we explore how to deal with violations to these models, specifically the robot\u27s environment, where we present two possible extensions with potential performance improvements under such conditions

    Contact aware robust semi-autonomous teleoperation of mobile manipulators

    Get PDF
    In the context of human-robot collaboration, cooperation and teaming, the use of mobile manipulators is widespread on applications involving unpredictable or hazardous environments for humans operators, like space operations, waste management and search and rescue on disaster scenarios. Applications where the manipulator's motion is controlled remotely by specialized operators. Teleoperation of manipulators is not a straightforward task, and in many practical cases represent a common source of failures. Common issues during the remote control of manipulators are: increasing control complexity with respect the mechanical degrees of freedom; inadequate or incomplete feedback to the user (i.e. limited visualization or knowledge of the environment); predefined motion directives may be incompatible with constraints or obstacles imposed by the environment. In the latter case, part of the manipulator may get trapped or blocked by some obstacle in the environment, failure that cannot be easily detected, isolated nor counteracted remotely. While control complexity can be reduced by the introduction of motion directives or by abstraction of the robot motion, the real-time constraint of the teleoperation task requires the transfer of the least possible amount of data over the system's network, thus limiting the number of physical sensors that can be used to model the environment. Therefore, it is of fundamental to define alternative perceptive strategies to accurately characterize different interaction with the environment without relying on specific sensory technologies. In this work, we present a novel approach for safe teleoperation, that takes advantage of model based proprioceptive measurement of the robot dynamics to robustly identify unexpected collisions or contact events with the environment. Each identified collision is translated on-the-fly into a set of local motion constraints, allowing the exploitation of the system redundancies for the computation of intelligent control laws for automatic reaction, without requiring human intervention and minimizing the disturbance of the task execution (or, equivalently, the operator efforts). More precisely, the described system consist in two different building blocks. The first, for detecting unexpected interactions with the environment (perceptive block). The second, for intelligent and autonomous reaction after the stimulus (control block). The perceptive block is responsible of the contact event identification. In short, the approach is based on the claim that a sensorless collision detection method for robot manipulators can be extended to the field of mobile manipulators, by embedding it within a statistical learning framework. The control deals with the intelligent and autonomous reaction after the contact or impact with the environment occurs, and consist on an motion abstraction controller with a prioritized set of constrains, where the highest priority correspond to the robot reconfiguration after a collision is detected; when all related dynamical effects have been compensated, the controller switch again to the basic control mode

    Theory, Design, and Implementation of Landmark Promotion Cooperative Simultaneous Localization and Mapping

    Get PDF
    Simultaneous Localization and Mapping (SLAM) is a challenging problem in practice, the use of multiple robots and inexpensive sensors poses even more demands on the designer. Cooperative SLAM poses specific challenges in the areas of computational efficiency, software/network performance, and robustness to errors. New methods in image processing, recursive filtering, and SLAM have been developed to implement practical algorithms for cooperative SLAM on a set of inexpensive robots. The Consolidated Unscented Mixed Recursive Filter (CUMRF) is designed to handle non-linear systems with non-Gaussian noise. This is accomplished using the Unscented Transform combined with Gaussian Mixture Models. The Robust Kalman Filter is an extension of the Kalman Filter algorithm that improves the ability to remove erroneous observations using Principal Component Analysis (PCA) and the X84 outlier rejection rule. Forgetful SLAM is a local SLAM technique that runs in nearly constant time relative to the number of visible landmarks and improves poor performing sensors through sensor fusion and outlier rejection. Forgetful SLAM correlates all measured observations, but stops the state from growing over time. Hierarchical Active Ripple SLAM (HAR-SLAM) is a new SLAM architecture that breaks the traditional state space of SLAM into a chain of smaller state spaces, allowing multiple robots, multiple sensors, and multiple updates to occur in linear time with linear storage with respect to the number of robots, landmarks, and robots poses. This dissertation presents explicit methods for closing-the-loop, joining multiple robots, and active updates. Landmark Promotion SLAM is a hierarchy of new SLAM methods, using the Robust Kalman Filter, Forgetful SLAM, and HAR-SLAM. Practical aspects of SLAM are a focus of this dissertation. LK-SURF is a new image processing technique that combines Lucas-Kanade feature tracking with Speeded-Up Robust Features to perform spatial and temporal tracking. Typical stereo correspondence techniques fail at providing descriptors for features, or fail at temporal tracking. Several calibration and modeling techniques are also covered, including calibrating stereo cameras, aligning stereo cameras to an inertial system, and making neural net system models. These methods are important to improve the quality of the data and images acquired for the SLAM process

    2020 - The Twenty-fourth Annual Symposium of Student Scholars

    Get PDF
    The full program book from the Twenty-fourth Annual Symposium of Student Scholars, held on April 16, 2020. Includes abstracts from the presentations and posters.https://digitalcommons.kennesaw.edu/sssprograms/1021/thumbnail.jp

    Uses and applications of artificial intelligence in manufacturing

    Get PDF
    The purpose of the THESIS is to provide engineers and personnels with a overview of the concepts that underline Artificial Intelligence and Expert Systems. Artificial Intelligence is concerned with the developments of theories and techniques required to provide a computational engine with the abilities to perceive, think and act, in an intelligent manner in a complex environment. Expert system is branch of Artificial Intelligence where the methods of reasoning emulate those of human experts. Artificial Intelligence derives it\u27s power from its ability to represent complex forms of knowledge, some of it common sense, heuristic and symbolic, and the ability to apply the knowledge in searching for solutions. The Thesis will review : The components of an intelligent system, The basics of knowledge representation, Search based problem solving methods, Expert system technologies, Uses and applications of AI in various manufacturing areas like Design, Process Planning, Production Management, Energy Management, Quality Assurance, Manufacturing Simulation, Robotics, Machine Vision etc. Prime objectives of the Thesis are to understand the basic concepts underlying Artificial Intelligence and be able to identify where the technology may be applied in the field of Manufacturing Engineering

    Novel central pattern generator elements for autonomous modular robots

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Escuela Politécnica Superior, junio de 201
    corecore