2,917 research outputs found

    Protocols for Integrity Constraint Checking in Federated Databases

    Get PDF
    A federated database is comprised of multiple interconnected database systems that primarily operate independently but cooperate to a certain extent. Global integrity constraints can be very useful in federated databases, but the lack of global queries, global transaction mechanisms, and global concurrency control renders traditional constraint management techniques inapplicable. This paper presents a threefold contribution to integrity constraint checking in federated databases: (1) The problem of constraint checking in a federated database environment is clearly formulated. (2) A family of protocols for constraint checking is presented. (3) The differences across protocols in the family are analyzed with respect to system requirements, properties guaranteed by the protocols, and processing and communication costs. Thus, our work yields a suite of options from which a protocol can be chosen to suit the system capabilities and integrity requirements of a particular federated database environment

    Self-adjusting multi-granularity locking protocol for object-oriented databases

    Get PDF
    Object-oriented databases have the potential to be used for data-intensive, multi-user applications that are not well served by traditional applications. Despite the fact that there has been extensive research done for relational databases in the area of concurrency control; many of the approaches are not suitable for the complex data model of object-oriented databases. This thesis presents a self-adjusting multi-granularity locking protocol (SAML) which facilitates choosing an appropriate locking granule according to the requirements of the transactions and encompasses less overhead and provides better concurrency compared to some of the existing protocols. Though there has been another adaptive multi-granularity protocol called AMGL [1] which provides the same degree of concurrency as SAML: SAML has been proven to have significantly reduced the number of locks and hence the locking overhead compared to AMGL. Experimental results show that SAML performs the best when the workload is high in the system and transactions are long-lived

    A comparative study of the performance of concurrency control algorithms in a centralised database

    Get PDF
    Abstract unavailable. Please refer to PDF

    A Survey of Traditional and Practical Concurrency Control in Relational Database Management Systems

    Get PDF
    Traditionally, database theory has focused on concepts such as atomicity and serializability, asserting that concurrent transaction management must enable correctness above all else. Textbooks and academic journals detail a vision of unbounded rationality, where reduced throughput because of concurrency protocols is not of tremendous concern. This thesis seeks to survey the traditional basis for concurrency in relational database management systems and contrast that with actual practice. SQL-92, the current standard for concurrency in relational database management systems has defined isolation, or allowable concurrency levels, and these are examined. Some ways in which DB2, a popular database, interprets these levels and finesses extra concurrency through performance enhancement are detailed. SQL-92 standardizes de facto relational database management systems features. Given this and a superabundance of articles in professional journals detailing steps for fine-tuning transaction concurrency, the expansion of performance tuning seems bright, even at the expense of serializabilty. Are the practical changes wrought by non-academic professionals killing traditional database concurrency ideals? Not really. Reasoned changes for performance gains advocate compromise, using complex concurrency controls when necessary for the job at hand and relaxing standards otherwise. The idea of relational database management systems is only twenty years old, and standards are still evolving. Is there still an interplay between tradition and practice? Of course. Current practice uses tradition pragmatically, not idealistically. Academic ideas help drive the systems available for use, and perhaps current practice now will help academic ideas define concurrency control concepts for relational database management systems

    Lock-based Protocols for Cooperation on XML Documents

    Full text link
    The eXtensible Markup Language (XML) is well accepted in several different Web application areas. As soon as many users and applications work concurrently on the same collection of XML documents - e.g. on an XML database via a Web interface - isolating accesses and modifications of different transactions becomes an important issue. We discuss four different core protocols for synchronizing access to and modifications of XML document collections. These core protocols synchronize structure traversals and modifications. They are meant to be integrated into a native XML base management System (XBMS) and are based on two phase locking. We also demonstrate the different degrees of cooperation that are possible with these protocols by various experimental results. Furthermore, we also discuss extensions of these core protocols to full-fledged protocols. Further, we show how to achieve a higher degree of concurrency by exploiting the semantics expressed in Document Type Definitions (DTDs)

    B+-tree Index Optimization by Exploiting Internal Parallelism of Flash-based Solid State Drives

    Full text link
    Previous research addressed the potential problems of the hard-disk oriented design of DBMSs of flashSSDs. In this paper, we focus on exploiting potential benefits of flashSSDs. First, we examine the internal parallelism issues of flashSSDs by conducting benchmarks to various flashSSDs. Then, we suggest algorithm-design principles in order to best benefit from the internal parallelism. We present a new I/O request concept, called psync I/O that can exploit the internal parallelism of flashSSDs in a single process. Based on these ideas, we introduce B+-tree optimization methods in order to utilize internal parallelism. By integrating the results of these methods, we present a B+-tree variant, PIO B-tree. We confirmed that each optimization method substantially enhances the index performance. Consequently, PIO B-tree enhanced B+-tree's insert performance by a factor of up to 16.3, while improving point-search performance by a factor of 1.2. The range search of PIO B-tree was up to 5 times faster than that of the B+-tree. Moreover, PIO B-tree outperformed other flash-aware indexes in various synthetic workloads. We also confirmed that PIO B-tree outperforms B+-tree in index traces collected inside the Postgresql DBMS with TPC-C benchmark.Comment: VLDB201
    corecore