
A COMPARATIVE STUDY

'- THE PERFORMANCE OF OF

CONCURRENCY CONTROL ALGORITIMS

IN A CENTRALISED DATABASE

DONALD FRANCIS ROSS

B. Sc.

A Tbesis submitted in fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

BERIOT-WATT UNIVERSITY

Department of Computer Science

March 1988

This copy of the thesis has been supplied on the condition that anyone who consults it is
understood to recognise that the copyright rests with its author and that no quotation from the
thesis and no information derived from it may be published without the prior written consent of
the author or the University (as may be appropriate).

DEDICATION.

To my parents, J. M. R and D. GA.,

To M. F. M., in memory,

and

To E. M. H. and S. DJ-. S

DECLARATION.

I hereby declare that I have personally composed this thesis and the work herein was my own except

where due acknowledgement is made. The material in this thesis has not been submitted to this or any

other university for a degree.

Signed:

Dated:

CONTENTS

1.134, ýIRODUCTION ...
I

1.1. Concurrency Control ... 1
1.2. Issues ...

2
1.3. Algorithms ...

4
1.3.1. Locking Algorithms ...

4
1.3.2. Timestamping ...

6
1.3.3. Serial Validation ... 7
1.3.4. Hybrid Algorithms ... 8

1.4. Performance ...
8

1.5. This Study ...
9

2. PERFORMANCE MODELS .. 11
2.1. Database System .. 11
2.2. Concurrency Control Algorithms (CCAs) .. 13

2.2.1. Preclaim Locking (PRE) .. 15
2.2.2. Two-Phase Exclusive Locking (2PLE) .. 15
2.2.3. Two-Phase Upgrade Locking (2PLU) .. 16
2.2.4. Basic Timestamp Ordering (BTO) ... 18
2.2.5. Serial Validation (SV) .. 18

2.3. Logical Queueing Model (LQM) .. 19
2.4. Performance Metrics and Assumptions ... 21
2.5. Previous Results .. 23
2.6. Performance Metrics and Workload Parameters .. 25

2.6.1. Performance Metrics .. 25
2.6.2. Workload Parameters ... 26

2.7. Chapter Summary .. 27

3. TESTBED DATABASE SYSTEM .. 28
3.1. The Testbed System: TDBS/C .. 28

3.1.1. Overview of TDBS/C ... 29
3.1.2. Data Manipulation Language (DML) ... 31
3.1.3. TDBS/C Internal Organisation ... 32

3.2. Experimental Test Database Design .. 33
3.2.1. Experiment Design ... 34
3.2.2. Test Data and Database Design .. 35
3.2.3. Test Transactions .. 37

3.3. Benchmark Tests ... 41
3.4. Benchmark Results .. 42

3.4.1. Results of Experiment I ... 42
3.4.2. Results of Experiment 2 ... 47

3.5. Conclusions ... 48
3.6. Chapter Summary .. 48

4. PROTOTYPE EXPERIMENTS ...
50

4.1. Experimental Method ..
50

4.2. Test Data and Transactions ...
52

4.3. Preliminary Experiments ...
54

4.3.1. Critical Section Locking Technique
...

54
4.3.2. Blocking and Restarting Delay (B

-
DLY/R_ýDLY)

..
54

4.3.3. Fixed Length vs Dynamic CCA Information Tables
...

55
4.4. Experiments and Statistics

. ..
55

4.5. Experiment 1 ...
56

4.5.1. Experiment Description
..

56
4.5.2. Single User Overhead Costs

...
57

4.5.3. Experimental Results
..

58
4.5.4. Adaptive Restart

...
61

4.5.5. Overhead Costs and Efficiency Measures ..
62

4.5.6. Granularity Effects
...

63
4.6. Experiment 2 ...

64
4.6.1. Experiment Description ..

65
4.6.2. Single User Overhead Costs ...

66
4.6.3. Multi User Results .. 66
4.6.4. Adaptive Restart ...

67
4.6.5. Overhead Costs and Efficiency Measures .. 67

4.7. Conclusions ... 68
4.8. Chapter Summary ... 70

5. SIMULATION EXPERIMENTS .. 71
5.1. Simulation ... 71
5.2. Experiment I ... 74

5.2.1. Experimental Results .. 74
5.2.2. Adaptive Restart ... 76
5.2.3. Overhead and Efficiency Measures .. 77
5.2.4. Granularity Effects ... 78

5.3. Experiment 2 ... 78
5.3.1. Experiment Results ... 78
5.3.2. Adaptive Restart ... 80
5.3.3. Overhead and Efficiency Measures .. 80

5.4. Adaptive Restart Revisited 81
5.5. Simulation: Summary and Conclusions .. 83
5.6. Comparison with the ProtoryW . .. 84

5.6.1. Experiment I .. 85
5.6.2. Experiment 2 .. 86
5.6.3. Comments on the Comparison ... 86

5.7. General Conclusions .. 87
5.8. Chapter Summary .. 89

6. COMPARISON WITH OTHER STUDIES .. go
6.1. Experimental Studies ... go

6.1.1. Optimistic CC vs Locking .. go
6.1.2. Other Experimental Studies .. 93
6.1.3. Conclusions from the Experimental Studies .. 95

6.2. Simulation Studies ... 96
6.2.1. Other Studies I .. 96
6.2.2. Other Studies II .. 97

6.3. An Analytic Study ... 104
6.4. Conclusions ... 107
6.5. Chapter Summary .. 108

7. SUMMARY AND CONCLUSIONS ..
log

7.1. A Wider Context ...
109

7.2. Review of This Study ..
110

7.2.1. TDB S/C Revisited ..
110

7.2.2. The CCAs Revisited ...
III

7.2.3. The Experiments Revisited ..
112

7.2.4. Limitations of This Study ...
113

7.2.5. Summary of Results ...
115

7.3. Future Research ...
115

7.4. Concluding Remaiks ...
116

APPENDICES

1. TESTBED DATABASE SYSTEM (TDBS/Q DESCRUMON ..
118

1.1. Historical Background ...
118

1.2. PRECI ..
119

1.3. TDBS/C Implementation ...
120

1.4. TDBS/C Overview ..
120

Schema Translator ...
120

Storage Schema Translator ...
121

Database Initialiser ..
121

View Schema Translator ...
121

Precompiler ...
121

listdb ..
121

Natural Language Interface ... 122
ICI ... 122
QBE ... 122
DBCS .. 122

1.5. Internal Organisation ... 123
1.5.1. Relation File Organisation .. 123

RIN (Relation Information) ... 124
PINDEX AREA (primary key index) .. 125
DATA AREA (taple storage) .. 126
Page Header ... 127

1.5.2. Identifier List (IDLIST) .. 127
1.5.3. Buffer Management .. 130

1.6. Schema Examples .. 132
1.7. Syntax Definitions ... 135

2. SINGLE-USER BENCIPAARK RESULTS .. 138

3. PROTOTYPE RESULTS ... 152
Experiment I Results: (GRAN = 1, T-TYP = get-replace) .. 153
Experiment I Results: (GRAN = 10, T_TYP = get-replace) .. 158
Experiment 2 Results: (T-TYP = get-replace) .. 163
Experiment 1 Results: (GRAN = 1, T-TYP = select-replace) .. 169
Experiment 1 Results: (GRAN = 10, T-TYP = select-replace) .. 174
Experiment 2 Results: (T-TYP = select-replace) .. 179

4. SIMULATION RESULTS ..
185

Experiment 1: Results ... 186
Experiment 2: Results ... 191

5. EXPERIMENTAL TECENIQUES .. 197
5.1. Operating System Environment .. 197
5.2. Chapter 3: Benchmark Tests ... 198
5.3. Chapter 4: Prototype Experiments .. 199
5.4. Chapter 5: Simulation Experiments

.. 201

REFERENCES ... 203

IV

List of Illustrations.
Figure Title Page

1.1 Example Transactions 1
1.2 Lost Update Example 2
1.3 Timestamp Example 6
1.4 Serial Validation Example 7

2.1 Database System 11
2.2 CCA Tables 14
2.3 2PLE Request Procedure 16
2.4 2PLU Request Procedure 17
2.5 BTO Request Procedure 18
2.6 SV Validation Procedure 19
2.7 Logical Queueing Model (LQM) 20

3.1 Database Initialisation 29
3.2 Transaction Creation 30
3.3 Relation File Layout 32
3.4 Tuple Allocation Procedure 33

5.1 Physical Queueing Model (PQM) 72

Al. l. ANSI/SPARC Three Level Architecture 119
A1.2 TDBS/C - SYSTEM OVERVIEW 123
A1.3 Relation File Layout 124
Al. 4 RIN Layout - PINDEX AREA 124
A1.5 RIN Layout - DATA AREA 125
A1.6 PINDEX AREA page layout 125
A1.7 PR,; DEX AREA slot layout 126
A1.8 DATA AREA page layout 126
A1.9 Page Header Layout 127

A1.10 IDLIST 127
A1.11 TDBS/C Organisation Levels 130
A1.12 Buffer Manager Structures 131
A1.13 Schema Definition 132
A1.14 Storage Schema Definition 133
A1.15 View Schema Definition 133
A1.16 Relation Information (RIN) Listing 134
A1.17 Schema Definition Syntax 135
A1.18 Storage Schema Definition Syntax 135
A1.19 View Schema Definition Syntax 136

A1.20 Relation Expression Syntax 136
A1.21 Database Definition Syntax 137

A5.1 Transaction Timing for Prototype Experiments 201

V

I List of Illustrations. I
Graph Title Page

3.1 get-replace (grp)/BFý_SZ: ET vs DB_ACC 43
3.2 select-replace (srp)/BF

-
SZ: ET vs DB_ACC 44

3.3 BF_SZ 100 pages: ET vs T_TYP 44

vi

List of Tables.
I Table Title Page I

2.1 Modelling Factors 12
2.2 General Performance Model 20
2.3 Summary of Granularity Results 24
2.4 Summary of TNIEPL and Conflict Results 25
2.5 Performance Metrics 26
2.6 Workload Parameters 27

3.1 DMUL Operations 31
3.2 Tuple Attribute Values 36
3.3 Storage Efficiency 37
3.4 Transaction Types 38
3.5 Transaction Descriptions 39
3.6 Factors and Factor Levels 41
3.7 Crossover Points 45
3.8 Experiment 1, Results Summary 46
3.9 Experiment 2 Factor Levels 47

4.1 Performance Metrics 51
4.2 Tuple Attribute Values 53
4.3 CCA Table Sizes 55
4.4 Experiment 1: Factor Levels 56
4.5 SU Ovehead Costs (%) 57
4.6 GRAN = 1, T-TYP = get-replace: Throughput 59
4.7 GRAN = 1, T_TYP = get-replace: Restart Counts 59
4.8 GRAN = 10, T_TYP = get-replace: Throughput 59
4.9 GRAN = 10, T_TYP = get-replace: Restart Counts 59

4.10 GRAN = 1, T-TYP = select-replace: Throughput 61
4.11 GRAN = 1, T_TYP = select-replace: Restart Counts 61
4.12 GRAN = 10, T-TYP = select-replace: Throughput 61
4.13 GRAN = 10, T_TYP = select-replace: Restart Counts 61
4.14 Overhead Costs, Tý_TYP = geLreplace (%) 63
4.15 Efficiency Measure, T-TYP = getjeplace 63
4.16 Experiment 2: Factor Levels 65
4.17 Experiment 2: LC and EMPL 65
4.18 Experiment 2: Throughput 66
4.19 Experiment 2: Restart Counts 66

4.20 Overhead Costs: T-TYP = get-replace 68
4.21 Efficiency Measures: T_TYP = get-replace 68

vii

List of Tables.
Table Title Page

5.1 PQM Parameters 72
5.2 PQM Parameter Values 74
5.3 GRAN = 1: Throughput 75
5.4 GRAN = 1: Restart Counts 75
5.5 GRAN = 10: Throughput 75
5.6 GRAN = 10: Restart Counts 75
5.7 GRAN = 1: Overhead Values 77
5.8 GRAN = 10: Overhead Values 77
5.9 GRAN = 1: Efficiency Measure 78

5.10 GRAN = 10: Efficiency Measure 78
5.11 Experiment 2: Throughput 79
5.12 Experiment 2: Restart Counts 79
5.13 Experiment 2: Overhead Values (%) 80
5.14 Experiment 2: Efficiency Measure 80
5.15 CCAs with R_DLY Values 81
5.16 Simulation Results: Ranked CCAs 82
5.17 Summary of Prototype and Simulation Results: Ranked CCAs 84

6.1 Kersten and Tebra: SV vs 2PLU, ET (seconds) 91
6.2 This Study: SV vs Locking, ET (seconds) 92
6.3 Factor Level Comparison: This Study/(Carey) 99
6.4 Parameter Value Comparison: This Study/(Carey) 99
6.5 Throughput Comparison: This Study/(Carey) 100
6.6 Restart Count Comparison: This Study/(Carey) 100
6.7 CCA Rank Order in Descending T: This Study/(Carey) 101
6.8 Experiments I and 2: DC-workload 105

ALI TDBS/C Historical Development 118

A2.1 Experiments I&2 Results Tables 138
A2.2 Throughput Results - Summary 139
A2.3 DB

-
SZ = 100, T-TYP = get-replace 140

A2.4 DB
-

SZ = 100, T-TYP = select-replace 141
A2.5 DB SZ = 100, T- TYP = select 142
A2.6 DB SZ = 1000, T-TYP = get-replace 143
A2.7 DB SZ = 1000, Tý_TYP = select-replace 144
A2.8 DB SZ = 1000, T_TYP = select 145
A2.9 DB

_SZ = 10000,7ý_TYP = get-replace 146

A2.10 DB
-

SZ = 10000, T- TYP = select-replace 147
A2.11 DB SZ = 10000, T- TYP = select 148
A2.12 DB SZ = 100, T_TYP = get-replace (sequential/unifonn) 149
A2.13 DB

-
SZ = 1000, T- TYP = get-replace (sequendal/uniforin) 150

A2.14 DB
_SZ = 10000, T-TYP = get-replace (sequential/unifonn) 151

vili

List of Tables -
I Table Title Page I

AM T-REQ = 1, Throughput, ET and run counts 153
A3.2 T_REQ = 1, Useful Work Costs 153
A3.3 T-REQ = 1, Wasted Work Costs 153
A3.4 T-REQ = 2, Throughput, ET and run counts 154
A3.5 T_REQ = 2, Useful Work Costs 154
A3.6 T_REQ = 2, Wasted Work Costs 154
A3.7 T-REQ = 5, Throughput, ET and run counts 155
A3.8 T-REQ = 5, Useful Work Costs 155
A3.9 T_REQ = 5, Wasted Work Costs 155

A'A J L-;. 10 Q= 10, Throughput, ET and run counts T_RE 156
A3.11 T-REQ = 10, Useful Work Costs 156
A3.12 T_REQ = 10, Wasted Work Costs 156
A3.13 Overhead Summary 157
A3.14 Efficiency Summary 157
A3.15 T_REQ = 1, Throughput, ET and ran counts 158
A3.16 T_REQ = 1, Useful Work Costs 158
A3.17 T_REQ = 1, Wasted Work Costs 158
A3.18 T_REQ = 2, Throughput, ET and run counts 159
A3.19 T-REQ = 2, Useful Work Costs 159

A3.20 T_REQ = 2, Wasted Work Costs 159
A3.21 T-REQ = 5, Throughput, ET and run counts 160
A3.22 T-REQ = 5, Useful Work Costs 160
A3.23 T-REQ = 5, Wasted Work Costs 160
A3.24 T_REQ = 10, Throughput, ET and run counts 161
A3.25 T-REQ = 10, Useful Work Costs 161
A3.26 T-REQ = 10, Wasted Work Costs 161
A3.27 Overhead Summary (%) 162
A3.28 Efficiency Summary (%) 162
A3.29 LC = 0%, Throughput, ET and run counts 162

A3.30 LC = 0%, Useful Work Costs 163
A3.31 LC = 0%, Wasted Work Costs 163
A3.32 LC = 20%, Throughput, ET and run counts 164
A3.33 LC = 20%, Useful Work Costs 164
A3.34 LC = 20%, Wasted Work Costs 164
A3.35 LC = 50%, Throughput, ET and run counts 165
A3.36 LC = 50%, Useful Work Costs 165
A3.37 LC = 50%, Wasted Work Costs 165
A3.38 LC = 80%, Throughput, ET and run counts 166
A3.39 LC = 80%, Useful Work Costs 166

Ix

List of Tables.
Table Title Page

A3.40 LC = 80%, Wasted Work Costs 166
A3.41 LC = 100%, Throughput, ET and run counts 167
A3.42 LC = 100%, Useful Work Costs 167
A3.43 LC = 100%, Wasted Work Costs 167
A3.44 Overhead Summary (%) 168
A3.45 Efficiency Summary (%) 168
A3.46 T_REQ = 1, Throughput, ET and run counts 169
A3.47 T-REQ = 1, Useful Work Costs 169
A3.48 T-REQ = 1, Wasted Work Costs 169
A3A9 T-REQ = 2, Throughput, ET and run counts 170

A3.50 Tý-REQ = 2, Useful Work Costs 170
A3.51 T_REQ = 2, Wasted Work Costs 170
A3.52 T-REQ = 5, Tbroughput, ET and run counts 171
A3.53 T_REQ = 5, Useful Work Costs 171
A3.54 T_REQ = 5, Wasted Work Costs 171
A3.55 T-REQ = 10, Throughput, ET and run counts 172
A3.56 T_REQ = 10, Useful Work Costs 172
A3.57 T_REQ = 10, Wasted Work Costs 172
A3.58 Overhead Summary 173
A3.59 Efficiency Summary 173

A3.60 T-REQ 1, Throughput, ET and run counts 174
A3.61 T_REQ 1, Useful Work Costs 174
A3.62 T_REQ 1, Wasted Work Costs 174
A3.63 T-REQ 2, Throughput, ET and run counts 175
A3.64 T-REQ 2, Useful Work Costs 175
A3.65 T-REQ = 2, Wasted Work Costs 175
A3.66 T-REQ = 5, Throughput, ET and run counts 176
A3.67 T-REQ = 5, Useful Work Costs 176
A3.68 T-REQ = 5, Wasted Work Costs 176
A3.69 T-REQ = 10, Throughput, ET and run counts 177

A3.70 T_REQ = 10, Useful Work Costs 177
A3.71 T_REQ = 10, Wasted Work Costs 177
A3.72 Overhead Summary (%) 178
A3.73 Efficiency Summary (%) 178
A3.74 LC = 0%, Throughput, ET and run counts 179
A3.75 LC = 0%, Useful Work Costs 179
A3.76 LC = 0%, Wasted Work Costs 179
A3.77 LC = 20%, Throughput, ET and run counts 180
A3.78 LC = 20%, Useful Work Costs 180
A3.79 LC = 20%, Wasted Work Costs 180

K

List of Tables.
Table Title Page

A'31.8 0 LC = 50%, Throughput, ET and run counts 181
A3.81 LC = 50%, Useful Work Costs 181
A3.82 LC = 50%, Wasted Work Costs 181
A3.83 LC = 80%, Throughput, ET and run counts 182
A3.84 LC = 80%, Useful Work Costs 182
A3.85 LC = 80%, Wasted Work Costs 182
A3.86 LC = 100%, Throughput, ET and run counts 183
A3.87 LC = 100%, Useful Work Costs 183
A3.88 LC = 100%, Wasted Work Costs 183
A3.89 Overhead Summary (%) 184

A3.90 Efficiency Summary (%) 184

A4.1 GRAN = 1, T_REQ = 1, Throughput, ET and run counts 186
A4.2 GRAN = 1, T-REQ = 2, Throughput, ET and run counts 186
A4.3 GRAN = 1, T_REQ = 5, Throughput, ET and run counts 186
A4.4 GRAN = 1, T_REQ = 10, Throughput, ET and run counts 187
A4.5 GRAN = 10, Tý_REQ = 1, Throughput, ET and run counts 187
A4.6 GRAN = 10, T_REQ = 2, Throughput, ET and run counts 187
A4.7 GRAN = 10, T_REQ = 5, Throughput, ET and run counts 188
A4.8 GRAN = 10, T_REQ = 10, Throughput, ET and run counts 188
A4.9 Useful Work Costs ET 189

A4.10 Wasted Work Costs ET 189
A4.11 Useful Work Costs ET 190
A4.12 Wasted Work Costs ET 190
A4.13 LC = 0%, Throughput, ET and run counts 191
A4.14 LC = 20%, Throughput, ET and run counts 191
A4.15 LC = 50%, Throughput, ET and run counts 191
A4.16 LC = 80%, Throughput, ET and run counts 192
A4.17 LC = 100%, Throughput, ET and run counts 192
A4.18 Useful Work Costs ET 193
A4.19 Wasted Work Costs ET 193

A4.20 Adaptive Restart 2PLU: T 194
A4.21 Adaptive Restart 2PLU: RC (BC) 194
A4.22 Adaptive Restart BTO: T 195
A4.23 Adaptive Restart BTO: RC 195
A4.24 Adaptive Restart 2PLU: ET 196
A4.25 Adaptive Restart BTO: ET 196

A5.1 Benchmark Error Estimations (90% CI) 199
A5.2 (GRAN = 1, T_REQ = 5): Example Experimental Values (T) 202
A5.3 (GRAN = 1, T-REQ = 5): Example Experimental Values (ET) 202

X1

I List of Abbreviations. I

2PL Two Phase Locking
2PLE Two Phase Exclusive Locking
2PLU Two Phase Upgrade Locking

ABTO Adaptive Restart Basic Timestamp Ordering
A2PLU Adaptive Restart Two Phase Upgrade Locking

BC Block Count
BT Batched Means: Simulation Run Length
BTO Basic Timestamp Ordering
BF-SZ Buffer Size in lKbyte Pages
B_DLY Blocking Delay

cc Concurrency Control
CCA Concurrency Control Algorithm
CPU Central Processing Unit (time used)
CWA C Work Area
C-TS(X) Commit Timestamp of Data Object X
CC-CPU CPU used by Concurrency Control
CC-IO 1/0 used by Concurrency Control

DBCS Data Base Control System
DBMS Data Base Management System
DBI Database Initialiser
DML Data Manipulation Language
DB_ACC Database Access Pattern
DB_PG Database Size in pages
DB-SZ Database Size in tuples

EMPI, Effective Multi-Processing Level
ET Elapsed Time

FLL File Level Locking

grP get-replace transaction
grs get-replace transaction, sequential access
gru get-replace transaction, uniform access
GRAN Granularity of the Database

12PLU Immediate Restart 2PLU
iET Idealised. Elapsed Time
ICI Interactive Command Interface
IDM Intelligent Database Machine (Bitton-Lee)
10 1/0 time used
IPRE Incremental Static Locking
1/0 Input/Output

LC Level of Conflict
LQM Logical Queueing Model
LRU Least Recently Used

Al

List of Abbreviations.

MLL Mixed File/Page Level Locking
MIVIPL Maximum Multi-Processing Level
MEPL Multi-Processing Level
MU Multi-User

N2PL Non-Two Phase Locking
NB Number of Batches (Batched Means Method)
NC Commit Count
NO CC No Concurrency Control
NR Number of Relations
NT Number of Transactions

OCC Optimistic Concurrency Control
O/S Operating System
Q-0/s Operating System Overhead

PC Probability of Conflict
PLL Page Level Locking
PRE Proclaim Locking (Atomic)
PRECI Prototype of a Relational Canonical Interface

QBE Query-by-Example

R Read Only
RIN Relation Information
RC Restart Count
RW Read/Write
RSM Read set of Transaction T
R-TS(X) Read Timestamp of Data Object X
R_DLY Restart Delay

sel. select transaction
srp select-replace transaction
SU Single-User
SV Serial Validation

T Throughput (Transactions/second)
TDBS/C Testbed Database System in C
TNIEPL Transaction Multi-Processing Level
TWW Thomas Write Rule
T_ACC Transaction Access Pattern
T-CPU CPU used by Transaction
TJO 1/0 used by Transaction
T_NGR Number of Granules Accessed
Tý_REQ Number of Requests/Transaction
T_TYP Transaction Type
T_UPD, Transaction Update Propability

W Write Only
WSM Write set of Transaction T
W-TS(X) Write Timestamp of Data Object X

xiii

ACKNOWLEDGEMENT

I would like to express my thanks to my supervisor Dr R. H. Davis for his support during

the course of this work.

My thanks also to the Department of Computer Science at Heriot-Watt University and

members of staff for their support during the preparation of this thesis and their patience

in allowing the many hours of single-user computer time required for the prototype

experiments. In particular, to Dr P. J. B. King and Mr A. D. Ramage for help in accessing

the SIMULA implementations used for the simulation runs and the Universities of

Dundee and Edinburgh for the computer time required. For help with the text preparation

system, Dr G. Chen, whose preview program was indispensable, Mr 1. Crorie, who

translated my sketches into real diagrams, and Mr CDF. Miller for help in sorting out

the (many) bugs.

Thanks are also due to those who proofread the draft versions of this thesis,

Dr R. H. Davis, Dr PJ. B. King, and Ms R. Nfichaelson; to Dr L. Paterson of the

Department of Actuarial Mathematics and Statistics for initial advice on the statistical

approach used in the thesis; and last but not least to the many people and institations who

gave time to discuss their work and who provided reports and documentation free of

charge.

Finally, my thanks to my family, all my friends, and others for the many forms of support

that kept me going during the course of this work.

x1v

ABSTRACT

The performance of Concurrency Control Algorithms (CCAs) in databases has been widely

studied over the last ten years, mainly using analytic and simulation tzchniques. Results have been

contradictory. The main CCA categories to emerge are locking, timestamping and serial validation.

Most studies have considered one or two CCAs within the same ftamework and only one simulation

study has included all the categories.

Experimental studies are rare and none has covered all three categories of CCA. In this study, the

performance of atomic static locking (PRE), two-phase exclusive (2PLE) and upgrade (2PLU) locking,

basic timestamping (BTO) and serial validation (SV) is compared using a prototype database system.

Previous studies suggest that there is little difference in CCA performance at low levels of conflict. This

study explores a "worst-case" scenario and uses update only transactions while recognising that such an

approach may be biased against CCAs which allow share access such as 2PLU. Benchmark results are

presented for single-user transactions. Two transaction ripes are selected for the multi-user experiments

and are run under each CCA and without concurrency control to provide a baseline for comparison. An

adaptive restart technique is introduced for 2PLU and BTO and shown to considerably improve

performance.

The experiments are repeated using a simulation model and the adaptive restart technique is

further investigated. Comparing results with the prototype and other simulation studies indicates that

the effect of both blocking and restarting delays are important in determining relative CCA performance.

XV

Chapter 1

INTRODUCTION

I. I. Concurrency Control

In any database system providing shared access to data, the database must remain in a "consistent"

state [42] before and after the actions of each user. To enforce this, each user's actions on the database

(reads and writes) are grouped into a transaction. These actions are considered to be atomic, that is, they

cannot be further subdivided. The effect of the transaction on the database must also be atomic, either

all the actions have been applied to the database or none at all. In a multi-user system where several

transactions may run concurrently, the actions of a set of transactions may be interleaved. This

sequence of actions is called a schedule. A consistent schedule [42] is one which gives each transaction

a consistent view of the database. Algorithms which produce such schedules are called concurrency

control algorithms (CCA). This thesis is concerned with such algorithms and performance issues

associated with them.

An example is given in Figure 1.1 where TI, T2, T3 are transactions and S, P are data objects.

Consider the transactions TI and T2 and data object S in Figure 1.1.

xssume initiaBy S= 100.

0101-1

Tl [read S, add 100, write S)
T2 (read S, sub 50, write S)
T3 [read P, add 40, write P)

Figure 1.1: Example Transactions

Such transactions may occur for example in an accounting system. Two trivial schedules would

be (TI, 72) where the value of S goes from 100->200->150 and 72, TO where the value of S goes from

100->50->150. The transactions are executed consecutively (serially) and the schedules are consistent.

A possible non-consistent schedule, illustrating the "lost update" problem, is given in Figure 1.2. Again,

the initial value of S is 100.

Time Schedule Trans. Tl Trans. 72
t TI -read S S= 100
t+l T2-read S S= 100
t+2 Tl-add 100 S= 200
t+3 Tl-write S S= 200
t+4 T2-sub 50 S= 50
t+5 T2-write S S= 50

Figure 1.2: Lost Update Example

The final value of S is 50 instead of 150 since the final write of T2 has overwritten the result from

Tl.

Another result of inconsistent schedules arises when one transaction, T, reads several items,

some of which have been updated and some of which will subsequently be updated by another

transaction, Tb. The first transaction's view of the database is inconsistent.

Each transaction has a readset, RSM, the set of aH database items read by that transaction and a

writeset, WSM, the set of aH items written by that transaction [12]. Two transactions, TI and T2, are

said to "conflict" [75] if

[RS(Tl) n WS(72)) or IWS(Tl) n RS(72)) or (WS(Tl) n WS(72))

is non-empty. There is no conflict if (RS(Tl) (-)RS(72)) is non-empty. Bernstein [12,13]

distinguishes further between types of conflict and classes CCAs according to the method of resolving

read-write (RW) and write-write (WW) conflicts.

1.2. Issues

"Ibe function of the CCA is to produce a consistent schedule which is equivalent to the serial

execution of the set of concurrenfly executing mansactions [Tl, T2, ..., Tn) [81,10,12]. The effect of

the interleaved execution is the same as executing TI followed by T2 ... followed by Tn. Such an

execution is said to be a serialisable execution. Rosenkrantz [901 calls this linearisability. Since every

2

serialisable execution is equivalent to a serial execution, every serialisable execution must also be

correct, that is, it is a consistent schedule. It follows that the aim of CCAs is to generate a serialisable

execution which also aims at a1lowing maximum concurrency. In doing so such algorithms must

resolve conflicts either by detection or avoidance.

In Figure 1.1, S is in RS(Tl), RS(T2), WS(Tl) and WS(T2) giving rise to both RW and WW

conflict. T3 conflicts with neither TI nor T2 hence the actions of T3 may be interleaved with those of

TI and T2.

In summary, the CCA manages read/write access to objects in a database. These objects may vary

in size from the entire database to a field of a record. In a relational database this might correspond to

the database, a relation, a logical page, a tuple or an attribute. These objects are referred to as granules.

Hence for concurrency purposes the database may be considered as a set of granules fg 1, g 2, ---, g? d

where n is the granularity of the database. The transaction requests may be either granted or rejected

and if rejected the transaction may either block or restart. Blocking may lead to deadlock which in turn

can cause restarts.

To check for deadlock a graph of all transactions waiting for resources owned by other

transactions is constructed; the waits-for-graph [551. Deadlock occurs iff a cycle is found in the waits-

for-graph. In deadlock avoidance schemes each request may be tested to see if it results in a cycle in the

waits-for-graph. For example, if T. is waiting for a resource owned by Tb, and Tb requests a resource

owned by T, a cycle occurs in the waits-for-graph (deadlock), the request is denied and one of the two

transactions is restarted. If Tb is restarted the CCA is said to be "nonpreemptive" otherwise T. is

restarted and the CCA is said to be "preemptive" [12]. When a transaction successfully completes its

actions, the results of the transaction writes (updates) are written back to the database and cannot be

undone without running a second transaction. The writing of the results of the transaction is called

"committing". A restarted transaction releases all its resources and does not commit its results to the

database.

3

1.3. Algorithms

The most common classes of CCAs are locking, timestamping, and serial -validation, which is also

known as "optimistic concurrency control" (OCC). Several variations exist within the locking and

timestamping classes. Surveys of methods for centralised and distributed databases are given by

Bernstein [12), Kohler [651 (annotated bibliography) and Gardarin [48], the first listing 47 CCAs

based on either locking or timestamping or a combination of both. IýIilenkovic [751 notes the following

properties of CCAs as desirable:

1) Parallelism among disjoint transactions should not be constrained

2) The solution should be efficient i. e., impose low storage and computational overhead on the

database management system

3) Concurrency control and consequently consistency of the database should be the responsibility of

the system and not of its users

4) The solution should be easy to implement and to comprehend

1.3.1. Locking Algorithms

These may be either static or dynamic. In static locking, the objects that the transaction wishes to

lock are known at transaction startup time, implying some form of pre-execution analysis. This is also

known as preclairn locking or simply "preclaim" for short. It is suggested that transactions with

predictable resource requirements are a majority in most cases which has led to CCAs based on classes

of transactions [9,111. If the transaction cannot acquire all the required locks, it is blocked and must

wait until the required locks are free before continuing.

Two forms of preclaim algorithms are:

1) atomic static locking, where the transaction requests all resources and if any are unavailable the

requesting tiransaction is blocked and acquires no resources [86,23,107].

4

2) incremental static locking, where requests are processed by a deadlock avoidance CCA and the

transaction blocks if a request is denied but retains resources allocated so far [86,1071.

One potential problem of atomic static locIdng is that of resource starvation, where for example a

transaction requesting two objects (X, Y) is blocked by a succession of transactions requesting either

(X) or (Y) .

In dynamic locking, the transaction requests locks as required and if the request is rejected the

transaction is again blocked and must wait. Locks may be either exclusive or upgradeable, for example,

share to exclusive (read to write) and the CCA may use either deadlock avoidance or detection.

Alternatives for dealing with deadlocks are discussed in [4] which provides a good set of references on

this area.

One aspect of locIdng cost is the granule size in the database. From simulation studies

[85,87,861 coarse granularity is suggested as the best general solution. This, however, leads to

transactions which access few data items, blocking relatively large parts of the database and reducing

concurrency. A solution to this is hierarchical locking [511 where the transaction initially acquires

locks at a finer granularity and converts these (at a given threshold) to locks at a coarser granularity and

higher level in the hierarchy. Deadlock detection is then required at each node in the hierarchy [73).

One important notion is that of two-phase locking (2PL) [42,51] where the =saction may not

release any locks until all locks have been acquired. The two phases are called the growing and

shrinking phases where the shrinking phase occurs after transaction commit (i. e., the results of the

transaction are written back to the database) and locks can be released.

Other locking methods include non-two-phase locking (N2PL) [57,77,59,79,791 and predicate

locking [42]. In N2PL the database is partitioned into a tree with each node representing a disjoint part

of the database. Shared or exclusive locks can then be set on the database at different levels of the tree

to control access and conflicts. In predicate locking, a logical lock is set on the database corresponding

to some predicate, for example "(all suppliers based in Edinburgh)". However, with this technique, it is

not possible to detect overlapping sets of items locked by different predicates and hence resolve

conflicts. All locking algorithms considered here will be 2PL.

5

1.3.2. Timestamping

In this method, the CCA maintains a logical clock from which each transaction, T, is assigned a

clock value or timestamp, TSM, on starting execution [12]. Each data object, X, in the database is

assigned a read timestamp, R-TS(X), and a write timestamp, W-TS(X), stating the time of the last read

and write respectively. The value assigned to R-TS(X)/W-TS(X) is the start time, TS(I), of the

transaction which has read/written the object X. The timestamps are essentia. Hy sequencers which aHow

the actions of the transactions to be applied to the database in startup order. This is known as timestamp

ordering.

Consider the transactions TI, T2 and data object S, from Figure 1.1, starting at times (t), (t+l)

respectively and the schedule of Figure 1.3. Note the read and write timestamps for S.

Time Schedule R-TS(S) W-TS(S)
t Tl-begin
t+1 T2-begin
t+2 TI -read S t 0
t+3 Tl-add 100 t 0
t+4 T2-read S t+ 1 0
t+5 TI -write S t+ 1 0

Figure 1.3: Timestamp Example

The action at (t+5) is the "write S" from Tl which creates RW conflict since R-TS(S) > TS(Tl).

The write will be rejected and T1 restarted at time (t+k) (k>5). Note that it is possible to set up a cycle

of restarts if TI (TS(Tl) = (t+k)) is restarted before T2 has written back the value of S [99,118,33].

Timestamping with restarts is called basic timestamp ordering (BTO). Instead of restarting transactions

the CCA may delay the transaction. This technique is called conservative timestamp ordering (CTO)

and requires the reads and writes to arrive in timestamp order [131. The Thomas write rule (TWW)

[112] presents an improved algorithm for resolving WW conflicts. Under the assumption that

transactions read an object before writing it, this technique is equivalent to BTO [231.

6

1.3.3. Serial Validation

This method, also known as certification [121 and OCC [67], allows Msactions to continue

unchecked until a commit (or validation) point when transactions are tested to prevent non-serialisable

results. In OCC, it is argued that conflicts are in fact rare (the "optimistic" assumption) and each

transaction keeps local copies of database objects before the validation point (shadow values

[7,59,601). In Serial Validation, each transaction is assigned a sequence number at startup time and the

readsets and writesets are examined for potential conflict prior to commit. In the worst case where

validation repeatedly fails, locking may be used. A more efficient implementation of this algorithm

[231 is used in this study where each transaction is assigned a timestamp on startup, S-TSM, and a

commit timestamp, C-TS(T), on commit. A write timestamp, W-TS(X), is maintained for each object

X, which is the commit timestamp of the most recent writer of that object. A transaction is only allowed

to commit if S-TSM > W-TS(X) for all X in the readset of T.

Consider TI and T2 from Figure 1.1 and the schedule in Figure 1.4.

Time Schedule W-TS(S)
t TI-begin 0
t+1 T2-begin 0
t+2 TI-read S 0
t+3 TI -write S 0
t+4 T2-read S 0
t+5 T2-write S 0
t+6 TI-commit t+6
t+7 T2-commit t+6

Figure 1.4: Serial Validation Example

At (t+6) TI enters the validation phase and is validated, setting W-TS(S) to (t+6), the value of C-

TS(Tl). At (t+7) 72 enters the validation phase hence C-TS(T2) = (t+7). Since S-TS(T2) = (t+l) and

W-TS(S) = (t+6), S-TS(T2) < W-TS(S) so T2 is rejected. EssentiaHy [23] uses timestamping to avoid

the readset/writeset maintainence overhead in [67).

7

1.3.4. Hybrid Algorithms

Algorithms also exist using combinations of the above techniques, most commonly 2PL and

timestamp ordering [12]. The "Wait-Die" and "Wound-Wait" protocols [90,33] are deadlock

avoidance techniques which use locIdng with timestamps and prevent cycles from occurring in the

waits-for-graph. A combined preclaim and timestamp algorithm is proposed in [75]. The optimistic

approach, originally designed for systems with low levels of conflict, could be combined with 2PL if the

conflict level rises beyond a given threshold.

1.4. Performance

Clearly if a CCA is to be efficient it must execute the set of transactions in no more time than the

equivalent serial execution. Gray [53] indicates that conflict between transactions in a database system

is rare. In such a case, concurrent execution is indeed required to make best use of system resources

such as CPU and 1/0 parallelism. Studies on granularity [85,87,86] indicate that suitable choice of

granularity can also reduce overhead. Other factors affecting perfon-nance include the ratio of large to

small transactions (transaction mix), read only to read/write transactions, level of conflict, restart delays

and the concurrency control overhead.

Performance studies can be divided into three categories; analytical, simulation and experimental.

Many have used a combination of techniques, usually analytical and simulation. The most studied

technique has been locking:

1) analytical studies [84,71,46,113,107],

2) simulation studies [85,87,86,68,23,24,110,25,4]

and more recently

3) experimental studies [66,82,631

Fewer studies have been carried out on timestamping [46,23,111) using simulation techniques

and the optimistic approach [82,63] using experimental testing.

8

Some general testbed benchmark studies on databases [54,17,18,93] have also begun to appear

and one study [56] has used a Prolog system to evaluate concurrent system design.

1.5. This Study

This thesis is an empirical study of the performance of five basic CCAs: preclaim (PRE), two-

phase exclusive locking (2PLE), two-phase upgrade (share to exclusive) locking (2PLU), basic

timestamp ordering (BTO) and serial validation (SV). Performance of those five CCAs plus that of the

no concurrency control case (NO CC) is examined under different workloads at different conflict levels

using update transactions (read/write) in a multi-user centralised testbed database system. The

transactions are of two types

1) those which access the database on a record level

2) those which operate on relations.

These we feel cover most types of current database systems. Two problems are addressed; (1) would

the results of previous studies predict the outcome from a prototype experimental system; (2) could a

suitable simulation model reflect the prototype system and to what degree of accuracy.

Chapter 2 presents the components of a database system and factors involved in modelling. The

CCAs used in this study are presented as informal procedures and described in the context of a logical

queueing model. Metrics and assumptions from previous studies are summarised. Previous results are

reviewed and used as a basis to establish performance metrics and workload parameters for this study.

The prototype system, TDBS/C, is introduced in Chapter 3. An overview is presented of the data

manipulation language and the internal organisation and mechanisms. The design of the experiments,

test data and transactions are described, followed by the results of the single-user benchmark tests.

These are used to generalise conclusions from the results of the multi-user CCA tests. Finally, the main

conclusions from the benchmarks are presented.

In Chapter 4, performance metrics, test data and transactions for the muld-user experiments are

9

described. A brief description of some preliminary experiments is given followed by the two sets of

CCA experiments and a detailed discussion of the results. An adaptive restart technique is presented

and tested under 2PLU and BTO and the results contrasted with the fixed length restart case.

In Chapter 5, a physical queueing model, derived from the logical model of Chapter 2, is used as a

basis for a simulation model of the prototype. Ile simulation results are presented and discussed. The

adaptive restart technique is further investigated using the simulator. The simulation results are

compared with those from the prototype, differences noted and conclusions drawn.

The scope of the study is broadened in Chapter 6 where the prototype results are compared with

results from some earlier experimental studies. The simulation results are firstly compared in general

with some previous results and then in detail with a set of simulation studies based on the same model.

A comparison with an analytical model concludes the chapter.

Chapter 7 places this study in a wider context, reviews the results and notes some limitations. A

brief summary of results is followed by suggestions for future research.

Appendix 1 presents a detailed description of TDBS/C. The results of the single-user

benchmarks, prototype and simulation experiments are listed in Appendices 2,3,4 respectively.

Appendix 5 describes the operating system context, experimental and statistical techniques used in this

study.

10

Chapter 2

PERFORMANCE MODELS

In this chapter we describe a centralised multi-user database system, factors involved in

perfon-nance measurement, the concurrency control algorithms (CCAs) used in this study, a logical

queueing model for the database system and review previous studies. Finally, performance metrics and

workload parameters for this study are presented.

2.1. Database System

The components in a multi-user database system are reviewed. The system is presented in

Figure 2.1.

...

Tr I

Data DBMS CCA
Base

Tr n

O/S
...

Figure 2.1: Database System

The system comprises a number of transactions (either batch or terminal transactions) which

access the database via the database management system (DBMS). The DBMS includes a CCA

component which schedules the requests issued by the transactions and is responsible for resolving

conflicts between transactions. The majority of database systems are run as part of the standard

11

Operating System (O/S) on the given machine.

Table 2.1 summarises the main factors involved in modelling such a system. Clearly many of

these are interdependent.

Transaction Database CCA O/S
SIZE SIZE ALGORITHM No. CPUs
small/large (no. of objects) TYPE
(no. granules (blocking,
accessed) restarting)

DURATION GRANULARITY DEADLOCK No. DISKS
short/long (no. of (prevention,

objects/granule) detection)

READ/WRITE ACCESS COSTS LOCATION MEMORY SUM
ratio (1/0, CPU for of CCA (primary,

DBMS) INFORMATION secondary)
(primary,
secondary
memory)

ACCESS ACCESS COSTS MULTI-
PATTERN (1/0, CPU) PROGRAMMING
(uniform, random, LEVEL
sequential)

THINK TIME MULTI-
PROGRAMMING
LEVEL

Table 2.1: Modelling Factors

The transaction can be described by its size, either in terms of the number of granules accessed

(percentage of database) and/or in terms of duration, long transactions either representing a large

batched transaction or a terminal session with significant think times, where the user pauses in real time

before continuing the session. The fraction of items read that are written back (updated) is important in

determining the conflict levels in the CCA and the access pattern will affect the 1/0 costs in particular.

A transaction may be modelled as

Begin transaction (a
,a2, ..., a,,) End transaction

where the "Begin transaction" initiates startup functions in the DBMS and notifies the system of the

existence of the transaction, the fai) a set of actions (read/write) and the "End transaction " signals the

DBMS to commit the tr-ansaction if possible.

12

The database is essentially modelled as a set of n granules (g 1, g 2, ..., g,,). Each granule may

contain one or more data objects. The access costs depend on the O/S disk overheads (1/0 cost), the

DBMS implementation (CPU cost) and the type of access, for example by record or by relation and

whether sequential, random or uniform.

The CCAs incur both CPU and VO costs. If the CCA information is stored in primary memory

then the latter will be zero. The CCA may also add a delay cost for blocking and/or restarting the

transaction.

The O/S overheads will depend on the number of processors, disks, and memory size. These

overheads will heavily influence the other costs in the system (DBMS and CCA CPU and 1/0 costs) as

weR as adding their own costs to the transaction.

Both the CCA and O/S will be affected by limits on their respective multiprogramming levels, the

O/S multiprogramming level being dominant. Within the system transactions will be subject to both

data contention (access to the database objects) and resource contention (access to the processor(s) and

disk(s)) [107).

2.2. Concurrency Control Algorithms (CCAs)

In chapter 1 the basic issues involved in concurrency control were presented. The algorithms used

in this study are now presented in greater detail. They are preclaim (PRE), two-phase exclusive locking

(2PLE), two-phase upgrade (share to exclusive) locking (2PLU), basic timestamp ordering (BTO) and

serial validation (SV). Two assumptions are introduced here:

1) that a. H objects are read before being written

("no-blind-writes" assumption)

2) that updates to the database are deferred until commit time

Tbree tables, which are used for the CCA information, are presented in Figure 2.2.

13

TRTAB (Transaction Table)
TRID I STATUS/C-TS I S-TS

RESTAB (Resource Table)
OID OWiýffk/R-TS I WAITSJW-TS

OWTAB (Owner/Waits Table)
TRID MODE NEXT

Figure 2.2: CCA Tables

The TRTAB contains information on transactions; identification (TRID), status (STATUS:

executing, blocked, commit, restart) and startup timestamp for BTO, SV (S-TS). For SV a commit

timestamp (C-TS) is also kept. The RESTAB contains information on database granules; the granule

identi-fication (OID), either a pointer to the owner list for PRE, 2PLE, 2PLU (OWNER), or the R-TS,

timestamp for the last read of this granule for BTO and either a pointer to the waits list for 2PLE, 2PLU

(WAITS) or the W-TS, timestamp for the last write to this granule for BTO, SV. The OWTAB contains

information on the owner transaction(s) (TRID) for PRE, 2PLE, 2PLU, transaction(s) waiting for a

granule (NEXT) for 2PLE, 2PLU and the type of lock held (MODE), share (read) or exclusive (write).

An abstract model of CCAs which treats the CC information tables as a database such that each

table is a relation, was proposed by Carey [23,241 to facilitate implementation independent descriptions

of CCAs. This model considered both the CPU and storage overheads. The results of the overhead

analysis may be surnmarised as

1) for storage overhead, 2PLU was best under low conflicts, BTO best under high conflicts and SV

the worst of the three

2) for CPU overhead (no conflict case), 2PLU was the best of the three, BTO second best under

infrequent writing and SV second best under frequent writing.

14

From this model, it is clear that different CCAs will be "best" in different regions of the parameter

space and that there is no one overall "best" algorithm. While examining the storage overhead, the

model does not cover 1/0 costs which in a real system would probably be independent of the storage

overhead and constant if the CC database remains reasonably small and page blocking is used.

2.2.1. Preclaim Locking (PRE)

This technique, also called atomic static locking, requires the transaction to exclusively lock all

granules accessed (read or write) at transaction startup time. If not all granules can be claimed the

transaction blocks without holding any locks. This algorithm is conservative, does not allow deadlocks

and guarantees that the transaction will commit once started.

2.2.2. Two-Phase Exclusive Locking (2PLE)

On transaction startup (begin) the transaction id is entered in the TRTAB and the status set to

execute. The transaction then requests each granule dynamically, "request(TRID, OID, EXCLUSIVE)",

and the 2PLE CCA checks the request against the tables. The 2PLE request procedure is given

informally in Figure 2.3.

15

request(FTRID, FOID, FMODE)

lookup(FOID);
if (not found)

enter FOID in RESTAB;
allocate FOID to FTRID;
request_status = granted;
I

else
add FTRID to waits list of FOID;
FTRID. STATUS = blocked;

request_status = rejected;

if (FTRID. STATUS is blocked) (

construct(waits-for-graph);
check for cycle(waits-for-graph);
if (cYcle found) restart(FTRID);

return(request_status);

Figure 2.3: 2PLE Request Procedure

On commit all updated granules are written back to the database and either released or reallocated

to the next transaction in the waiting list which may then resume execution; the STATUS is changed

from blocked to execute. On restart the transaction's resources are released and possibly reallocated.

The deadlock detection strategy used here is similar to that in [1,23] in that a check for cycles in

the waits-for-graph is carried Out each time a transaction blocks and that transaction is selected as victim

for restart. This method is easy to implement and should have a relatively low cost given that deadlocks

are rare and when they do occur, the cycle length is short, usually only involving two transactions [5 1].

2.2.3. Two-Phase Upgrade Locking (2PLU)

On startup the transaction id is added to TRTAB and status set to execute. The transaction then

requests each granule in share mode and then if the granule is updated, in exclusive mode. The 2PLU

request procedure is given informally in Figure 2.4.

16

request(FTRID, FOID, FMODE)
f

lookup (FOID) ;
if (not found)

enter FOID in RESTAB;
if (FMODE == share) f

allocate FOID to FTRID in FMODE;
request_status = granted;
I

else error("objects should be read before update"
I

else if (FOID is exclusive locked)
add FTRID to FOID waits list;
FTRID. STATUS = blocked;
request-status = rejected;

else if (FMODE is share)
if (FOID waits list is empty)

allocate FOID to FTRID in share mode;
request-status = granted;

else
add FTRID to FOID waits list;
FTRID. STATUS = blocked;
request-status = rejected;
I

I

comment FMODE is exclusive;
else if ((FOID waits list is empty) and

(this FTRID is unique owner))
upgrade FTRID lock on FOID;

request_status = granted;

else
add FTRID to FOID waits list;

FTRID. STATUS = blocked;

request_status = rejected;
I

if (FTRID. STATUS is blocked) (

construct(waits-for-graph);
check

-
for

-
cycle(waits-for-graph);

if (cycle found) restart(FTRID);
I

return(request-status);
I

Figure 2.4: 2PLU Request Procedure

Similarly to 2PLE, if blocked, the transaction re-requests the resource and if restarted, its

resources are released and reallocated if the waits list is non-empty.

17

2.2.4. Basic Timestamp Ordering (BTO)

On startup the transaction is added to TRTAB together with a startup timestamp, S-TS. Each

granule in RESTAB has two timestamps associated with it, R-TS, the time last read and W-TS, the time

last written. The BTO request procedure is given infonnally in Figure 2.5.

request (FTRID, FOID, FMODE)
f

lookup (FOID) ;
if (not found) I

add FOID to RESTAB;
if (FMODE is read)
else error(Ilobjects

set FOID. R-TS = FTRID. S-TS;

should be read before update");

else if (FMODE is read) f
if (FTRID. S-TS < FOID. W-TS) FTRID. STATUS = restart;
else FOID. R-TS = max(FOID. R-TS, FTRID. S-TS);

comment FMODE is write;
else if (FTRID. S-TS < FOID. R-TS or

FTRID. STATUS = restart;
else FOID. W-TS = FTRID. S-TS;

FTRID. S-TS < FOID. W-TS)

if (FTRID. STATUS is restart) restart(FTRID);

return (granted)
I

Figure 2.5: BTO Request Procedure

Note that restarted transactions are assigned a new timestamp greater than their previous

timestamp. The timestamp of the oldest active transaction (in TRTAB) can also be used to flush

RESTAB entries with R-TS and W-TS older than the oldest transaction.

2.2.5. Serial Validation (SV)

This algorithm is due to Carey (231, who presents a formal proof of its equivalence to that

proposed by Kung [67] and uses firnestamps for the validation phase. On startup the transaction is

added to TRTAB together with a startup timestamp. The transaction then proceeds to perform reads and

writes on local copies and also keeps a record of its read and write sets. On commit the transaction

enters the validation phase and receives a commit timestamp C-TS. Each granule in the database has a

write timestamp, W-TS, which is set to the commit timestamp of the last validated transaction which

18

wrote that granule. Basically each granule in the transaction's read set must have been committed

before the transaction started. The SV validate procedure is given informally in Figure 2.6.

validate(FTRID)
I

valid = true;

foreach (Xr in readset(FTRID))
if (FTRID. S-TS < Xr. W-TS) valid = false;

if (valid) f
foreach (Xw in writeset(FTRID))

Xw. W-TS = FTRID. S-TS;

commit writeset to database;
I

else restart(FTRID);
I

Figure 2.6: SV Validation Procedure

2.3. Logical Queueing Model (LQM)

The model adopted here, Figure 2.7, is one presented in [3,4] which is an extension to that

presented in [23,24,251 which in turn was an extension to the model presented in [95,87,96] It is used

for two reasons, firstly it provides a common framework for discussion of issues and assumptions in

concurrency control and secondly, it adequately describes the algorithms used in this study. Other

studies either use queueing models [94,7 1,110] or other techniques; probabilistic analysis and

queueing model [841, Markov chain model [26], random graph model [441 and flowgraphs plus

equations (analytic technique using steady state mean values) [107].

19

ri

c

0
m

Figure 2.7: Logical Queueing Model (LQM)

(1) Database System Model
Hardware and software characteristics: disks and CPUs
Database size and granularity
maximum multiprogramming level
CCA

(2) User Model

arrival process for transactions
open or closed system
interactive or non-interactive

(3) Transaction Model

reference behaviour (CC requests)
processing requirements (database requests)
types of ftwsactions

Table 2.2: General Performance Model

As well as the LQM, [31 presents a general performance model for concurrency control (CC)

which has three parts. This model is summarised in Table 2.2. These correspond to the factors listed in

Table 2.1.

20

Given a common framework in which to discuss CC performance it is still extremely difficult to

compare results Erom different studies given the different measurement metrics and assumptions

involved in the modelling process. The next section examines these metrics and assumptions.

To end this section, we give a brief description of a transaction traversing the LQM under each

CCA considered in this study. Transactions in the ready-q are considered inactive and those receiving

or waiting for service are considered active. Recall the "no-blind-writes" assumption and that updates

are deferred.

In the PRE CCA the transaction enters the cc-q, requests locks on all granules it accesses and if

granted moves to the object-q (which will be empty) for each granule, accesses those granules, reenters

the cc-q to commit and finally commits. If the request fails in the cc-q the transaction cycles round the

block_q and cc-q until the request is granted.

In the 2PLE and 2PLU CCAs the transaction enters a request in the cc-q and if granted continues

to the objectq. If the request is rejected the transaction enters the block-q and a further check is made

for deadlock; the waits-for-graph is created and checked for cycles. If deadlock has occurred the

transaction is restarted after releasing all currently held locks, possibly unblocking other transactions. A

restart delay is introduced to lessen the chance of repeated deadlock and restart.

In the BTO CCA transactions are not blocked if the request is refused but are restarted again after

a delay as in the 2PLE and 2PLU case.

In the SV CCA the first request is always granted; essentially it announces arrival of the

transaction in the system. The granules are accessed (reads and writes to local copies) and only on

commit does the transaction return to the ccý_q. There, it enters the validation phase and if successful,

the update_q. Otherwise the trnsaction is restarted.

2.4. Performance Metrics: and Assumptions

Most studies present results in terms of throughput (number of transactions per second) and

average elapsed time per transaction [84,71,74,23,24,26,66,110,111,25,107].

21

The granularity of the database was studied in [85,87,86]. Machine utilisation (CPU and 1/0

time) and useful 1/0 time plotted against the number of granules. Average response time and useful VO

were plotted against the number of locks for the distributed case. Granularity in locking CCAs was

studied in [84] and plotted against mean number of blocked granules. Carey provides both throughput

vs granularity results for PRE, 2PLE, 2PLU, BTO, SV and the "Wait-Die" protocol [901 and restart

counts vs granularity [231.

The multiprogramming level of database systems (NDL) may either be expressed as the number

of transactions in the system (TWL), the maximum allowable level (NMPL) or the effective level

(EMPL). The ENDL is a measure of transactions in the system which perform useful work. NVAPL

and EWL are plotted for different probabilities of conflict in [44]. Throughput, conflict rates, delays

and disk utilisation are plotted against NIWL in [3]. Throughput vs NSTL is presented in [107].

The probability of conflict between transactions vs response times is presented in [71,110,44]

while other metrics such as restart counts [23,82,107], arrival rates and interarrival. times vs response

time [1131, transactions waiting vs MNTL [441 and ENPL/q, where q is a measure of increased work

caused by backup and reexecution of transactions, in [82].

Clearly there exist a large number of possibilities for measuring CC performance. Comparison is

made more difficult by different interpretations of some metrics, for example definitions of conflict and

multiprogramming level as MNTL or EMPL. Restrictions on the choice of metrics may also be

imposed by the system used for such tests. Finally the assumptions behind the tests, either implicit or

explicit, can strongly influence the outcome Since there are now sufficient studies available with

apparently conflicting results, these assumptions are beginning to be investigated [3,107,4]. Empirical

results for real systems are rare and provide the motivation for this study as a contribution to this area,

Contradictory results listed in [3) include some studies which suggest locking is better than

restarting and SV outperforming locking (see also [631) and some studies which suggest the opposite.

Other assumptions listed are:

infinite resources (multiple CPUs and disks)

22

writelocks immediately set on items to be updated

"fake restart" (that the restarted transaction is replaced by an independent transaction)

Given such assumptions and others which may be a matter of implementation choice, for example

whether CC information is stored in primary memory, Uwslating the results of such studies to real

data systems is even more difficult. Even then there are a large number of relevant factors both in

the DBMS and O/S and their interaction. Any results must be presented in a well described context,

both in terms of workload parameters and assumptions.

In this study, using a real database, we will also need to make assumptions. With an explicit

awareness of those assumptions and the results from other studies, we hope to gain a clearer

understanding of influences on CC performance, particularly from the point of view of the database

implementor.

2.5. Previous Results

In the above section, the main issues to emerge were granularity, multiprogramming and conflict

levels with other indicators such as block and restart counts, waiting times and resource utilisation. The

principle resources are CPU and disk, and main performance metrics throughput and average response

time.

The first study on granularity [851 concluded that coarse granularity, in the order of 10.. 100

granules, was optimal. The tradeoff is between fine granularity which maximises parallelism but has a

potentially high management overhead and coarse granularity with less parallelism but lower overhead.

The granule may be anything from the field of a record (fine) to the entire database (coarse). This model

used PRE CCA and did not consider rollback (recovery). Further, the result holds for both 1/0 bound,

say a system with I disk, and CPU bound transactions and assumes that maintaining locks (CC

information) in primary memory makes little difference. In a second paper [87], certain assumptions

were reconsidered and a lock hierarchy and dynamic locking explored, It was noted that if the access

pattern was random rather than sequential, finer granularity performed better and that dynamic locking

23

was generally more expensive that preclaim. Coarse granularity was still. the preferred solution in most

cases. Further factors supporting finer granularity are given in [861.

While Ries suggests a coarse granularity near the lower end of the range (10.100), Carey [23]

suggests the upper end of the range is optimal and goes on to propose a granularity hierarchy for mixed

(large/small) transaction loads. A granularity curve of throughput vs granularity (coarse to fine) is

presented in [107] which first decreases then increases and finaUy decreases again, with excessive data

contention taking place at coarse granularity levels and excessive resource contention at fine granularity

levels. It is noted that previous results depend on system parameters which effectively define a window

on this curve; throughput decreases with increasing number of granules for long transactions and

increases for short transactions. Similar conclusions are reached in [66]. A summary is give in

Table 2.3.

coarse granularity fine granularity
most transactions small transactions

mixed (large/small) loads short transactions

locks held in locks held in primary memory
secondary memory

sequential access patterns random access patterns

Table 2.3: Summary of Granularity Results

Both levels of granularity and multiprogramming affect the degree of conflict in a database system

and the essential point of CCAs is to resolve conflicts. Increasing the MNTL can lead to decreasing

ENTL and increase the number of restarts [107]. A saturation point was reached at IWTL of 4 in [231

with 1/0 being identified as the bottleneck resource. In [31, TMPL levels of 5,10,25,50,75,100, and

200 were studied and saturation, in the limited resources case, noted at TMEPL = 25 although conflict

was low in this experiment. A ftuther experiment yielded a throughput peak for 2PLE at TNTL = 25

(although the actual peak may be anywhere between 10 and 50) and for 2PLU and SV at 10. Results of

EMEPL vs TMIPL at given probability of conflict levels [441 also indicate as TNIIPL increases (0 to 100),

ENIEPL does not increase beyond 20 at probability value 0.1 (the highest value given). Results of

average response time against probability of conflict [711 show almost asymptotic curves beyond a

probability value of 0.75 for both locking and timestamping. Finally [941, a study on transaction

24

systems, also supports these conclusions.

Derivations of probability of conflict differ between studies and many use granularity and/or

TMPL to increase/decrease the probability of conflict without stating actual values. Further the "infinite

resources" assumption applies to many results and may tend to make them optimistic, given additional

constraints imposed by say the ENTL of the O/S. Table 2.4 tentatively summarises these results.

TMIPL limits probability of conflict limits
2PLE 25 (10-50?) "Die-Wait" 0.75
2PLU 10
Sv 10 BTO 0.75

Table 2.4: Summary of TMPL and Conflict Results

All these studies highlight some aspects of the CC performance problem, indicate trends under

given conditions and possible limits on parameter values for actual systems. The results are used here to

determine parameter values in the experiments described in chapters 3,4, and 5.

2.6. Performance Metrics, and Workload Parameters

We conclude this chapter and overview of previous work by summarising and discussing the

requirements of performance metrics and workload parameters for this study.

2.6.1. Performance Metrics

From the above overview both throughput and average elapsed time emerge as important. In

addition, measures of both CPU and 1/0 usage are necessary in determining tendencies of transactions

to become CPU or 1/0 bound. In some simulation studies these measures are flirther divided into T-IO

and T-CPU, the resources used by the transaction and CC-10 and CC_CPU, the resources used by the

CCA. Further, in a real system with limited resources there will be extra overhead from resource

contention in the O/S, O-OS. We hypothesise also that the results in most previous studies correspond

to an idealised system coffesponding to (T-IO + T_CPU + CCJO + CC-CPU) and do not take into

account O-OS. Some of these metrics are used in workload parameters in models of systems but here

we require to measure the values in our real system. In PRE, 2PLE and 2PLU, the elapsed time will be

25

affected by blocking overheads while in 2PLU, BTO and SV restart counts (RC) will indicate the

effectiveness of the CCAs. The importance of a delay for restarted transactions, R_DLY, is noted in

[94,31 with the latter suggesting an adaptive delay based on the average transaction length. The

perfonnance metrics are summarised in Table 2.5.

metric meaning
ET average elapsed time
T throughput (trans/second)
iET idealised ET
T-IO 1/0 overhead for trans.
T-CPU CPU overhead for trans.
cc

-
10 1/0 overhead for CCA

CC-CPU CPU overhead for CCA
O-OS overhead for O/S
BC block count
RC restart count

Table 2.5: Performance Metrics

The ET is a measure of (T-IO + Tý_CPU + CC-IO + CC-CPU + O_OS). The iET is (ET - O-OS).

2.6.2. Workload Parameters

Ile database is specified by both number of tuples and of pages, the granularity and number of

relations. The number of transactions in the system is specified and for each, the number of granules

accessed, access requests, probability of update request and the access pattern, sequential, random or

uniform. Finally the type of transaction is specified, access by record (tuple) or relation. Concurrency

control is specified by the algorithm (NO CC, PRE, 2PLE, 2PLU, BTO, SV), the multiprogramming

level (MNTL) and finally restart delay (fixed, adaptive).

The workload parameters are summarised in Table 2.6.

26

Parameters Meaning
DATABASE:

DB-SZ database size: tuples
DB-PG database size: pages
GRAN no. pages/granule
NR no. relations
DB-ACC database accessed

TRANS:
NT no. transactions
T-REQ no. requests/trans.
T-ACC access pattern
T-TYP type: record/relation
T-UPD update probability
BF_SZ buffer size

CC:
CCA type of algorithm
MNTL max. multiprog. level
B-DLY blocking delay
R-DLY restart delay

Table 2.6: Workload Parameters

2.7. Chapter Summary

We began by presenting a model of a multi-user database system and the main factors involved in

performance studies. Models of components of this system, transaction, database and CC, were then

presented and discussed before describing the five CCAs studied here (PRE, 2PLE, 2PLU, BTO, SV) as

informal procedures. Next, a logical queueing model (LQW, first presented by Ries and later extended

by Carey and Agrawal, was introduced to give an overview of a multi-user transactional database

system. Each CCA was then described in terms of the LQM. Performance metrics and assumptions

were reviewed from previous studies, with granularity and the multiprogramming level emerging as

major influences on conflict between transactions. From this, performance metrics and workload

parameters were established for this study.

27

Chapter 3

TES TBED DA TA SA SE S YS TEM

In this chapter we describe the testbed database system, TDBS/C (Testbed DataBase System in

the data and transactions used in and the results of the single-user benchmark tests. These results are

important in that they define the system behaviour for a given set of parameters and support assumptions

used in the multi-user tests presented in the next chapter. [171 notes that benchmarking is an important

first step towards a methodology of performance evaluation and lists the motivations behind

performance evaluation of real systems. We feel that in the last few years there has been a growing

trend towards testing aspects of database system design in testbed systems [17,66,18,59,60] and that

such results are important both from the implementation viewpoint and for comparison with other

studies. The test data, test database and test transactions are presented and finally the benchmark results

and conclusions.

3.1. The Testbed System: TDBS/C

TDBS/C [921 evolved from an implementation of PRECI

(Prototype of a RElational Canonical Interface) [36,37,119] in C under UNIXt [891. PRECI was

designed to provide a common interface to different database models, for example, relational, network

and hierarchical [1151. It was designed as a batch system running Fortran programs with embedded

data manipulation language (DML) commands [119]. The terminology used here is that of relational

databases [29,30,118,33,31,34,35].

UNIX is a trademark of Bell Laboratories.

28

3.1.1. Overview of TDBS/C

TDBS/C is described in Appendix 1. Here we give an overview of the relevant parts for this

study. As in PRECI, TDBS/C is based on the ANSI/SPARC three level architecture [114] which

models the database as comprising:

1) user views which are defined on

2) the conceptual view, or schema which combined with

3) the storage, or physical specification, defines the database

See Appendix 1, Figure ALI for details. The corresponding elements of TDBS/C are the schema

(logical definition) and storage schema (physical definition) which when processed by their respective

translators are used by the database initialiser (DBI) to generate the empty database. The physical

database consists of a database definition file and one file for each relation defined in the schema. The

process is summarised in Figure 3.1. Example schemas are given in Appendix 1, Figures A1.13, A1.14,

A1.15.

r ------ I
Schema

Definition
L ------- J

Schema
Translator

r----- -i Schema
,

i Translator i
I output
L------

r -g-tjr7aie-- -i
II
i Schema i
I Definition I
L ------- J

Storage
Schema

Tranlator

RIN(s) Database
Directory

Figure 3.1: Database Initialisation

29

Initiahsed
Database

The transaction is specified as aC program with embedded DNIL which uses a view definition

specified on the schema. The source program is precompiled and appropriate T Work Areas" (CWAs)

for each view are generated and "included" [611 in the C program which is then compiled by the C

compiler and loaded with the Database Control System (DBCS) to create a transaction run-unit to access

the database. This process is described in Figure 3.2.

r ------- I Vie r ------- I r ------- I wI I IC Program C Program
I Schema I I + DML + dbcs calls I Definition I I

r
LJ L ------- J L ------- J

View r
C Compiler I Database Schema Pre-Compiler
+ Loader Directory Translator L ------- J

V e S hemil r --- r --- 11 r ------- I i w c I I Initialised
i Translator i CWA(s) i Run Unit
I Database output I I I >j L ------- J L ------- J L ------- J L ------- J

Figure 3.2: Transaction Creation

Views are defined using relational algebra. The CWA defines aC structure for each accessed

view which acts as a tuple-buffer and provides the interface between the C envirorunent and that of the

database. Access using the CWA is thus by tuple. Relational access is provided via relational algebra

commands.

Note that since TDBS/C is derived from the canonical model of PRECI, information is stored as

relations. Access to the relations may be either by tuple or by relation. In this study, such access is

called "tuple-access" and "relation -access" respectively.

The syntax for the schemas (conceptual, storage and view), the database definition. and the

relational expressions is given in Appendix 1, Figures Al. 17 to A 1.2 l'inclusive.

30

3.1.2. Data Manipulation Language (DML)

The DML is embedded in C programs and comprises:

1) general operations,

2) tuple operations

relational opera6ons for relational algebra expressions [331

The relational operations are selection, projection, division, join, union, intersection, difference and

relational assignment. The general and tuple operations are summarised in Table 3.1.

DML Operation Meaning
GENERAL:

OPEN Open database (Trans. begin)
CLOSE Close database (Trans. end)
PRINT Print relation (fixed format)

TUPLE:
INSE Insert tuple in relation
REPI, Replace tuple in relation
DELE Delete tuple in relation
GETFS Get first tuple: storage order
GETNS Get next tuple: storage order
GETPS Get prior tuple: storage order
GETFP Get first tuple: indexed order
GETNP Get next tuple: indexed order
GETPP Get prior tuple: indexed order
GETP Get tuple by key (associative)

Table 3.1: DML Operations

In TDBS/C gie tuples are stored in a DATA AREA and the primary key index stored in a

PINDEX AREA. Tuple access is supported to allow other data models to be interfaced to TDBS/C and

may either be by stored order, primary key order or associative. The remaining tuple operations are

insert, replace and delete (tuple is marked deleted). OPEN and CLOSE correspond to the transaction

begin and end respectively and PRINT allows the relation to be displayed.

31

3.1.3. TDBS/C Internal Organisation

The internal organisation for TDBS/C is described in Appendix 1. A brief descripfion is

presented here in order to explain choices made in constructing test data for these benchmarks.

Relations in TDBS/C are stored one per file with the duee main components illustrated in

Figure 3.3.

RIN
PINDEX AREA
DATA AREA

Figure 3.3: Relation File LaYout

The RIN (Relation INformation) holds the domain and attribute information and layout

information for the DATA and PR'4DEX areas. When the relation is accessed, this information is held

in primary memory.

Both the DATA and PINDEX areas may be logically viewed as a set of hash slots (home +

overflow). Each area has a hash function, Dhash, Phash respectively, which maps the primary key

(pkey) value to the appropriate hash slot. In the DATA AREA, tuples are stored sequentially within the

slot, with possible overflow, and the slot number and slot position are used to generate an effective key

(ekey), essentially the tuple position within the DATA AREA. Each PINDEX AREA slot comprises a

slot header giving the slot kind, current number of entries and pointers to next and prior slots and an

entry for each pkey value, in ascending order, of the form (pkey, ekey).

32

The tuple allocation procedure is summarised in Figure 3.4.

Dhash: pkey --> DATA AREA slot number (dslot)
Find free position in dslot (dpos)
Store tuple at (dslot, dpos)
Map (dslot, dpos) --> ekey

Phash: pkey --> PR-; DEX AREA slot number (pslot)
insert [pkey, ekey) in ascending order in (pslot, ppos)

Figure 3.4: Tuple Allocation Procedure

The DATA and PINDEX slots are stored on logical pages which in turn are mapped on to

physical pages (in this study the mapping is one-to-one). Pages are called home or overflow in both

areas, corresponding to the type of slot they contain. Further, the PINDEX AREA home pages have

local overflow slots to minimise. page faulting [36]. A bit map for PINDEX AREA overflow pages and

a DATA AREA directory are held in primary memory (part of the RIN) to improve access and again

minimise page faulting.

The "name space", the list of named objects in the database, is held in primary memory as a

linked list called the IDLIST (Appendix 1, Figure ALIO). This corresponds to a data dictionary for the

system [33).

Finally, a buffer and buffer manager at the relation filel"database primitives" interface

(Appendix 1, Figure Al. 11) provide local buffer space for the transaction. In the single-user benchmark

tests presented in this chapter, the buffer size is varied (10,100,1000 1K pages) to test the effect on the

system. In the following chapter, the buffer space is used to emulate shadow paging.

3.2. Experimental Test Database Design

In designing a test database for the benchmark tests, there are several considerations:

1) efficiency with regard to storage and organisation

2) extra page faulting should be minimised

33

scaling the database (up/down) should be easy

4) the effects of other factors should be minimised (or should be explainable)

Secondly, attention must be given to the design of the test data for the database. To allow precise

selection of n tuples or k% of the database, the test data must be both flexible and controllable [17]. In

addition, different distributions of test data values (on the attribute level) can be used to provide

sequential (here taken as the best case access) and uniform (here taken as the worst case access)

distributions. Preliminary experiments have shown that random access to the database tends to be

similar to uniform access. Being able to generate particular distributions of data allows other

distributions, for example, Zipf [1231, to be tested.

These tests, as well as providing benchmark results for the system, are required to select a

reasonably sized database and a small set of test transactions for the multi-user performance tests.

Further, an idea of upper and lower bounds for access and an estimate of degree of experimental error

are required, The benchmark design comprises three components; experiment design, test data design

and test database design.

3.2.1. Experiment Design

The two main requirements are (a) to test the limits of the system and (b) to select suitable

transactions and test data for the multi-user performance tests. Two experiments are proposed:

1) Transactions accessing a portion of the database

(unifonn access)

(1%, 5%, 10%, 20%, 25%, 50% and 100%)

2) Transactions accessing a small number of tuples

(sequential and unifonn access)

(1,2,5,10 and 100 ruples)

Experiment I allows upper and lower limits to be determined for database access while

34

experiment 2 allows the costs of accessing a fixed number of tuples under different conditions and of

sequential vs uniform access. It is highly probable in the muld-user tests that the transaction size (in

terms of accesses) will have to be restricted. Experiment 2 allows lower limits to be determined for the

significance of the results with regard to experimental error. Finally, we want to test the assumption that

access costs are in fact linear.

The two main components of the system being tested are (a) the DBMS and (b) the Buffer

Manager. For each transaction we measure the following: -

1) ET - elapsed time

2) CPU - cpu usage

10 - i/o usage

The result of any experiment may then be expressed as: -

DBMS(ET, CPU, 10) + Buffer(ET, CPU, 10),

i. e., a combination of overheads, for the DBMS and the Buffer Manager. Hence by varying the size of

the buffer we can test if the DBMS costs remain constant. A description of the experimental techniques,

experimental environment and statistical techniques and assumptions are given in Appendix 5.

3.2.2. Test Data and Database Design

To satisfy the access requirements for both experiments, the tuples must provide both sequentia. Uy

and uniformly distributed attribute values. The tuple layout is described in Table 3.2.

In contrast to [17] which used random number generation to provide uniformly distributed

attribute values, the values here are simply repeating sequences. This allows precise selection of page

sets (granule sets) and is used as described in the next chapter to control conflict between transactions.

35

Attribute Type and Range

tkey integer (O.. n- 1) n: no. of tuples
tp50 integer (0.. 1)
tp25 integer (OA)
tp20 integer (0.. 4)
tpIO integer (0-9)
tp05 integer (0.. 19)
tpOI integer (0-99)
tfill character (used as filler)
tpad I character (used as filler)
tpad2 character (used as filler)
tpad. 3 character (used as filler)

Table 3.2: Tuple Attribute Values

The primary key (tkey) allows sequential access and the remaining integer attributes allow

uniform access. The physical tuple size is 99 bytes (98 + active/deleted marker). Given a page size of

1024 bytes, 10 tuples can be stored per page (DATA AREA) and by suitable choice of slot sizes,

100 pkey entries per page (PINDEX AREA).

For example, to select 10 tuples sequentially distributed, the select predicate might be

"(tkey < 10)" and the tuples would be on the first page of the DATA AREA. To select 10 tuples

uniformly distributed (I per page) from a database of 1000 tuples, the select predicate might be

"(tpOl = 0)". Given that tuples are stored 10 per page, a second (non-conflicting) page set may be

obtained using the select predicate "(tpOl = 10)".

The test databases have 100,1000 and 10000 tuples respectively in one relation. The filler

attributes are chosen to maximise the tuples/page storage efficiency. The page requirements and storage

efficiency for the three test databases are given in Table 3.3 where

storage efficiency =
(tuple size * nwnber of tuples) * 100
(page size * number ofpages)

36

No. Pages/No. Tuples 100 1000 10000

RIN 1 2 5
Data home 10 100 1000
Data overflow 1 1 1
Pindex home 1 10 100
Pindex overflow 1 1 1
TOTAL pages 14 114 1107
Storage Efficiency 68 83 85

Table 3.3: Storage Efficiency

3.2.3. Test Transactions

There are two methods of accessing the information in the database: -

1) tuple access: each tuple is accessed separately

2) relation -access: all tuples are accessed as one unit

This reflects the methods of the three main models in common use; network and hierarchical

(tuple access) and relational (relation access).

In addition, tuple access operations may be further subdivided:

1) access by stored order (get first/next/prior): I disk access/tuple

2) access by indexed order (get first/next/prior): 2 disk accesses/tuple

access by primary key (associadve access): 2 disk accesses/tuple

Using these distinctions, the transaction types are presented in Table 3.4.

37

Type Operation

overhead open/close database (no access)

relation- assign, selection, projection,
access select-replace (all RW)

tuple access saccess (R)
stored order

tuple access paccess (R), insert (W),
index order replace (W), delete (W),

get-replace (RW), get-delete (RW)

tuple access get (R), get-relpace (RW),
associative get-delete (RW)

Table 3.4: Transaction Types

In terms of the transaction model of section 2.1, the transactions are also classified as read only

(R), write only (W) and read-write (RW). Certain transactions (relation-access, insert, delete, get-

delete) also update the PINDEX AREA.

An idea of the relative cost of particular mechanisms within the DBMS can be obtained by

comparing sets of results from the tests. The primary key indexing overhead can be judged by

comparing "saccess" with "paccess" (read only case) and "get-replace" with "get-delete" (read/write),

the latter also updating the PINDEX AREA. Associative access may be compared with index order

access by comparing "get-replace" and "get-delete" transactions in each category.

The transactions are sketched in terms of the DML commands, in Table 3.5.

38

Transaction DML Commands

overhead OPEN CLOSE
saccess OPEN GETFS (GETNS)* CLOSE
paccess OPEN GETFP (GETNPI* CLOSE

insert OPEN (CWA = tuple; INSE R) CLOSE
replace OPEN (CWA = tuple; REPL R CLOSE
delete OPEN [CWA = tuple; DELE R) CLOSE

get-replace OPEN GETFP tREPL; GETNP)* CLOSE
get-delete OPEN GETFP [DELE; GETNP)* CLOSE
(index order)

getp, OPEN f CWA = pkey; GETP) CLOSE
get-replace OPEN (CWA = pkey; GETP; REPL) CLOSE
get-delete OPEN [CWA = pkey; GETP; DELE) CLOSE
(associative)

Table 3.5: Transaction Descriptions

Where "f- --)*" means loop while there are still tuples or over a given tuple/pkey set.

The relation-access transactions are: -

assign: R1 := R2
selection: R1 R2 select (attribute = value)
projection: R1 R2 project (all attributes)

where RI and R2 are relations. These follow the standard relational algebra. In all cases, a second

relation (RI) is created as a result of the relational expression. In terms of reads and writes, in the

projection for example, if R2 has k pages then k reads (from R2) and k writes (to R 1) will be

performed. In general, access by relational algebra has a higher overhead in terms of page

manipulations than tuple access. Relational algebra is more suited to read only queries.

Consider the transaction "increase all programmer salaries by 15%". Using tuple access and

assuming the information is held in relation ENT, this might be written

39

still
-

tuples = GETFP EMP;

while (still_tuples) {

if (EMP. job == "programmer")
EMP. salary = EMP. salary * 1.15;

REPL EMP;

Still-tuples = GETNP EMP;
I

Similar examples [331 can be found in QBE [1241 and SQL [95] for example.

In relation access, this is more difficult to achieve [33]. An extension to selection is proposed

here to cover this case. The modified selection is

R1 := RI select (attrl = valuel) update (attr2 = value2)

If a tuple satisfies the selection predicate it is updated according to the update clause. This is

similar to a table variable with a simple predicate used in an assignment, as in Astral [5], with the

addition that the relation name on both sides of the assignment is the same and an update clause

introduced.

In the case where k tuples are to be updated, if the primary keys are known, the process can be

efficiently achieved via the PINDEX otherwise the entire relation must be searched. In tuple access

systems this implies that for a relation of cardinality n, n calls are made to the DBMS whereas in a

relational system only one call is made. The disadvantage of relational systems is the creation of a

temporary relation for the result of the relational expression if the left hand side of the assignment does

not exist. In the "select-replace", given that the assignment is "reflexive", the implementation can be

optimised and the update done "in-place" thus avoiding the generation of extra pages for the result of the

relational expression.

The associative "get-replace" and the "select-replace" allow comparison of the two approaches.

Here, the best-case tuple-access (pkeys are known) is compared with the worst-case relation-access

(pkeys are not known). The corresponding worst-case tuple-access is given by the index order "get-

replace".

40

The overhead costs include the O/S costs of scheduling the transaction. The costs of actual work

done by the transaction may be expressed as

(T(ET) - O(ET), T(CPU) - O(CPU), T(IO) - 0(10))

given the measured costs of the overhead transaction O(ET, CPU, 10), that is, initialising the buffer and

the O/S overheads, and the measured costs of a given transaction T(ET, CPU, 10).

The experiments using the transactions listed in Tables 3A and 3.5 also allow tuple and relational

access to be compared.

3.3. Benchmark Tests

The previous sections have described the testbed system, test data, test database organisation and

transactions used in the benchmark tests. We are now in a position to state the factors and factor levels

[98] used for these experiments, in Table 3.5.

FACTOR FACTOR LEVELS
DB-SZ 100,1000,10000 tuples
BF

-
SZ 10,100,1000 x 1K pages

T_TYP See Table 3.4
T_ACC sequential, unifonn
DB-ACC:
Exp 1 1%, 5%, 10%, 20%, 25%, 50%, 100%
Exp 2 1,2,5,10,100 tuples

Table 3.6: Factors and Factor Levels

DB-SZ is the database size, BF_SZ the buffer size, T_TYP the transaction type (which

determines the read/write requests), T_ACC the access method used by the transaction and DB_ACC

the number of tuples accessed.

The experiments were run as single-factor experiments. Each test was run 110 times on a

VAX/750 in single-user mode, with one user disk and one system disk, and the first 10 results discarded

to eliminate startup transient effects. The remainder were used to calculate the average values for ET,

CPU and 10. Further details are given in Appendix 5.

41

3.4. Benchmark Results

The results for the single-user benchmark tests are presented in Appendix 2. The performance

measures are ET (elapsed time), CPU (CPU time used) and 10 (10 time used). In addition the

transaction time - overhead transaction time are presented as a measure of the "work" involved in

database access.

3.4.1. Results of Experiment I

These results are presented in Tables A2.2 to A2.11 inclusive in Appendix 2. Here we give a

graphical presentation of some of these results for the case DB_SZ = 1000 tuples. The graphs plot

elapsed time in seconds (ET) against DB-ACC.

GRAPH 3.1: get-replace (grp), BF_SZ = 10,100,1000 pages

GRAPH 3.2: select-replace (srp), BF_SZ = 10,100,1000 pages

GRAPH 3.3: BF_SZ = 100 pages, get-replace (grp), select-replace (srp), selection (sel)

42

40s

30s

20s

los

grp - 1000
grp - 100
grp - 10

Graph 3-1: get-replace (grp)/BF_SZ: ET vs DB_ACC

40s

30s

20s

los

srp - 1000
srp - 10
srp - 100

Graph 3.2: select-replace (srp)/BF_SZ: ET vs DB_ACC

43

grp - 100

40s

30s

20s

los

Graph 3.3: BF_SZ 100 pages: ET vs T_TYP

sel - 100

STP - 100

In Graph 3.1, the effect of varying BF_SZ on get-replace is plotted. In the lower range of

DB-ACC (0% ... 5%) the slope is greater than for the remainder of the range. In this range, the overhead

costs are significant when compared with the transaction "work" costs. This effect is greater for the case

where BF_SZ = 1000 pages. In the DB-ACC range (25% ... 100%) the curves are parallel, the

differences reflecting the overhead costs incurred by varying BF-SZ. Similar results are obtained for

the other runs using get-replace, with the effects of increasing BF_SZ diminishing as DB_SZ increases.

In Graph 3.2, the effect of varying BF_SZ on select-replace is plotted. The curves are flatter than

for get-replace and again in the lower range of DB_ACC (0%... 5%) the slope is slightly greater. The

effect of BF-SZ = 1000 pages is also similar to Graph 3.1 but more flattened. Again the results obtained

for other runs of select-replace are similar and the effects of increasing BF-SZ diminish as DB-SZ

increases.

Finally in Graph 3.3 the results for get-replace, select-replace and selection with

BF_SZ = 100 pages are plotted. Recall that get-replace uses a best case assumption (pkeys are known)

and the select-replace and selection use a worst case assumption (pkeys are not known). The results

show that as DB_ACC increases, select-replace and selection become more efficient than get-replace.

44

The crossover points for get-replace/select-replace and get-replace/selec don, for all experiments, are

given in Table 3.7.

DB-SZ T-TYP: get-/select-replace get-replace/selection
(tuples) BF_SZ: 10K 100K 1000K 10K 100K IOOOK
loo - 80% 76% 75% 50% 45% 47%
1000 27% 25% 27% 40% 33% 33%
10000 20% 20% 20% 85% 37% 32%

Table 3.7: Crossover Points

A- DB SZ increases, the DB ACC value at which select-replace and selection becomes more .r5.0 --

efficient, decreases in most cases. For the two exceptions, examining the results for selection

(Table A2.10) reveals that as BF_SZ decreases, the slope of the ET vs DB_ACC increases considerably.

Recall that the selection creates a temporary relation for its result and at DB-ACC = 100%,

DB-SZ = 10000 tuples, is reading 1100 pages and writing 1100 pages (see Table 3.3) using a buffer size

of 10/100 Pages. The result is probably due to thrashing in the database buffer. Remarkably, get-

replace and select-replacle are less affected by thrashing at these factor levels.

One assumption being tested is that costs in the system are linear, i. e., that the system can be

(ideally) modelled as

ET =a * (CPU)+ b* (10)

where -a and b are constants. This is supported from the results as plotted in Graphs 3.1,3.2 and 3.3.

We now examine the results for DB_SZ = 100,1000,10000, BF-SZ = 10,100,1000,

Tý_TYP = get-replace, select-replace, selection, T_ACC = uniform and DB_ACC = 100%, which are

given in Table 3.8.

45

Experimental Times Time - Overhead

Program Elapsed CPU 10 Thru'put Elapsed CPU 10

BF-SZ - 10 pages;... DB-SZ - 100, 1000,10000 tuples -

get-repl 4.85 4.08 0.58 0.206 4.20 3 78 0.38

get-repl 40.74 37.63 2.45 0.025 40.11 37.33 2.25

get-repl 392.05 368.15 20.70 0.003 391.45 367.85 20.50

select 3.98 2.48 1.13 0.251 3.33 2.18 0.93

select 31.39 22.15 8.06 0.032 30.76 21.85 7.86

select 417.92 259.61 155.08 0.002 417.32 259.31 154.88

sel-repl 4.56 1.84 1.95 0.219 3.91 1.54 1.75

sel-repl 19.45 12.86 5.27 0.051 18-82 12.56 5.07

sel-repl 163.20 122.90 36.08 0.006 162.60 122.60 35.88

BF_SZ - 100 pages; DB_SZ = 100, 1000, 10000 tuples

get-repl 5.24 4.14 0.82 0.191 4.19 3.73 0.39

get-repl 41.46 37.42 2.74 0.024 40.44 37.02 2.29

get-repl 401.49 374.05 22.84 0.003 400.49 373.64 22.41

select 4.45 2.57 1.39 0.225 3.40 2.16 0.96

select 28.45 20.79 6.07 0.035 27.43 20.39 5.62

select 299.26 222.06 72.83 0.003 298.26 221.65 72.40

sel-repl 4.91 1.96 2.19 0.204 3.86 1.55 1.76

sel-repýl 18.87 11.70 5.47 0.053 17.85 11.30 5.02

sel-repl 161.80 118.24 36.76 0.006 160.80 117.83 36.33

BF_SZ = 1000 pages; DB_ SZ = 100,1000, 10000 tuples

get-repl 8.86 5.37 3.17 0.113 4.31 3.77 0.44

get-repl 44.66 38.41 5.05 0.022 40.09 36.79 2.28

get-repl 401.30 369.78 23.71 0.003 396.78 368.19 20.94

select 7.87 3.81 3.67 0.127 3.32 2.21 0.94

select 29.97 20.92 7.80 0.033 25.40 19.30 5.03

select 265.26 206.14 54.07 0.004 261.74 204.55 51.30

sel-repl 8.41 3.18 4.46 0.119 3.86 1.58 1.73

sel-repl 22.17 12.94 7.70 0.045 17.60 11.32 4.93

sel-repl 155.52 110.18 37.36 0.006 151.00 108.59 34.59

Table 3.8: Experiment 1, Result Summary

Since the linear model ET = a* (CPU) + b* (10) is a simplification of the database system, the

results are not expected to correspond exactly to this model. Examining the results, especially the

(time - overhead), seems however to support this assumption.

46

Several points are noted:

The tuple-access operations in general show values of a= 10 and b= 10 when the DB-SZ is

increased by 10 (the 10 values at DB_SZ = 100 are probably too low to be significant).

Tle selection transaction is more sensitive than get-replace or select-replace to the buffer

thrashing effect which becomes more pronounced at DB-SZ = 10000 as BF_SZ decreases. The

CPU costs increase by a factor 10 as the DB_SZ is increased by a factor 10.

The select-replace transaction shows values of a= 10 and b=7. Determining exact values for a

and b is not important here, rather confirmation that the system costs behave in a linear fashion.

3.4.2. Results of Experiment 2

These results are presented in Appendix 2, Tables A2.12 to A2.14 inclusive. The factor levels

tested are given in Table 3.9.

Factor Factor Level
DB-SZ: 100,1000,1000 tuples
BF-SZ: 10,100 1000 pages
T_TYP: get-replace
T-ACC: sequential/uniform
DB-ACC: 1,2,5,10,100 tuples

Table 3.9: Experiment 2 Factor Levels

In this experiment we want to compare sequential vs uniform acess and determine the smallest

significant values for DB-ACC, taking experimental error into account.

Up to and including DB-ACC = 10, the effects of T-ACC are not significant but become so at

DB_ACC = 100. Results for DB-ACC =1 give a first estimation of experimental error between

batches.

Similar conclusions were reached from the results of other experiments with different tuple-access

transactions.

47

3.5. Conclusions

The following conclusions are made from the results of the single-user benchmarks:

the assumption that costs are linear is reasonable

the overhead for indexed access is low, indicating that the pindex implementation is efficient

beyond a certain DB_ACC value, the relation-access transactions become more efficient than the

tuple-access transacdons

(this is probably due to the call overhead on the DBMS incurred by the tuple-access technique

since both techniques use the same primitive functions and the get-replace and select-replace are

functionaUy idenfical)

the measurement error was the 90% confidence interval, expressed as a percentage of the point

estimator, and was below 2%;

similar measures for the standard deviation and variance were 10% and <1% respectively;

a more detailed example is given in Appendix 5

As a result of these tests, the choice of test database size is 1000 tuples with buffer size 100 pages

for the multi-user CC performance tests. The test transactions chosen are get-replace and select-replace.

The timing mechanism was refined to improve accuracy (see Appendix 5).

3.6. Chapter Summary

A brief introduction to TDBS/C, the testbed system, was presented as well as requirements for

synthetic test data. The DML was introduced and the transactions used in the single-user benchmarks

described in terms of the DML. A modified form of selection was proposed, and the two experiments,

together with the factor levels were described. Results for the transactions used in the following chapter

were presented and other results discussed more generally. As well as describing the database system

behaviour, the single-user results are important in providing a baseline for the multi -user results [17).

48

The method presented here, i. e., use of synthetic data, best and worst case access patterns for

different database sizes and transactions may also be extended to the multi-user experiments. Finally,

from the tests, two transaction types (one tuple-access, one relation -access) have been chosen for the

multi-user tests.

49

Chapter 4

PROTOTYPE EXPERIMENTS

The first section presents the experimental method and the background to the experimental results

presented in this chapter. The test data is described and the transactions are reviewed. Important points

arising from preliminary tests are presented. Finally the experiments are summarised and the

conclusions presented. The statistical techniques are summarised in Appendix 5.

4.1. Experimental Method

The experimental method for this study was developed from ideas presented by Bitton [17,181

who makes the following points:

1) synthetic data allows a wide range of controlled queries to be specified

2) single-user (SU) benchmarks constitute a necessary baseline measure for the interpretation of

multi-user (MU) benchmarks

3) database evaluation should be compared using "quantifiable performance indices" from both the

DBMS and the ýO/S

a representative set of queries should be specified

in [17), commercial INGRES was compared with the Bitton-Lee IDM 500 database machine,

using SU benchmarks. Thew were further developed in [181, to MU benchmarks which have become

known as the "Wisconsin Benchmark". These MU benchmarks tested

1) the effects of multiprogramming level using simple selection queries

so

2) mixes of DBMS and non-DBMS programs at the same multiprogramming level to obtain

measurements of throughput and resource utilisation.

No update queries were used in these studies however and concurrency control performance was not

considered.

In Chapter 3, the importance of synthetic data was discussed and SU benchmarks analysed.

Performance metrics for the MU experiments are presented in Table 4.1.

metric meaning
T throughput (trans/second)
ET average elapsed time
CPU transaction CPU usage
10 transaction 1/0 usage
iET idealised ET
RC restart count

Table 4.1: Performance Metrics

These are similar to Table 2.4 except for CPU and 10, which are measures of (T_CPU+CC-CPU)

and (Tý_IO+CC-10) respectively. One idealised measure, iET, is calculated as (CPU+10). The O/S

overhead, O-OS, may be inferred from (ET-TUIPL*iET).

For each CCA, (NO CC, PRE, 2PLE, 2PLU, BTO, SV), both SU and MU tests were run and the

above performance metric values were measured. These provide:

1) SU-NO CC vs SU-CCA: a measure of the cost of the CCA compared with that of the transaction

2) SU vs MU: a measure of the O/S overheads for each CCA

3) M-U-NO CC vs MU-CCA: a measure of the cost of the CCA in a multi-user environment

In CCA performance evaluation, one important factor is probability of conflict (PC). This has

been controlled in other studies by using a probabilistic approach to define access patterns and by

increasing/decreasing NIPL and/or granularity to increaseldecrease PC. A second technique is proposed,

where transactions access controlled portions of the database and PC is pre-determined. 'Fhis case will

be called level of conflict (LQ to distinguish it from the case where conflict is probablistic.

51

To submit transactions and gather values for the performance metrics, a scheduler was written.

This reads a script containing a list of transactions to be run concurrently, which defines the TNTL. Up

to a given NUAPL, each transaction is submitted and on completion, the performance measures are noted

and the transaction is resubmitted. The scheduler thus maintains a "steady-state" of TNTL transactions

in the system. The scheduler also delays restarted transactions. At the end of a batch of a fixed number

of transactions, the results for the batch are calculated. Further details of the scheduler and

measurement techniques are giyen in Appendix 5.

In summary, the experiments presented here are run for all CCAs, in SU and MU tests, using both

a probabilistic approach and pre-determined access to control conflict. The performance measures

obtained are listed in Table 4.1 and full results presented in Appendix 3. These include T, ET and RC

for the transactions. The average ET, CPU and 10 measures for successful and restarted transactions are

presented as Useful and Wasted Work Costs respectively. The Wasted Work Costs give a quantative

indication of work lost by restarting and at which point during the transaction restarts occur. The effects

of blocking are indicated by comparing the NO CC and CCA ET values in the tables of Useful and

Wasted Work Costs. The cost of restarts is given by the difference between transaction ET and the

Useful Work ET values.

A similar method was also proposed in [20] but the method of pre-determined access to control

LC is different. This is discussed in Section 4.6.

4.2. Test Data and Transactions

The test data is synthetically generated as in Chapter 3. The attributes and attribute values are

presented in Table 4.2.

52

Attribute Type and Range
tkey integer (O.. n-1) n: no. of tuples
tsql integer (0-99) sequentially distributed
tsq2 integer (0-9) sequentially distributed
tsq3 integer (0.. 1) sequentially distributed
tunl, integer (0-99) uniformly distributed
tun2 integer (0-9) uniformly distributed
tun3 integer (0.. 1) uniformly distributed
tfill character (used as filler)
tpadl character (used as filler)
tpad2 character (used as filler)
tpad3 character (used as filler)

Table 4.2: Tuple Attribute Values

Again the attribute values are chosen to provide controlled sequential and uniform access to the

database.

The test transactions are the two selected from the benchmark tests of Chapter 3. The "get-

replace" provides tuple access to the database and the "select-replace" provides relation access. This

implies that for a database of 100 data pages and a transaction which accesses the database uniformly

and performs 5 updates that the transaction will read and write 5 pages. As the DB_ACC increases

however, this increased 1/0 is offset by the increasing CPU overhead of the get-replace as reported in

Section 3.5.

Note that since all transactions are update transactions, the results for 2PLU under the assumption

that the transaction sets an exclusive lock immediately on any data object to be updated (see

Section 2.4), would be the same as those for 2PLE. Comparing the results for 2PLE and 2PLU

measures the effect of this write lock acquisition assumption at all factor leyels.

Each transaction has its own copy of the DBCS and its own buffer space (100 1K pages), which is

used here to emulate shadow paging by providing a local copy of data objects.

63

4.3. Preliminary Experiments

A number of preliminary experiments were run to select parameter values and techniques for the

CCA performance experiments. The results of these experiments are summarised here.

4.3.1. Critical Section Locking Technique

Since the UNIX O/S used here provided no semaphores, two techniques to emulate semaphores

were investigated here.

1) The transaction attempts to create a lock file in UNIX using "link"f 'unlink" [117] If the creation

fails, the transaction must wait and try again. This is the technique is used in [63]. It was found

to have an unacceptably high overhead in terms of file system activity.

2) The transaction attempts to place an exclusive advisory lock using UNIX "flock" [117]. This was

the technique adopted since the overheads were considerably lower than the "Iink"f 'unlink"

method.

4.3.2. Blocking and Restarting Delay (B.
_,
DLY/R_DLY)

Each time a transaction blocks it must wait for a given delay, B-DLY, before re-requesting the

resource. With B_DLY = 0, severe thrashing took place due to re-request contention. The

corresponding condition under restart based CCAs is cyclic restarts as noted in section 1.3.2. The value

used in these experiments is 2 seconds and was selected by experimentation. R_DLY isalso set to this

value in order to compare the CCAs within these experiments. A previous simulation study [2] suggests

that R_DLY should be in the order of the ET of the transaction. In this study, an adaptive restart

technique is introduced where the R-DLY is calculated from a running average of the iET times

N4NTL. Ibis is used as an approximation of ET and avoids including the B_DLY in the adaptive

R_DLY calculation for the 2PLU case. The adaptive restart results for 2PLU and BTO are labelled

A2PLU and ABTO respectively.

54

4.3.3. Fixed Length vs Dynamic CCA Information Tables

Initially, dynamic length tables were implemented in order to gain advantage for those CCAs

which require smaller storage overhead for the information tables. See the discussion of Carey's model

in Section 2.2. While decreasing the 1/0 overhead, dynarnic tables increased the CPU overhead

compared with fixed length tables and gave no overall improvement. Recall that the transactions in this

study tend to become CPU bound. Fixed length tables were therefore chosen for these experiments.

The approximate table sizes for a maximum of 10 transactions and 120 database objects accessed, are

given in Table 4.3.

CCA Table Size
PRE, 2PLE, 2PLU 4K
BTO 3K
sv 2.5K

Table 4.3: CCA Table Sizes

In practice, the main factor here is probably the size of the tables with respect to the O/S blocking

size for 1/0. Further, these tables are referred to frequently and hence are more likely to remain in the

O/S file buffer.

4.4. Experiments and Statistics.

Two sets of experiments are proposedL

1) using random access to the database

2) using pre-determined access to the database

These experiments and the results are described in the following sections. The statistical

techniques used are standard. Brief descriptions are given with the experiments and further detail in

Appendix 5.

ss

4.5. Experiment 1

4.5.1. Experiment Description

This experiment uses associative random access to a database of 1000 tuples in I relation. A

random set of n key values is generated and the select-replace transaction in this experiment makes use

of primary key access. PC is increased by two methods; (a) increasing the number of objects accessed

by the transaction and (b) changing the granularity. The main aim of the experiment is to measure the

performance of each CCA as PC increases. One other aim is to check the behaviour of the CCAs under

different granularities against that predicted by earlier studies. The factors and factor levels are

surnmarised in Table 4.4.

FACTORS FACTOR LEVELS
DATABASE:
DB

-
SZ 1000 tuples

DB
-
PG 100 pages

GRAN 1,10 pages/granule
NR I

TRANS:
NT 10
Tý_REQ 1,2,5,10
T_ACC random
T_TYP get-replace, select-replace
T UPD 1.0

CC:
CCA NO CC, PRE, 2PLE, 2PLU, BTO, SV
MWL 10
B-DLY 2 seconds
R DLY 2 seconds/adaptive

Table 4.4: Experiment 1: Factor Levels

The factor levels were chosen from consideration of the results of other studies and preliminary

experiments within this study. T'he experiments were run as single factor experiments. Each batch

consisted of 500 transaction runs and 10 batches were run for each factor level. The batches are

assumed to be independent. Statistics are derived using 400 transaction runs/batch to eliminate startup

and end of batch anomaly effects. Average values for each batch were calculated assuming a normal

distribution within the batch. The batch averages were then used to derive a point estimator forthe

experiment using a Student-T distribution [122) with 9 degrees of freedom. The full results, with 90%

56

confidence intervals "pressed as a percentage of the point estimator are presented in Appendix 3,

Tables A3.1 to A3.28 inclusive. "Me throughput values (T) and restart counts (RC) are presented below.

4.5.2. Single User Overhead Costs

To determine the basic overheads for each CCA, single user tests were run as one batch of 50 runs

for each level of T-REQ and T-TYP. The average values for ET, CPU and 10 for T-TYP = get-replace

are calculated assuming a normal distribution and compared against the NO CC case and the results

presented in Table 4.5 as percentage overheads.

Cost Overheads: (CCAs/NO CC) 100

ET: T-REQ. PRE 2PLE 2PLU BTO SV

1 108 112 112 107 107
2 109 114 117 114 109
5 115 120 127 121 106

10 126 129 146 141 110

CPU: T-REQ. PRE 2PLE 2PLU BTO SV

1 103 106 106 103 101
2 103 101 102 103 103
5 106 104 110 108 101

10 107 110 110 114 107

10: T-REQ. PRE 2PLE 2PLU BTO SV

1 109 114 114 114 112
2 110 120 124 119 107
5 120 130 141 133 110

10 144 150 187 165 110

Table 4.5: SU Overhead Costs

From these results, the CPU overheads for CC are low with the 10 overheads emerging as the

more significant. At the lowest PC M-9EQ = 1), there is no real difference between CCAs. As PC

increases, differences emerge. In order of increasing overhead, the CCAs are SV, PRE, 2PLE, BTO and

2PLU. The differences are explained by the techniques used. With SV only one call is made on the

CCA to validate the transaction. Under both PRE and 2PLE, T_REQ calls are made to the CCA. PRE

sets exclusive locks at the beginning of the transaction. 2PLE makes the calls dynamically and therefore

risks greater overhead from 1/0 swapping than PRE. Under BTO and 2PLU, 2* T_REQ calls are made

to the CCA, one when the data object is read and a second when it is written. The CCA tables for BTO

are smaller than for 2PLU and the algorithm slightly simpler.

57

The results for the select-replace were similar.

4.5.3. Experimental Results

In this section, the results for the five basic techniques, PRE, 2PLE, 2PLU, BTO and SV, are

discussed. A discussion on A2PLU and ABTO is presented in the following section. ne results for

get-replace are discussed first. Tables 4.6 and 4.7 give the T results and RC respectively for GRAN =I

(100 granules). Tables 4.8 and 4.9 give results for GRAN = 10 (10 granules). Since MADL and TNVL

are fixed, PC is controlled by the granularity and the number of access requests. Each transaction

randomly accesses T_REQ tuples, selected from a uniform distribution (O.. DB_SZ-1) and then mapped

on to the corresponding granule. The lowest PC occurs at (GRAN = 1, T-REQ = 1), and the highest at

(GRAN = 10, T_REQ = 10). The results of SU-NO CC are also presented which when compared with

MU-NO CC give an indication of the throughput gain inherent in the O/S at PC = 0. Note that a

value indicates that the result was not considered statistically significant (i. e., fewer than 50 commits).

At the lowest PC, SV performs better than the other CCAs. As PC rises, the performance of SV

drops below that of PRE and 2PLE but generally remains above that of 2PLU and BTO. Finally at the

highest PC (GRAN = 10, T_REQ = 10), SV outperforms 2PLE. Recall that in any conflict situation

'between k transactions, SV guarantees that at least one conflicting transaction will commit. This is not

the case for either 2PLU, which uses blocking to resolve conflicts and restarts to resolve deadlocks, or

BTO which uses restarts to resolve conflicts. At this highest PC, 2PLU and BTO have virtually no

commits. The better performance of SV over 2PLE, at the highest PC, is reflected in the restart counts

in Table 4.9.

BTO, the other CCA using restarts for conflict resolution, generally has a lower T than SV despite

a lower RC on two occasions. As PC increases, the overall performance of BTO degrades much faster

than SV. This is expressed in Tables 4.14 and 4.15 below.

58

Tý-REQ NOCC SU NO CC PRE 2PLE 2PLU A2PLU BTO ABTO SV

1 0.789 0.824 0.752 0.758 0.708 0.700 0.757 0.753 0.781
2 0.745 0.787 0.685 0.689 0.591 0.600 0.670 0.678 0.684
5 0.625 0.695 0.493 0.517 0.254 0.399 0.291 0.389 0.398

10 0.556 0.577 0.277 0.235 0.048 0.218 -- 0.301 0.166

Table 4.6: GRAN = 1, T_TYP = get-replace: Throughput

T-REQ PRE 2PLE 2PLU A2PLU BTO ABTO SV
1 0 0 0 0 0 0 0
2 0 0 23 21 22 21 31
5 0 11 182 125 197 137 163

10 0 164 345 195 380 180 284

Table 4.7: GRAN = 1, T_TYP = get-replace: Restart Counts

Tý-REQ NOCC SU NO CC PRE 2PLE 2PLU A2PLU BTO ABTO SV

1 0.789 0.824 0.727 0.734 0.529 0.640 0.583 0.711 0.513
2 0.745 0.787 0.604 0.594 0.227 0.416 0.267 0.529 0.339
5 0.652 0.695 0.419 0.181 --- 0.247 --- 0.326 0.159

10 0.556 0.577 0.341 --- --- --- --- 0.309 0.082

Table 4.8: GRAN = 10, T_TYP ='get-replace: Throughput

T-ýREQ PRE 2PLE 2PLU A2PLU BTO
-ABTO

SV

1 0 0 99 59 97 54 137
2 0 17 247 150 251 143 222
5 0 256 383 214 388 193 308

10 0 370 399 384 399 181 344

Table 4.9: GRAN = 10, T_TYP = get-replace: Restart Counts

Of the CCAs using locking, 2PLE outperfonns PRE at lower PC with the reverse being true as PC

increases where the T for 2PLE falls more dramatically than that of PRE. Throughout this experiment,

2PLE performs better than 2PLU. In this study, Tý_UPD is 1.0, that is, all selected data items are

updated. Hence the difference between the 2PLE and 2PLU results reflect the effect of setting an

exclusive lock at read request time (2PLE) and upgrading a share lock to exclusive lock at update

request time (2PLU). An alternatiye, less pessimistic interpretation of write lock acquisition under

2PLU is to immediately set an exClusive lock at read request time on data items to be updated, and a

share lock on all other data items. This technique is used for example in [68,107]. This implies some

kind of pre-execution analysis to determine the read and write sets for the transaction. As PC increases,

the difference in T can be as much as a factor of 2 to 6 times between 2PLE and 2PLU. Comparing

results for PRE, 2PLE and 2PLU, suggest that lock upgrading is more expensive than the difference

59

between static and dynamic locks in terms of cost. An indication of the effects of blocking is obtained

by comparing the Useful Work ET for the transaction to that for the NO CC case in Appendix 3. In the

case of PRE and transactions accessing one object under 2PLE there are no restarts hence these results

give a more accurate indication of blocking effects. The worst case occurs for PRE in Appendix 3,

Table A3.1 1.

From this experiment, SV emerges as a viable CCA for low conflict situations. PRE and 2PLE

are reasonable choices for higher conflict situations. If a low cost pre-execution analysis is possible then

PRE is the better and more robust of the two otherwise 2PLE would be the choice. One disadvantage of

PRE is the high oyerhead costs as shown in Table 4.14. BTO and 2PLU emerge as the CCAs with the

lowest performance.

The select-replace results for Experiment 1 are presented below iry Tables 4.10 to 4.13. The

relative performance is similar to that for get-replace, except at GRAN = 10 where 2PLE outperfonned

PRE and SV performed best at T-REQ = 1,2. In this transaction, the entire relation is read and a small

portion updated, which fayours SV. Since 2PLE holds locks for shorter times and restarts occur due to

deadlocks, perfonnance is better than under PRE. At GRAN = 1, these effects are less apparent.

From Chapter 3 it would be expected that the select-replace will perform better than the get-

replace at some T_REQ value. Comparing the get-replace and the select-replace transactions in the MU

experiments, the crossover point where relation access becomes more efficient than tuple access in the

multi-user environment occurs at Tý_REQ = 10. At T-REQ > 10, the select-replace should perform

better as measured by T.

In general the relative performance in this experiment was similar to that for the get-replace

transaction.

60

7ý-REQ NOCC SU NO CC PRE 2PLE 2PLU A2PLU BTO ABTO SV

1 0.697 0.734 0.668 0.664 0.633 0.634 0.670 0.670 0.689
2 0.675 0.721 0.625 0.624 0.553 0.564 0.622 0.625 0.627
5 0.633 0.680 0.476 0.521 0.276 0.386 0.334 0.396 0.384

10 0.584 0.630 0.296 0.262 0.059 0.178 -- 0.315 0.203

Table 4.10: GRAN = 1, T_TYP = select-replace: Throughput

T-REQ PRE 2PLE 2PLU A2PLU BTO ABTO SV

1 0 0 0 0 0 0 0
2 0 0 20 21 15 16 33
5 0 0 167 119 160 124 166

10 0 149 337 215 359 180 267

Table 4.11: GRAN = 1, T_TYP = select-replace: Restart Counts

T REQ NOCC SU NO CC PRE 2PLE 2PLU A2PLU BTO ABTO SV

0.697 0,734 0.627 0.656 0.517 0.570 0.555 0.619 0.669
2 0.675 0.721 0.538 0.562 0.232 0.375 0.318 0.485 0,610
5 0.633 0.680 0.398 0.487 --- 0.252 --- 0.303 0.368

10 0.584 0.630 0.355 --- 0.106 --- 0.322 0.099

Table 4.12: GRAN = 10, T_TYP = select-replace: Throughput

T-REQ PRE 2PLE 2PLU A2PLU BTO ABTO SV

1 0 0 71 50 70 45 0
2 0 15 233 149 205 128 35
5 0 0 374 204 362 197 172

0 364 399 293 397 181 338

Table 4.13: GRAN = 10, T_TYP = select-replace: Restart Counts

4.5.4. Adaptive Restart

The poor performance of BTD above may be ascribed to cyclic restarts where, in a high conflict

situation, no conflicting transaction will commit. Under SV, at least one transaction will commit, which

explains why SV generally perfon-ned better than BTO. In this experiment, restarts are fake since a

resumed transaction selects a random, hence potentially different, set of data objects to access. This

suggest the results would be worse if restarts were real. Breaking cyclic restarts depends on allowing at

least one transaction to commit. In this situation, an adaptive delay, R-DLY, might lead to improved

performance. 2PLU would also benefit from an adaptive delay. Under SV, the transactions have

already completed and increasing R_DLY would have little effect on PC.

ei

The adaptive restart was implemented taking a worst case approach with KDLY = MNTL * iET.

This was used in preference to ET to avoid including blocking effects under 2PLU. Since O-OS is

reasonably low in these experiments this seems a good approximation to ET. The results for A2PLU

and ABTO are included in Tables 4.6 to 4.13.

The effect of the adaptive restart at the lowest PC is neglible, which is to be expected. As PC

rises, the effect becomes more dramatic, especially for BTO in terms of T. 2PLU is also subject to

blocking effects which tend to reduce T. The reduction in RC as PC rises, compared with the

corresponding results for the non-adaptive restart version, is also significant, indicating the effectiveness

of the technique. In fact, as PC rises, A2PLU outperforms SV at (GRAN = 1, T_REQ = 5,10) and

ABTO outperforms the other CCAs at (GRAN = 1,7ý_REQ = 10).

ne main result of the adaptive restart experiment is in underlining- the importance of R_DLY

with respect to ET and its effect on T. Under 2PLU and BTO, R_DLY was less than ET (see

Appendix 3). For A2PLU and ABTO, R_DLY is approximately equal to or greater than ET, yielding a

marked improvement in performance. Further research is required in this area to determine an optimal

value.

4.5.5. Overhead Costs and Efficiency Measures

Tables 4.14 and 4.15 present the overhead costs and efficiency measures for each CCA. The

overhead is the extra cost incurred by the transaction running under a given CCA compared with the

NO CC case, expressed as a percentage. The efficiency is a measure of resources used by committed

transactions over total resources used for committed and restarted transactions expressed as a

percentage. This is presented for iET to reflect CPU and 10 resource usage and remove Q_OS. An idea

of the overhead costs of blocking can be obtained by comparing the NO CC and CCA values for the

Useful Work Costs in Appendix 3. The overhead costs of restarting are indicated by the differences

between transaction ET and the Useful Work Cost ET. Efficiency measures for ET, for resource usage,

are given in Appendix 3.

62

GRAN -1 (100 granules) GRAN = 10 (10 granules)

CPU: 7ý_REQ. PRE 2PLE 2PLU A2PLU BTO ABTO SV PRE 2PLE 2PLIJ A2PLU BTO ABTO SV

1 104 103 105 105 105 104 104 106 105 142 125 136 120 158

2 106 104 115 114 112 112 114 113 114 296 175 281 163 233

5 116 114 214 166 217 167 178 127 295 2749 240 - 202 446

10 142 189 902 229 - 204 366 126 - - 190 733

10: T-REQ. PRE 2PLE 2PLU A2PLU BTO ABTO SV PRE 2PLE 2PLU A2PLU BTO ABTO SV

1 117 115 127 130 113 114 106 120 119 166 146 148 132 162

2 124 122 149 149 125 127 114 144 144 366 219 307 185 225

5 169 153 329 234 260 207 166 203 424 3835 351 - 262 412

10 305 301 1558 382 - 282 314 219 - - - - 280 653

Table 4.14: Overhead Costs, T_TYP = get-replace (%)

GRAN =1 (100 gmrmlcs) GRAN = 10 (10 gmnules)

iET-. T-REQ. PRE 2PLE 2PLU A2PLU ETO ABTO SV PRE 2PLE 2PLU A2PLU BTX) ABTX) SV

1 100 100 100 100 100 100 100 100 100 76 86 76 87 68

2 100 100 94 95 95 95 93 100 96 39 63 38 65 47

5 100 98 57 70 52 67 62 100 41 5 49 3 54 25

to 100 64 16 54 5 57 31 100 11 010 58 15

Table 4.15: Efficiency Measure, T_TYP = get-replace (%)

In general, the 10 overhead is greater as suggested by Table 4.5. At low PC, the differences

between the CCAs are small. As PC increases, comparing PRE (pure blocking) with BTO and SV (pure

restarts) indicates that blocking has lower costs. The overheads for A2PLU and ABTO are noticeably

lower than for 2PLU and BTO respectively as PC increases.

The efficiency measure reflects the response of each CCA to increasing PC. The effect of

granularity is also shown in the tables. Values for select-replace show similar trends and are presented

in Appendix 3. In general the finer granularity has lower overheads and higher efficiency.

4.5.6. Granularity Effects

In Chapter 2, other studies were cited as suggesting an optimal granularity of between 10 and 100

granules, which lead to the choice of granularity for this study.

In general, the effect of the coarser granularity was to decrease T and increase RC. Some

exceptions were noted. At T-REQ = 10, PRE performed better at GRAN = 10 than at GRAN = 1.

Since PC is very high, EWL is probably reduced to 1. This implies that when the transaction

63

terminates and releases its resources, there is no competition for these resources and the next transaction

to wake or start has a higher chance of acquiring all its resources and executing. This seems supported

by the ET values in Appendix 3, Tables A3.11 and A3.25 which suggest that more blocking takes place

at GRAN = 10. Under 2PLE, T is reduced at GRAN = 10. Again from the RCs in Table 4.9 and ETs in

Appendix 3 we can infer that more blocking has taken place.

For Tý_REQ = 10 ABTO also performs better at GRAN = 10 than at GRAN = 1. Again the

argument used for PRE gives the explanation. ENDL is probably greatly reduced and the ET is small

compared to R-DLY, allowing the transaction to complete quickly. The other CCA using pure restarts,

SV, shows relative performance decreasing at the finer granularity but increasing at the coarser, which

also suggests a much lower ENDL at GRAN = 10. The efficiency of 2PLE, 2PLU and A2PLU falls

more rapidly at the coarser granularity. 77hat of ABTO was less affected and in one case was higher,

reflecting the higher T noted above.

In summary, the finer granularity gave better performance figures with the exception of PRE and

ABTO which had higher T at the highest PC.

4.6. Experiment 2

In this experiment, the effect of increased access to one object is measured in contrast to conflict

on access to several objects as in Experiment 1. This reflects a slightly more extreme interpretation of

the so called "80-20 rule" where 80% of the transactions access 20% of the database. Here, an

increasing percentage of transactions, 20% - 100%, accesses 10% of the database. Access to one object

allows a comparison of static and dynamic locking, PRE and 2PLE, and dynamic exclusive versus

upgrade locking, 2PLE and 2PLU, by removing restarts caused by deadlocks arising from access to

more than one object. All restarts under 2PLU are caused by lock upgrade conflicts. Since the object

accessed by each transaction is fixed, restarts are non fake and the expected EMIPL will be closer to the

actual EVIPL.

64

4.6.1. Experiment Description

This experiment uses controlled access to a database of 10 identical relations, each containing 100

tuples. Each relation is a granule and each transaction accesses one relation. The factors and factor

levels are presented in Table 4.16.

FACTORS FACTOR LEVELS
DATABASE:
DB

-
SZ 1000 tuples

DB-PG 100 pages
GRAN 10 pages/granule
NR 10

TRANS:
NT 10
Tý_REQ 10
T_ACC unifonn
T_TYP get-replace, select-replace
T UPD 1.0

CC:
CCA NO CC, PRE, 2PLE, 2PLU, BTO, SV
MWL 10
B DLY 2 seconds
R_DLY 2 seconds/adaptive

Table 4.16: MU Exeriment 2: Factor Levels

Note that for this experiment, T-REQ and T_ACC refer to the access pattern within the relation.

The batches and number of runs are as in Experiment 1. The LC is controlled by the number of

transactions, N, that access the same relation and is denoted by a percentage value derived from N/NR.

Table 4.17 gives those values and the corresponding expected ENTLs.

2 8 10
LC 017v 20% 50% 80% 100%
ENTL 10 9 6 3

Table 4.17: Experiment 2: LC and EMPL

T'hisdiffers from the technique proposed by Boral [20] where the LC is expressed as a percentage

"degree of data sharing" of the number of partitions (granules) in the database which is equal to NUýTL.

For example, with MWL = 10 and degree of data sharing = 50%, there would be 5 active partitions

with two transactions accessing each active partition. The EMPL would be 5. The results presented by

Boral are however based on the random access technique presented in Experiment I of this study and

65

the controlled access technique was not explored in the paper.

The full results for Experiment 2 are presented in Appendix 3, Tables A3.29 to A3.45 inclusive.

4.6.2. Single User Overhead Costs

The overhead costs of the CCAs were lower than in Experiment 1. Two factors influence this; the

transactions only request one granule and access more data objects thus increasing the transaction costs

with respect to the CCA costs. The relative costs were similar to Experiment 1.

4.6.3. Multi User Results

Tables 4.18 and 4.19 present T and RC for T-REQ = 10, T_ACC = uniform and T-TYP = get-

replace.

T: LC. NOCC SU NO CC PRE 2PLE 2PLU A2PLU BTO ABTO sv

oqo 0.490 0.505 0.468 0.467 0.461 0.459 0.475 0.475 0.478
2001o 0.467 0.466 0.417 0.447 0.419 0.466 0.445
50% 0.476 0.461 0.289 0.448 0.248 0.471 0.319
80% 0.446 0.432 0.151 0.409 0.099 0.428 0.175

100% 0.390 0.362 --- 0.401 --- 0.387 0.073

Table 4.18: MU Experiment 2: Throughput

LC PRE 2PLE 2PLU A2PLU BTO ABTO SV ,

0% 0 0 0 0 0 0 0
20% 0 0 39 18 53 19 36
50% 0 0 157 78 202 82 152
80% 0 0 276 139 323 146 271

100% 0 0 360 141 391 167 348

Table 4.19: MU Experiment 2: Restart Counts

At 0% LC there is little difference between the CCAs with SV performing best as would be

expected. At 20% LC, PRE performs best, followed by 2PLE. SV performs next best followed by BTO

and 2PLU. In fact the ordering PRE, 2PLE, SV remains as LC increases to 100%. 2PLU and BTO

have the lowest T with BTO having almost no commits at 100% LC. These results are also reflected in

the RC figures.

66

Comparison of the results for 2PLE and 2PLU again illustrates the effect of different write

acquisition policies. However, since each transaction accesses only one granule, the result is biased in

favour of 2PLE which will have no deadlocks and hence no restarts. All restarts under 2PLU in this

experiment are due to share to exclusive lock upgrades and illustrate the overhead that this upgrading

imposes. Static and dynamic locking can be compared in the results for PRE and 2PLE respectively.

Again the results show lock upgrading to be quite costly. The difference in T between dynamic and

static locIdng is low, indicating smaller differences in overheads. This is also reflected in Table 4.20.

LC increases, BTO performs worse than 2PLU. In Experiment 1, the differences between the

two were less clear. In this experiment, the restarts under BTO and 2PLU are non-fake which may

explain the relative decrease in performance of BTO given the increased probability of cyclic restarts

occurring. The fake versus real restart assumption has been found to have less impact on the relative

performance in a previous simulation study [2]. The results here support this conclusion.

4.6.4. Adaptive Restart

A similar adaptive restart to that used in Experiment 1 was introduced in this experiment. Ibe

results are included in Tables 4.18 and 4.19 above. The effect was more dramatic than in Experiment I

with RC being reduced in general by 50%. Since there were no fake restarts in this experiment, RC

would be expected to be higher for 2PLU and BTO, and hence the greater improvement in RC

reduction.

Both A2PLU and ABTO have significantly improved T as LC increases. The relative

performance of A2PLU increased with increasing LC while that of ABTO remained fairly static.

A2PLU outperformed all the other CCAs at LC = 100%.

4.6.5. Overhead Costs and Efficiency Measures

Tables 4.20 and 4.21 present the overhead costs for CPU and 10, and efficiency measures for iET

for Experiment 2.

67

CPU: LC PRE 2PLE 2PLU A2PLU BTO ABTO SV

0% 102 102 103 103 101 101 101
20% 102 103 114 108 116 106 ill
50% 105 104 169 127 203 127 163
80% 109 106 332 156 522 157 310

100% 112 109 - 159 - 170 764

10: LC PRE 2PLE 2PLU A2PLU BTO ABTO SV
0% 116 116 118 119 113 113 112

20% 117 116 130 124 126 116 117
50% 124 126 178 139 201 132 150
80% 136 140 323 163 476 158 253

100% 141 152 - 165 - 164 577

Table 4.20: MU Overhead Costs get-replace (%)

iET: LC PRE 2PLE 2PLU A2PLU BTO ABTO SV
0% 100 100 100 100 100 100 100

20% 100 100 91 96 88 95 92
50% 100 100 63 82 52 81 65
80% 100 100 33 67 21 65 35

100% 100 100 10 66 2 60 14

Table 4.21: MU Efficiency Measures get-replace (%)

10 overheads are greater than CPU overheads for the pure locking techniques, PRE and 2PLE.

Comparing 2PLE and 2PLU reflects the costs of lock upgrades. 2PLE has marginally greater 10

overhead costs than PRE. For SV, the CPU overhead costs are greater than those for 10 indicating the

increasing cost of validation as LC increases. The efficiency measures for A2PLU and ABTO fall less

sharply than those of the fixed delay counterparts, 2PLU and BTO, indicating the usefulness of the

adaptive restart technique.

The results for select-replace were similar (see Appendix 3 Tables 3.46 to 3.90).

4.7. Conclusions

The SU overhead costs in Table 4.5 provide a guide to the inherent cost of each CCA but are of

little use in predicting performance overheads: in the MU environment. The MU Overhead Costs in

Tables 4.14 and 4.20 provide an indicator of the resource usage for committed transactions under each

CCA as PC/LC increases. In interpreting the Overhead Costs, the following should be noted. In

Experiment 1, where access is probabilistic, EMPL cannot be determined precisely. Further, increasing

68

T_REQ will influence overhead costs and lower T by definition hence not all differences are the sole

result of conflict. Additionally, CCAs using dynamic blocking retain locks on resources thus increasing

PC whereas CCAs using restarts do not share this effect. Under 2PLE and 2PLU, blocking effects are

also counterbalanced by the use of restarting to resolve deadlocks. The finer granularity gave better

performance for most CCAs. In Experiment 2, T-REQ is fixed and ENIEPL is controlled. Differences in

performance are directly related to conflict in this experiment.

The Efficiency Measures in Tables 4.15 and 4.21 provide an indicator which includes resources

"wasted" by restarts. As such they provide indicators at the same level as T, that is, on the concurrent

system level. Both Overhead and Efficiency measures provide useful additions to performance

measurement by T.

Table 5.17 in Chapter 5 gives the relative ordering by throughput of the CCAs in Experiment 1,

GRAN = 1, GRAN = 10 and Experiment 2. The table shows the relative movement of each CCA as LC

increases. The effect of the adaptive restart is also illustrated.

At low LC, there is little difference in performance of the CCAs. SV, with its low overhead,

performed best. As LC increases, PRE and 2PLE emerge as having best performance. If the transaction

requirements are known in advance, PRE is the best overall choice otherwise 2PLE would be

recommended. The performance of 2PLU and BTO became unacceptable at higher LC with high RC.

Adaptive restarts improved the performance of both 2PLU and BTO. However in only a few cases was

there improvement relative to the other CCAs.

One significant result in this chapter is the improvement using the adaptive restart technique. The

relative performance of ABTO was better in higher conflict situations but was less efficient at

GRAN= 10. This illustrates the importance of R-DLY, the delay time in restarting an aborted

transaction, with respect to ET in CCA performance experiments. Contradictory results from previous

simulation experiments, where timestamp CCAs have outperformed locking CCAs in some studies

[46,69] and the opposite has been found in other studies [23], may be explained by this result.

69

In addition to throughput results, this study has presented results for ET, CPU and 10 usage for

both useful and wasted (restarted) work for transactions. These have:

1) allowed the overhead costs of the CCA to be calculated using the NO CC case as the baseline

2) shown the effects of blocking under PRE, 2PLE and 2PLU

provided an efficiency measure of each CCA at all factor levels

given an idea of how much work is lost by restam for each CCA

The different transaction types, get-replace and select-replace, were similar in terms of relative

performance showing only a few differences at GRAN= 10. At the levels tested in the prototype

experiments there was little difference in the quantitive results. The larger differences found in

Chapter 3 occurred at higher levels of T-REQ.

4.8. Chapter Summary

Two experiments to compare the performance of CCAs in a multi user database were presented

and tested. Adaptive restart versions of 2PLU and BTO were found to greatly improve performance for

those CCAs. Several measures of performance were introduced. The results were compared using SU

amd MU tests as baselines. The conclusions reached from the experimental results generally agreed and

highlighted different aspects of CC performance.

70

Chapter 5

SIMULATION EXPERIMENTS

The two experiments of Chapter 4 are repeated using a simulator. The simulator results are

presented and then compared with the results presented in Chapter 4. The differences are discussed.

The simulator is written in Simula.

5.1. Simulation

As noted in Chapter 1, simulation has been widely used to model CCA performance and has been

the major alternative to analytic studies. The simulator is based on a physical queueing model (PQM)

presented in [231. This PQM is presented in Figure 5.1 and is an abstraction of the LQM given in

Figure 2.7, for a system with one CPU and one disk. A version for several CPUs and several disks is

presented in [2).

The PQM models a system with one disk, one CPU and a number of terminals or batch

transactions. Each server, 1/0 and CPU, has two queues, one for the ýCCA and one for the transaction

processing. In contrast to [23], the CCA queues are not given priority over the transaction queues. This

reflects the prototytpe system. Both are served using a first-come, first-served (FCFS) model as in the

testhed system. The parameters for the system are given in Table 5.1.

71

Terminals

Transaction

Figure 5.1: Physical Queueing Model (PQM)

parameter meaning
cc

-
10 CCA 1/0 cost

CC-CPU CCA CPU cost
TR-10 Transaction 1/0 cost
TR-CPU Transaction CPU cost
STGM Exponential Randomising Delay

Table 5.1: PQM Parameters

When a transaction reads an object, it makes a request to the CCA (except in the case of SV)

which incurs a cost, CC-10 + CC-CPU, and then accesses the object at cost TR-10 + TR-CPU. On

writing the object a ftwther cost of TR_10 + TR_CPU is incurred and extra CCA cost in the cases of

2PLU and BTO. Recall that SV incurs little CCA cost; once at transaction startup and once at

transaction validation. STGM is used to stagger transaction startup, that is, when a new transaction

72

enters the system. The simulation is ran as a closed system with a fixed number of transactions, a new

transaction starting on completion of a currently executing transaction. The CCA and transaction

descriptions were given in Chapter 2.

Three simulation techniques are possible for the experiments; batched. means, independent

replications and the regenerative method [32,96,4ý, 76]. The technique chosen is that of batched

means. The regenerative method was rejected since the regeneration state does not occur sufficiently

frequently [23]. The independent replications method was rejected partially on the grounds of cost and

partly because the initial transient results may produce biased estimators of average values [96]. The

batched means method is "generally accepted practice" [76].

Using batched means, each simulation comprises a number of batches, NB, each of which is BT

simulation units long. The first batch is discarded to eliminate transient startup effects and the

remaining runs used to provide observations for ET and T which are then used to provide point

estimators for these values. In this simulation, NB = 21 and BT = 100000 simulation time units. Each

simulation time unit is interpreted as a millisecond and the results are presented in units of seconds. BT

is chosen to be large, in fact twice that used in [23]. Firstly, this is to support the assumption that the

sample observations are normally distributed, from the central limit theorem [96]. Secondly, to be able

to treat the batches as effectively independent by assuming dependencies between adjacent batches to be

neglible, [32,761. This was verified by assuming the correlation between non-adjacent batches to be

neglible and calculating the covariance for adjacent batches. These values were found to be extremely

small which supported the assumption that the batches are effectively independent. This is further

discussed in Appendix 5.

73

The parameter values for the simulation experiments are given in Table 5.2.

parameter values (milliseconds)
CC-10 2
CC-CPU 3
TR 10 20
TR CPU 25

_STGM
20

Table 5.2: PQM Parameter Values

The values were chosen from the average disk access time of the testbed system which was l8ms

[451, and the results of the testbed system, noting that TR-CPU tends to be greater than TR_10. The

CC-1ýO cost is assumed to be low since the tables will effectively reside in the O/S buffer when called

frequently.

The two experiments described below are simulation equivalents of the two experiments

described in Chapter 4.

5.2. Experiment 1

5.2.1. Experimental Results

The factors and factor levels are similar to Table 4.4. The database is now modelled as a set of

granules corresponding to DB-PG and GRAN. There is no distinction in T-TYP. The full results are

presented in Appendix 4. Results for T and RC are presented below in Tables 5.3,5.4 respectively for

GRAN =I and Tables 5.5,5.6 respectively for GRAN = 10. An additional run of BTO with R_DLY set

to I second is introduced and labefled XBTO.

74

1ý-REQ NO CC PRE 2PLE 2PLU A2PLU BTO XBTO ABTO sv

1 20.000 17.800 17.760 16.270 16.420 16.650 16.650 16.660 18.460
2 10.000 9.069 8,769 7.786 7.971 8.390 8.365 8.327 9.052
5 4.000 3.425 1.976 1.952 1.911 3.077 3.017 2.903 2.974

10 2.000 1.397 0.481 0.442 0.397 1.074 0.860 0.521 0.980

Table 5.3: GRAN = 1: Throughput

T-REQ PRE 2PLE 2PLU A2PLU BTO XBTO ABTO SV

1 0 0 52 62 55 55 54 76
2 0 0 63 74 67 73 81 127
5 0 12 63 73 114 131 161 193

10 0 40 62 67 193 256 388 200

Table 5.4: GRAN = 1: Restart Counts

T-REQ NO CC PRE 2PLE 2PLU A2PLU BTO XBTO ABTO sv

1 20.000 15.770 8A56 6.613 6.787 14.560 14.530 13.400 16.570
2 10.000 6.775 1.685 1.521 1.303 6.690 6.354 4.307 7.239
5 4.000 2.173 0.234 0.169 0.138 1.687 1.218 0.116 2.005

2,000 1.045 --- --- --- --- --- --- 0.649

Table 5.5: GRAN = 10: Throughput

T-REQ PRE 2PLE 2PLU A2PLU BTO XBTO ABTO SV

1 0 0 156 239 268 389 675 311
2 0 13 131 170 299 472 1065 348
5 0 65 117 137 359 624 1364 346

10 0 81 118 131 383 675 843 263

Table 5.6: GRAN = 10: Restart Counts

For both levels of granularity, PRE emerges with best T as PC increases. SV has higher T at

lower PC ((GRAN = 1, T_REQ = 1) and (GRAN = 10, T_REQ = 1,2)) but higher RC. At T-REQ = 5,

10, BTO outperforms SV at GRAN =I but is outperformed by SV at GRAN = 10. SV performs better

at the higher PC since at least one of the conflicting transactions is guaranteed to commit.

At the coarser granularity, GRAN = 10, and at (GRAN = 1, T-REQ = 5,10), both BTO and SV

perform better than 2PLE and 2PLU. 71bis suggests that restart based techniques perform better at

higher PC and dynamic locking based techniques perform worse. Since blocked transactions hold locks

on objects, the potential for conflict is increased for the remaining transactions. Restarted transactions

are removed from the system leaving fewer transactions competing for the same number of objects and

hence reducing the potential conflict. This would explain the reduction in performance of 2PLE and

2PLU as PC increases. PRE does not hold any resources when blocked, hence the better performance.

75

Throughout the simulation, 2PLE performs better than 2PLU. 2PLU gave the worst performance

overaH.

In a simulation study, the system is an idealised model. In this study, the differences in results are

due to the effects of blocking and resuirts since all costs for the CCAs and transaction CPU and 10 are

fixed. The blocking effect is controlled by B-DLY and the restart delay by R-DLY. Both reduce

EMPL and hence improve execution times for those transactions still active.

The overall result of this experiment was that PRE performed best and in general, SV and BTO

outperformed 2PLE and 2PLU. The effects of the adaptive restart are discussed below.

5.2.2. Adaptive Restart

Adaptive restart versions of 2PLU and BTO, A2PLU and ABTO respectively, were run with

R_DLY set equal to the average ET. An adaptive restart for BTO seems especially useful to avoid the

occurrence of cyclic restarts. The results are included in Tables 5.3 to 5.6 above. In general the

performance of ABTO was worse than that of BTO but that of A2PLU better than 2PLU.

ne explanation can be found by comparing R-DLY to the ET values in Appendix 4. For BTO,

with fixed R_DLY =2 seconds, R_DLY >> ET in all instances but one at (GRAN = 1, T_REQ = 10).

At this point ET for BTO is 3.029 seconds (Appendix 4, Table A4.9). This is also confirmed for XBTO

where R_DLY =I second. Where R-DLY > ET and ET for ABTO is less than I second, XBTO

outperforms ABTO. Comparative tables of ET and T are given in Appendix 4, Tables A4.20 to A4.25.

The above explanation does not however hold for 2PLU and A2PLU. As well as being subject to

R_DLY effects, 2PLU and A2PLU are also affected by B_DLY. Examination of the ET values for

2PLU and A2PLU in Appendix 4, Tables A4.9 and A4.1 1, shows greater increases in ET than for the

corresponding cases of BTO and ABTO. 711is also demonstrates that for 2PLU, the relative difference

'between the (fixed value) R-DLY and ET is much greater than for BTO. The chances of a conflict

reoccurring between a restarted and executing transaction are thus correspondingly increased.

76

Two points therefore emerge in this part of the experiment. Firstly, that R-DLY should be in the

order of magnitude of ET still seems a reasonable heuristic. Secondly, the relative difference between a

fixed R_DLY and ET also plays an important role in determining performance. These points are further

explored below in Sections 5.3.2 and 5.4. A summary of the CCAs ranked in order of decreasing T is

presented in Table 5.17.

5.2.3. Overhead and Efficiency Measures

In the simulation, CPU and 10 costs are fixed values for simplicity therefore the effects of

blocking and restarting are reflected in the ET and T values in the results. In this experiment, the

locking based CCAs have higher overheads, particularly at GRAN = 10. PRE has the lowest overheads

of the locIdng based CCAs. Comparing PRE, 2PLE and 2PLU shows that the cost of dynamically

setting locks is high while the cost of lock upgrades is relatively low. Comparing BTO and XBTO

indicates differences due to different fixed value R-DLYs. Tables 5.7 to 5.10 inclusive show the

overhead and efficiency measures for Experiment 1.

ET: T-REQ PRE 2PLE 2PLU A2PLU BTO XBTO ABTO SV

1 112 113 123 122 120 120 120 108
2 110 114 128 127 119 120 119 110
5 117 202 205 199 130 133 130 134

10 143 416 452 373 186 232 175 204

Table 5.7: GRAN = 1: Overhead Values (%)

ET: T-REQ PRE 2PLE 2PLU A2PLU BTO XBTO ABTO SV

1 127 237 302 299 137 138 142 121
2 148 593 657 669 149 157 166 138
5 184 1713 2360 1566 237 328 336 199

10 191 -- --- -- -- --- -- 308

Table 5.8: GRAN = 10: Overhead Values (%)

77

ET: T_REQ PRE 2PLE 2PLU A2PLU BTO XBTO ABTO SV

1 100 100 95 95 100 100 98 98
2 100 100 88 87 100 100 95 93
5 100 99 70 68 95 93 77 74

10 100 58 44 40 64 48 23 48

Table 5.9: GRAN = 1: Efficiency Measure (%)

ET: T-REQ PRE 2PLE 2PLU A2PLU BTO XBTO ABTO SV

1 100 100 61 56 98 96 77 90
2 100 99 47 39 92 84 43 77
5 100 14 15 12 58 33 2 50

10 100 0 3 2 26 2 1 30

Table 5.10: GRAN = 10: Efficiency Measure (%)

The efficiency measure gives the "useftil work" achieved by each CCA. Note that in some cases,

for example comparing 2PLE and SV, one CCA may have lower efficiency but higher T reflecting the

costs of restarts and blocking. In Tables 5.9 and 5.10, by measuring efficiency using ET, blocking

delays are included as "useful work".

5.2.4. Granularity Effects

In this experiment, for all CCAs, T was reduced and RC increased at GRAN = 10 compared with

the corresponding results at GRAN = 1. Finer granularity therefore in all cases gave better performance.

5.3. Experiment 2

5.3.1. Experiment Results

The factors and factor levels are similar to Table 4.16. T-REQ is set to 1 and T-ACC and T_TYP

are not used. Recall that this experiment represents a situation where an increasing percentage of

transactions access a small percentage of the database. The throughput results are given in Table 5.11

and restart counts in Table 5.12.

78

LC NO CC PRE 2PLE 2PLU A2PLU BTO XBTO ABTO sv

0% 20.000 17.860 17.860 16.950 16.950 16.950 16.950 16.950 18.870
20% 17.830 17.820 16.770 16.710 16.730 16.950 16.950 18.640
50% 17.720 17.710 15.950 15.580 15.870 15.130 10.150 17.920
80% 17.670 14.060 12.370 11.910 14.240 12.660 4.373 17.110

100% 9.961 0.820 0.434 0.480 7.835 7.378 --- 9.995

Table 5.11: Experiment 2, Throughput

LC PRE 2PLE 2PLU A2PLU BTO XBTO ABTO SV

0% 0 0 0 0 0 0 0 0
20% 0 0 29 37 42 0 0 42
50% 0 0 98 164 176 328 1292 178
80% 0 0 172 313 301 598 2369 332

100% 0 0 390 412 436 831 3042 428

Table 5.12: Experiment 2, Restart Counts

As in Experiment I at GRAN = 10, PRE and SV give the best performance. Under PRE, the

conflicting transactions are serialised by blocking for B_DLY seconds. Examination of ET values for ,

PRE in Appendix 4, Table A4.18, reveals that ET is smaller than B_DLY and decreasing as LC

increases. Hence after initial blocking, it is highly probable that a blocked transaction is delayed for a

sufficient length of time to allow other potentially conflicting transactions to execute several times.

Similarly under SV, the ET is small compared to R_DLY and decreasing as LC increases. Now

restarted transactions are removed from the system for a sufficient length of time to allow other

potentially conflicting transactions to execute several times.

Under 2PLE and 2PLU, blocked transactions are queued in order of blocking. When one

transaction completes, a blocked transaction is allocated the resource but may not become active

-immediately.
Compared to PRE, the length of time the resource remains locked is greater since there is

an extra length of time when the resource is allocated to a (still) blocked transaction. For 2PLE, the

locking overhead is considerable as shown by the ET in Table A4.18.2PLU also suffers from the

overhead of lock upgrading. is mollified by the effects of restarting. At LC = 100%, the cost of lock

upgrades almost doubles the overhead for 2PLU. outweighed by the advantages of restarting as shown

by the better performance of BTO.

Both 2PLU and BTO, and to a lesser extent, PRE and 2PLE, also suffer queueing delays in

accessing CC information. SV, which makes fewer requests, is less affected.

79

In this experiment, PRE and SV give the best performance, that of BTO increases as LC increases

and that of 2PLE and 2PLU decreases. 2PLE always outperforms 2PLU. The relationship of B-DLY

and R_DLY to ET also emerges as an important factor in determining performance. The results, with

CCAs ranked in order of decreasing T, are presented in Table 5.17.

5.3.2. Adaptive Restart

Again ABTO performed less well than BTO at all levels of LC. A2PLU performed less well than

2PLU in all cases but one, at LC = 100%. In this case the difference in T is small and can be attributed

to the increased R_DLY for A2PLU where the ET value is 2.188 (Appendix 4, Table A4.18). The

explanations are similar to those presented in Section 5.2.2.

5.3.3. Overhead and Efficiency Measures

At LC = 0%, the overhead represents the additional cost of each CCA. The differences in

overhead are lower except at LC = 100% where dynamic locking has very high overhead and PRE and

SV have the lowest. The following are the overhead and efficiency measures for Experiment 2.

Tý-REQ PRE 2PLE 2PLU A2PLU BTO XBTO ABTO SV
0% 112 112 118 118 118 118 118 106

20% 112 112 119 120 120 118 118 107
50% 113 113 125 128 126 132 148 112
80% 113 142 162 167 140 158 226 117

100% 201 2439 4608 4211 255 271 --- 200

Table 5.13: Experiment 2, Overhead Values (%)

T-REQ PRE 2PLE 2PLU A2PLU BTO XBTO ABTO SV
0% 100 100 100 100 100 100 100 100

20% 100 100 96 91 100 100 100 99
50% 100 100 76 62 99 98 57 94
80% 100 100 47 33 95 90 22 90

100% 100 100 46 11 88 70 0 71

Table 5.14: Experiment 2, Efficiency Measures (%)

Comparing PRE and 2PLE measures the cost of static vs dynamic locking, that is, the cost of

keeping a lock queue on an objeCt. AT I-C = 100% the overhead for 2PILE is extremely high. Under

80

2PLU, this cost is lessened by the effects of restarting, although there is no improvement in T.

Comparing the overhead of PRE to SV at LC = 100%, shows the high cost of locking in an extreme

situation. At this LC, the only solution is serial execution of transactions. Both CCAs will remove

transactions from the system for B__DLY/R-DLY seconds leaving the remaining transaction free to

execute.

The efficiency measure again reflects the "useful work" achieved in this scenario. The measure

for 2PLE is somewhat unrepresentative since deadlock never occurs under 2PLE on access to one

o ect. A measure of e ect o lock upgrades is obtained by comparing 2PLE to 2PLU since all

restarts here are caused by deadlocks due to lock upgrades. Again the differences in T between static

and dynamic locking are smaller than those due to lock upgrades.

5.4. Adaptive Restart Revisited.

In the simulation, the performance of A2PLU and ABTO was worse than their non-adaptive

restart versions. The explanation appears to be in the relationship between the restart delay, R-DLY,

and the transaction elapsed time ET. Under 2PLU and BTO, the R_DLY was in most cases greater than

under A2PLU and ABTO respectively. To investigate this ftirffier, two more sets of tests were made

with an adaptive restart of 0.001 * ET to reflect a situation with almost no restart delay and 10.0 * ET to

reflect one with a long restart delay. Table 5.15 summarises the CCAs and corresponding restart delays

and introduces the notation for the new CCAs used in Table 5.16. Table 5.16 presents the results of this

experiment combined with previous results. The CCAs are ranked in decreasing order of T.

CCA R DLY CCA R_DLY

2PLU 2 seconds BTO 2 seconds
XBTO 1 second

<A2PLU 0.001 * ET <ABTO 0.001 * ET

=A2PLU 1.000 * ET =ABTO 1.000 * ET
>A2PLU 10.000 * ET >ABTO 10.000 * ET

Table 5.15: CCAs with R_DLY Values

An asterisk (*) beside 2PLU, BTO or XBTO indicates that the R_DLY was greater than or equal

to the average tramaction ET.

el

T-RJRQ (MAN -I

I sv PRE ZPLE <ABTO BTO* XBTO* =ABTO >ABTO <A2PLU =A2PLU ZPW* >AZPW

2 PRE sv 2PLE BTOO XBT'O* -ABTO >ABTO <ABTO <A2PLU =A2PLJJ 2PLUO >A2PLU

5 PRE >ABTO BTO wAHTO XBTO <ABTO sv >A2PLU -A2PLU 2PLE 2PLU <A2PUU

10 PRE >ARTO =ABTO BTO sv XBTO >A2PLU =A2PLT-J <ABTO 2PLE 2PLU <A2PLU

TJREQ GRAN - 10

I sv PRE BTOO XBTOO >ABTO -ABTO <ABTO 2PLE <A2PLU =A2PLU >A2PLU 2PLU*

2 sv PRE BTOO >ABTO XBTO* =ABTO <A13TO >A2PLJJ 2PLE 2PLU* =A2PLU <A2PLU

5 PRE sv >ARTO BTOO XBTOO =ABTO >A2PLU =A2PLU 2PLE 2PLU <A2PL; U <ABTO

10 PRE >ABT'O sv BTOO -ABTO >A2PLU XBTO =A2PLU 2PLE 2PLU <ABTO <A2PLU

LC

0% sv PRE 2PLE >A2PLU 2PLUO =A2PLU <A2PLU BTOO >ABTO X13TO* mABTO <ABTO

2096 sv PRE 2PiE >ABTO XBTO* =ABTO <ALBTO >A2PLU ZPW* HTO* =A2PW <A2PLU

50% sv PRE 2PLE >ABTO >A2PLU 2PLU* BTO* mA2PLU <A2PLU X13TO* -ABTO <ABTO

80% PRE sv BTOO >ABTO 2PLE XBTO* >A2PLU 2PLU* wA2PLU <A2PLU =ABTO <ARTO

100% sv PRE BTO* >ABTO XBTO* >A2PLU 2PLE =ABT'O <A2PLU =A2PLU 2PLU <ARTO

Table 5.16: Simulation Results: Ranked CCAs

Tables of T, RC, BC and ET for (2PLU, >A2PLU, =A2PLU, <A2PLU) and (BTO, XBTO,

>ABTO, =ABTO, <ABTO) are given in Appendix 4, Tables A4.20 to A4.25. The statistical results of

the tests are not reported but are of the same level of accuracy as the main experiments.

At lower levels of conflict, T-REQ = 1,2, increasing R_DLY has little effect. In fact, for

GRAN = 1, <A2PLU and <ABTO perform best. Examination of Appendix 4, Tables A4.20 to A4.25

shows little difference in T and RC at this level. As PC increases, increasing R-DLY improves

perfonnance. The relationship of R-DLY to ET is also important. The two cases where R_DLY is

much less than ET, <A2PLU and <ABTO, tend to have lowest T as PC increases.

Of more interest in Table 5.16 is the occurrence of groupings of 2PLU, =A2PLU, >A2PLU and

BTO, XBTO, =ABTO, >ABTO, especially at lower levels of conflict. In low conflict situations,

increasing R-DLY improves performance slightly but not relative to the other CCAs. For BTO, there is

a relative improvement at (GRAN = 10, Tý_REQ = 10) and LC = 20%, 50%. Adaptive restart for 2PLU

does improve performance over 2PLE in some cases where conflict is higher. ((GRAN= 1,

Tý_REQ = 5,10); (GRAN = 10, T_REQ = 1,2,5,10); LC = 100%).

To surn up, R-DLY greater than ET generally gives better performance. Setting R-DLY much

larger than ET does not give a proportionally greater increase in performance as shown by >A2PLU and

82

>ABTO. Further, there is little performance increase relative to the other CCAs. From this simulation

study we conclude that in fact the adaptive restart technique does not have a strong influence on CCA

perfon-nance as long as R,
-DLY

is greater than ET.

5.5. Simulation: Summary and Conclusions

The simulation was set up to model the protovyW testbed and examine the behaviour of the CCAs

tested using the prototype. A reasonably simple model was adopted using fixed cost overheads, for CPU

and 10 for both the transaction processing and the concurrency control. As such, the information

yielded by the model was limited to throughput values, elapsed times and restart and block counts. No

priority was given to the queues for CC 10 and CPU in order to reflect the situation of the prototype. A

fixed blocking and restarting time was used, corresponding to the times in the protorype. Results were

presented with a 90% confidence interval expressed as a percentage of the mean value. Additional

measures for overhead and efficiency were introduced. Since this is a comparitive study, the results

were also summarised in order of decreasing T.

From Experiment 1, it was found that PRE emerged at the "best" CCA, the relative performance

of 2PLE and 2PLU decreased with increasing PC and that of BTO increased. The adaptive restart,

setting R_DLY equal to the average ET, perfonned less well for BTO and better for 2PLU. Ilie

importance of the relationship between R-DLY and ET emerged. These results were also found in

Experiment 2 where SV and PRE emerge as "best" CCAs.

A second set of experiments investigating the adaptive restart technique and values for R-DLY,

showed that with a very small R_DLY relative to ET, performance fell and RC increased. A reasonable

value seems to be one greater than ET although a large increase of R_DLY relative to ET did not yield a

proportional increase in performance. The effect of varying R_DLY with respect to ET was found not

to produce an increase in performance relative to other CCAs at most factor levels.

71e results also allow the performance of static and dynamic locIdng to be compared, the former

giving better performance at all factor levels. The effect of writelock placement was measure by

comparing 2PLE with 2PLU and to a lesser extent the effect of the fake restart assumption by comparing

83

Experiment I results with Experiment 2. The relative order of locking based policies remained (PRE,

2PLE, 2PLU) when fixed B-DLY and R_DLY were used. Ille cost of upgrading locks reduces

performance although less so than the cost of setting dynamic locks with respect to static locks. The

effects of granularity were measured in Experiment 1. Finer granularity gave better performance at all

factor levels. In general the locking policies were more affected by coarser granularity.

5.6. Comparison with the Prototype.

The results of the simulation experiments are now compared with those from the prototype.

Firstly a summary of the results is presented in Table 5.17 with the CCAs ranked in descending order

of T.

T-REQ PROTOTYPE GRAN =1 SWULATION GRAN -I

1 sv 2PLE BTO ABTO PRE 2PLU A2PLU SV PRE VIE BTO ABTO A2PLU 2PLU

2 2PLE PRE sv ABTO BTO A2PLU 2PLU PRE sv 2PLE BTO ABTO A2PLU 2PLU

5 znx PRE A2PLU sv ABTO BTO 2PLU PRE BTO ABTO sv A2PLU 2PLE 2PLU

10 ABTO PRE 2PLE A2PLU sv 2PIAJ BTO PRE ABTO BTO sv A2PLU 2PLE 2PLU

T-REQ PROTOTYPE GRAN - 10 SDAULAIION GRAN - 10

I 2PU PRE ABTO A2PLU BTO 2PLU sv SV PRE BTO ABTO 2PLE A2PLU 2PLU

2 PRE 21AX ABTO A2PLU sv BTX) 2PLU sv PRE DTO ABTO 2PLE 2PLU A2PLU

5 PRE ABTO A2PLU 2PLE sv 2PLIJ 19TO PRE sv BTO ABTO A2PLU 2PLE 2PLU

10 PRE ABTO sv 2PLE A2PW 2PLU BTO PRE sv BTO ABTO A2FlLU 2PLE 2PLU

L. C PROTOTYPE SDwRJLATION

0% sv BTO ABTO PRE 2PLE 2PW A2PLU SV PRE 2nx 2PLU AZPLU BTO ABTO

20% PRE 2PLE ABTO A2PLU sv BTO 2PLU SV PRE 2PLE ABTO 2PLU 13TO A2PLU

50% PRE ABTO 2PLE A2PLU sv 2PLU BTO SV PRE 2PLE 2PLU BTO A2PLU ABTO

80% PRE 2PLE ABTO A21PLU sv 2PLU BTO PRE sv BTO 2FLE 2PLU A2PLU ABTO

100% A2PLU PRE ABTO 2PLE sv 2PLJJ STO sv PRE BTO 2PLE ARTO A2PLU 2PLU

Table 5.17: Summary of Prototype and Simulation Results: Ranked CCAs

Clearly the simulation model is a greatly simplified model of the prototype system. The aim here

is to show whether the trends in the simulation results coincide with those of the prototype. The two

sets of experiments also provide a fi-amework in which to explore the similarities, differences and

assumptions underlying the model.

84

5.6.1. Experiment 1

One obvious difference in the performance of the adaptive restart versions. In the prototype,

performance improved dramatically and in a number of cases, the adaptive restart version ranked first or

second and the non adaptive restart version ranked second last or last. Explanation of this behaviour has

been given above in Section 5.4.

One approach is therefore to compare the fixed length blocking and restarting CCA versions and

the relative movement in Table 5.17. In both the protorAx and simulation, the performance of PRE

increases as PC increases. That of SV decreases at GRAN =1 but increases again in the prototype at

GRAN = 10. At GRAN = 1, the relative performance of 2PLE decreases in the simulation but less

conclusively so in the prototype results. At GRAN = 10, the relative performance of 2PLE decreases in

the protovAx but remains static in the simulation. For BTO there is a performance decrease in the

prototype results but increase in the simulation results. In all cases 2PLE performs better than 2PLU. in

the prototype, 2PLE sometimes performs better than PRE but inspecting the T values shows that the

difference is small. PRE always performs better than 2PLE in the simulation.

The differences in R-DLY with respect to ET suggest that a similar effect may be caused by

B-DLY. In the prototype experiment, B-DLY is less than ET whereas in the simulation it is mainly

greater. B_DLY > ET implies a potentially greater number of blocks and since blocked transactions

hold existing locks for longer periods, more wasted time since checking for released locks is performed

less frequently. This affects 2PLE and 2PLU in the simulation experiments. PRE is unaffected since no

resources are held while blocked. R,
_DLY > ET on the other hand would benefit pure restart based

CCAs such as BTO and SV. This is the case in the simulation. In the prototype where R-DLY < ET,

restart based CCAs are disadvantaged since cyclic restart situations can now arise. This would explain

the difference in results for BTO and the relative position of SV. Given the optimistic assumption

underlying SV, that conflicts are rare, it is not surprising that perfonnance degrades as PC increases.

The relative difference between SV and 2PLE, the latter tending to perform better in the prototype, may

'be explained by the effect of B_DLY with respect to ET. Similarly the differences between BTO and

2PLU could arise from the effect of B_DLY with respect to ET. In both the prototype and the

as

simulation, 2PLU generally seems to have the worst performance. Both B_DLY and R_DLY

differences with respect to ET affect 2PLU so that it is difficult to determine which effect is dominant.

The trend can be measured by the overhead values which tend to increase under blocking effects and

decrease under restarting effects.

5.6.2. Experiment 2

In this experiment SV performed less well in the prototype. Again this may be explained by

R-DLY < ET, allowing restarted transactions to reenter the system earlier and increase the risk of

conflict, since restarts here are non fake. Differences in 2PLE, 2PLU and BTO can also be explained as

in Experiment 1, in terms of the relationship of B-DLY and R_DLY to ET. Further research aimed at

establishing a more precise relationship between ET and the blocking and restarting delay times would

be useful in this area.

5.6.3. Comments on the Comparison

One point highlighted by the comparison, is the difficulty of calibrating a simulation model and

determining the relationship between paramaters. In the SU tests of Chapter 3, CPU was found to be the

main overhead of a transaction (Table 3.8). Comparing overheads for CCAs, 10 emerges as the main

overhead (Table 4.5). In the simulation tests, the CC costs were set to be about 10% of the transaction

costs. Such choices are made to model particular situations and it is difficult to predict the sensitivity of

the model to these choices. This point is further discussed in Chapter 6.

Comparison with any prototype system can at best be only approximate because of the large

number of parameters involved. In Chapter 3, the behaviour of the prototype was examined to

determine potential bottlenecks, the synthetic data placed optimally with respect to the logical data

pages, and access costs shown to be linear as an increasing proportion of the database is accessed, Index

accessing was shown to be efficient and have little extra cost. Interpretation of the results however still

involves treating the prototype as an idealised system.

86

A
, ro a result of these comparisons, a major performance factor to emerge was the difference

between the delay times, B_DLY and R_DLY, and ET. In Section 5.4 it was shown that when R_DLY

was set to a value of 10.0 * ET, the improvement in performance was small and on only a few occasions

did performance relative to the other CCAs improve.

it seems reasonable to conclude that within the simulation, the fixed value of R_DLY, which

remained below 10 * ET in all but a few cases, had little effect on the relative performance of the CCAs.

What has been demonstrated is that the relationship of R_DLY to ET is a significant determining factor

with regard to performance.

In both the prototype and the simulation, static locking performed better than dynamic locking in

Experiment 2. In Experiment I the same result was found in the simulation but in the prototype,

dynamic locking performed better at low PC.

5.7. General Conclusions

The simulation model was chosen to be reasonably simple, with a limited number of parameters.

Since the transaction and CC costs were fixed, the infonnation yielded from the model was less detailed

than that from the prototype. The performance measures from the simulation model were T, ET, RC

and BC. The simulation model also excluded other costs such as O/S overhead and deadlock detection

for dynamic locking. This seems justifiable since examination of the prototype results shows these costs

to be relatively small.

Using the simulation model, the experiments run in the prototype system were repeated and the

results compared, revealing several differences. At low conflict levels, performance differences between

the CCAs were small in both the prototype and simulation, confirming a similar conclusion reached in

[231. One. major difference between the studies is in the performance of locking vs restart techniques.

In the prototype, PRE and 2PLE showed better perfonnance than BTO. However the adaptive restart in

ABTO improved performance over 2PLE at higher PCs. In the simulation, 2PLE performed better at

lower levels of conflict and BTO better at higher levels. The restart based technique of BTO was shown

to work better in higher conflict situations in these experiments.

87

For both sets of tests, the CC infon-nation resided on disk. In the simulation model, the CC costs

were set low relative to the transaction costs on the assumption that the CC tables would be located in

the system buffer under high access frequencies. 10 was the greater overhead as predicted from the SU

tests even though the transactions themselves were CPU bound. In the prototype, 10 and CPU costs

were measured separately allowing overheads to be easily determinecL In the simulation, the model was

much simplified by assuming fixed costs. Measurement of overheads using ET produced less clear

results since two opposing factors were at work; blocldng, which increases the overhead measure, and

restarting, which decreases it. Other studies have assumed the CC information to be resident in primary

memory, hence giving a CQ-10 cost of zero. However in systems without memory sharing such as the

UNIX system used for the prototype, extra costs wiH be incurred from process to process

communication as noted in [100,66,63]. In this case communication costs replace 10 costs and a value

of zero for CC-IO is perhaps opdmistic.

Granularity has been previously studied elsewhere and the results here confirm conclusions that

generally a finer granularity in the region of 100 granules is to be preferred. It was noted however in the

prototype that in two cases, PRE and ABTO, T improved at the coarser granularity of 10 granules. This

also supports the belief that a restart based CCA (with suitable R-DLY) perfonns better at higher

conflict levels.

By comparing results from both the prototype and simulation experiments, it was shown that an

adaptive restart delay of greater than or equal to ET improved performance. Further simulation

experiments showed that a greater increase in the delay value did not improve the relative performance

of the CCA involved.

The comparison suggest that a closer tuning of the simulation to the prototype is required for

more conclusive results. As a first step, choosing different values for B-DLY and R-DLY should

improve the simulation model. B_DLY should have a value less than ET and R_DLY one greater than

or equal to ET. Further research is required to determine optimal values. For B-DLY, the balancing

factors are the locking overhead costs, which if small suggests a smaller value for B-DLY, and the

number of locks and length of time held which increase PC. Investigation into the sensitivity of the

model to changes in parameter values would also be useful.

88

5.8. Chapter Summary

The simulation model was presented and simulation techniques briefly discussed. Results, using

the simulation model, for Experiments I and 2 of Chapter 4 were presented and discussed. Several

issues in CCA performance were covered including blocking vs restarts, dynamic vs static locking, lock

upgrade costs, CC overhead costs, the effects of granularity and the adaptive restart technique.

second, more detailed discussion of adaptive restart was presented, followed by a summary of and

conclusions from the simulation experiments. These results were then compared with those of the

prototype. Finally conclusions and some improvements to the simulation model were presented.

89

Chapter 6

COMPARISON WITH OTHER STUDIES

In this chapter, the results from Chapters 4 and 5 are compared with other studies in the literature.

In the majority of cases a detailed comparison is not possible, for reasons discussed in Chapter 2 but

where possible, such a comparison is attempted.

6.1. Experimental Studies

Three experimental studies were cited in Chapter 2 [66,82,631. These studies are discussed

further in the foHowing sub-section.

6.1.1. OPtimistic CC vs Locking

Kersten and Tebra presentad the results of a study comparing serial validation and locking [631

using the PLAIN database handler [62,120,109] and the Troll interface [121,64]. Transactions are

written using the PLAIN programming language in a Pascal-like syntax with extensions to handle

operations on relations. Tuples in the relation were stored within a tuple area and could be accessed by

key via a keyset organised as a B-Tree [8,351. Granularity within this system was at the page level and

updates were written to shadow pages before commit. The prototype system was implemented under

UNIX, Version 7.

From this brief overview it can be seen that this prototype system resembles TDBS/C in that the

approach is relational, the DML is embedded in a procedural programming language, each transaction is

assigned a DBCS and runs as a separate process and the implementation runs under UNIX. The main

internal difference is in the use of B-trees in place of hash tables for the key index organisation.

90

The prototype system of Kersten and Tebra was used to compare the performance of SV and

locking, where the locking protocol was based on share and exclusive locks, corresponding to 2PLU in

this study. Two architectures were used to implement a semaphore mechanism (which was not

available under UNIX). 'I'he first, call "decentralized", used a shared file to hold CC information and the

creation and release of a lock file to simulate a semaphore. The disadvantage of this technique is the

high overhead in terms of file system activity which was noted in Section 4.3.1 of this study. The

second technique, called "centralized", was based on the UNIX fork and Iseek primitives, the atomicity

of the Iseek primitive and a shared file descriptor. The CC information was held in primary memory by

the monitor process (corresponding to the scheduler in this study) and communication between a

transaction process and the monitor process was by means of a shared pipe and interrupts (signals).

TDBS/C uses a different technique based on the UNIX flock primitive and a shared file for the CC

information.

The database used by Kersten and Tebra was based on one relation of 32,000 tuples. Four disk

accesses were required to obtain the tuple value. The transaction, using uniform access, consisted of

three tuple searches and one non key attribute update. The number of transactions was varied from one

to ten. At all levels, SV outperformed 2PLU using both the "centralized" and "decentralized"

techniques described above. 'Me results for average transaction length (in seconds) at number of

transactions = 10 are presented in Table 6.1. The large difference in the "decentralized" 2PLU results

from the high file system overhead in semaphore simulation.

Decentralized Centralized
sv 2PLU sv 2PLU
6.13 72.26 5.79 6.50

Table 6.1: Kersten and Tebra: SV vs 2PLU, ET (seconds)

91

The nearest corresponding results from this study are presented in Table 6.2.

GRAN =1 GRAN = 10

7ý-REQ SV 2PLU A2PLU 2PLE PRE sv 2PLU A2PLU 2PLE PRE

1 12-812 14.123 14.278 13.191 13.299 19.506 18.910 15.625 13.630 13.757
2 14.624 16.924 16.667 14.508 14.590 29.562 44,187 24.050 16.832 16.545
5 25-198 39.371 25.102 19-336 20.298 62-919 499-632 40.739 55.444 23.841

10 60-161 211.973 46-262 42.696 36.099 122.326 --- --- -- 29.290

Table 6.2: This Study: SV vs Locking, ET (seconds)

Inspection of Table 6.2 shows that SV does outperform 2PLU. A2PLU outperforms SV at higher

probabilities of conflict, (GRAN = 1, T_REQ = 10) and GRAN = 10. In most cases however, both PRE

and 2PLE outperform SV and where SV performs better than PRE and 2PLE, the differences are small.

The basic assumption of SV is that conflicts are rare, the optimistic assumption. In Kersten and

Tebra's study, each transaction accesses 4 tuples (three retrievals and one update) out of 32,000 so that

conflict would be expected to be low. The actual granularity is unfortunately not statecL The authors

state that SV is investigated as a suitable CCA for query dominated environments, justifying the choice

of transaction. If PC is low then few or no restarts might be assumed and the result expressed in average

ET would hold for T otherwise restart effects must be taken into consideration.

In this study, SV was also found to perform better Om 2PLU at most factor levels but the

performance of the latter could be improved by using an adaptive restart technique. As PC increased,

the other locking techniques, 2PLE and PRE, performed better that SV. It should be noted that the

environment in this study was less favourable, to SV with T-UPD = 1.0.

In conclusion, the findings here tend to support those of Kersten and Tebra, that is, that SV

generally outperforms 2PLU. This was not the case for 2PLE and PRE so that agreement with Kersten

and Tebra's results is qualified. It was also noted that with a suitable R_DLY value as in A2PLU, the

perfonnance of 2PLU could be increased over that of SV

92

6.1.2. Other Experimental Studies

The study by Peinl and Reuter [82] compared SV, 2PLU and two further locking protocols not

relevant to this study. The database investigated used the network data model. Quantative measures

were made of (a) the number and length of blocking situations and (b) the overhead incurred by restarts

due to deadlocks ýor validation ! conflicts. In place of implementing each CCA in the database, logical

page reference strings for six applications were recorded over a period of time, giving an internal audit

trail of DBMS activities for a real database. Between 10,000 and 100,000 page references for six

transaction mixes were obtained. Ile reference strings were then input to a scheduler and performance

statistics recorded for each CCA under consideration. Granularity was at the page level.

Two parameters were defined for performance comparison, (a) F, the average degree of effective

multiprogramming, which corresponds to EMPL in this study, and (b) q, a measure of the overhead

incurred by restarts in terms of re-referencing objects. Direct comparison with this study is still difficult

since EMPL, where stated in this study, is an expected value and not an average measure at run time.

The value measured by q is expressed in this study by a combination of RC and the efficiency measure.

An overview of the main results from Pienl and Reuter's study and important points are presented here.

Ile main conclusion was:

"Optimistic schemes achieve excellent performance figures in all cases, but this evaluation does

heavily depend on the (idealized) processor model... This is especially remarkable since the

apphcations have a comparatively high amount of update transactions... A more realistic

comparison must, of course, be based on response time and throughput. "

The "(idealized) processor model" assumes that an executing transaction has no effect on any

other executing transaction. That is, a high degree of parallelism rather than interleaved processing.

Mixed workloads of long and short transactions were examined and were found to lead to problems in

the SV implementation with long transactions never validating. A technique called forward oriented

OCC was implemented where there are three possible policies on detection of conflict, (1) abort and

Testart the validating transaction, (2) kill all conflicting transactions and (3) defer validation until

93

conflicting transactions have finished. Best results were found for policy (2). Policy (1) is the same as

backward oriented OCC which was used in this study.

Despite these differences, the results of this experimental study also show that SV outperforms

2PLU. Peinl and Reuter found that SV had a higher number of restarts than 2PLU. This was found in

this simulation but the opposite was found in the prototype study. The importance of the effects and

costs of lock upgrades was noted as a major cause of deadlocks and is confirmed in this study. By

comparing results in Chapter 4 for 2PLE and 2PLU, the effects of lock upgrades can be measured both

in terms of T and RC. The effect on ET is shown in Appendix 3. These results are important since

similar conclusions are reached using radically different experimental frameworks.

The study by Kohler, Wilner and Stankovic [66] compared 2PLE, 2PLU and hierarchical locking

policies at file level (FLL), page level (PLL) and mixed file/page level (MLL). The testbed system,

CARAT [47] was based on the database system of Figure 2.1 and consisted of a number of

communicating processes. Transactions were written in Fortran with embedded DML and accessed a

network database system call WAND [49]. Each transaction process communicated with a database

server process which forwarded requests to a file server process. The latter managed the database and

journal files and allocated WAND server processes to the transaction request. In this organisation, it

was found that a very large number of process to process messages were required, the system became

CPU bound and the file server proved to be the main system bottleneck which in turn limited the

potential concurrency of the system. The system ran on a DEC VAX 11/780 under VMS with 4MB of

primary memory and two RM03 disks.

Ile two granularity levels investigated were (1) FLL, where the entire database is a granule, and

(2) PLL. Transactions were classed as small, accessing 5 records, and large, accessing 102 records on

average. Accesses were read only and records were selected uniformly with replacement. Performance

comparisons were based on T and ET for small, large and combined small/large transaction mixes.

Percentage values for the number of aborted transactions were also given. The first experiment

investigated the effects of file size (number of pages) on T. The ranked order of the policies was FLL,

MILL and PLL. Effectively this is saying that serialised execution performed better than concurrent

execution. Overall, T decreased by 9% for FLL and increased by 12% for MLL and by 31 % for PLL as

94

the number of pages increased. These results were ascribed to the design of CARAT, the fact that it was

CPU bound, and the bottleneck caused by the file server process. The experiment does show that as the

number of pages increases, conflict decreases, hence the improvement in T under MILL and PLL. A

second experiment investigated the addition of lock wait times and think times to the transaction while a

third experiment examined concurrency and locking. The conclusion was that the "best" locking policy

depended on system and transaction characteristics. FLL was found to be best in the basic system and

when the lock wait time was added, PLL best when the internal think time was added and MLL best

when both the think time and lock wait time were added. It was also noted that small transactions ran so

fast that they would be best running sequentially since the overhead in setting locks in this system was

expensive.

In comparison, TDBS/C had higher 10 overhead and no explicitly controlled lock wait time or

think time. Lock overheads were found to increase costs by a factor 2 for ET and a factor 3 for 10.

Kohler et al. compared T with a baseline, the no concurrency control case, for a read only situation (no

conflict) and the reduction in T estimated at about 12%. In Experiment 2 of this study, the no conflict

situation occurs at LC = 0%. Reduction in T was about 6%, 7% and 9% for PRE, 2PLE and 2PLU

respectively. CPU overheads were neglible and 10 overheads showed an increase of around 20%. The

results for Experiment 2, LC = 100% might be compared with FI-L in Kohler et al. The reduction in T

is about 22%, 27% and 89%. for PRE, 2PLE and 2PLU respectively in this study compared with a best

case of 11 % and worst case of 54% reduction in Kohler et al. Since such values are system dependent,

comparison remains difficult. More important is the development of a set of methodologies arising from

these studies. One important point raised in Kohler et al. is the question of scaling up prototype results

to larger real-life systems.

6.1.3. Conclusions from the Experimental Studies

Of the three experimental studies examined, that of Kersten and Tebra was closest to TDBS/C in

architecture and environment. In general, the results of this study agreed with those of Kersten and

Tebra in that SV was found to outperform 2PLU. However, in this study, other locking policies, namely

PRE and 2PLE performed better that SV. The result is of interest since in this study, update only

95

transactions were used. The second study considered here, that of Peinl and Reuter, also agrees with the

result that SV outperforms 2PLU, even in an environment containing a large number of update

transactions. Peinl and Reuter also examined mixed small/large ti-ansaction loads and noted some

problems caused by large transactions failing to validate under SV. The problem of lock upgrades and

the effect on CCA performance was also noted. Mixed loads were also studied by Kohler et al. Such a

study under TDBS/C must be left for future research.

The results discussed in this section are interesting in that some similar conclusions are reached

despite the radical differences in experimental fi-ameworks and performance metrics. In terms of

comparative CCA performance, this study has examined a wider range of CCAs in greater detail.

6.2. Simulation Studies

In this section, the results and conclusions of otber simulation studies are compared with the

findings in this study. Some studies of general interest are presented first, followed by a more detailed

comparison with a group of related studies.

6.2.1. Other Studies I

-Madelaine
[71] compared BTO to 2PLE in a model of a database machine (SABRE). The model

assumed infinite resources for some components in the system. The deadlock resolution for the 2PLE

was the "WAIT-DIE" scheme [90]. The general findings were that locking performed better than BTO

in high conflict situations between small transactions. BTO performed better if the average number of

requests per transaction is large or if the number of small transactions increases. The average response

time was plotted against the probability of conflict (PC) and several curves presented for different values

of number of transactions in the system. The curves showed similar shapes with an asymptote at around

PC = 0.75, for transactions making one request. This result can be compared with Experiment 2 in

Chapter 5. The ET for 2PLE in Table A4.18 does increase sharply between LC = 80% and LC = 100%,

but that for BTO is in fact decreasing. From Table 5.17, BTO outperformed 2PLE in Experiment I at

GRAN =I and in Experiment 2 as T_REQ increased. In the higher conflict situations of Experiment 1

96

where GRAN = 10, BTO outperformed 2PLE at all T_REQ values. The differences may lie in the 2PLE

deadlock resolution techniques, with greater blocking occurring in this study or in other modelling

assumptions. In the prototype experiments, 2PLE outperformed BTO at all factor levels.

Lin and Nolte in one study [691 compared BTO, 2PL and a multi-version timestamp CCA (MVT).

They concluded that when transaction size was small (4 accesses), BTO outperformed 2PL and when

transaction size was large (>16 accesses), 2PL outperformed. BTO. BTO was found to favour read only

transactions. When PC is high, waiting is better than restarting. Costs in the system were expressed as

one overhead, the communications delay, and waiting for CPU and 10 resources was not simulated.

Further, the technique used for 2PL used share locks for read transactions but set exclusive locks at read

request time for items to be updated. Lock upgrade costs were therefore not taken into account. Both

the prototype and simulation results here have shown that lock upgrades decrease performance. In our

simulation results, the performance of BTO is better than 2PLU throughout Experiment I and improves

over that of 2PLE as PC increases (by increasing T-REQ). In Experiment 2, both 2PLE and 2PLU

outperform BTO up to LC = 50%. These results seem to contradict in part those of Lin and Nolte. In

this simulation, the blocking for 2PLE may reduce EMPL more than the restarts do for BTO but as

PC/LC increases the effect of blocking is to further increase PC since the number of unblocked granules

is decreasing.

Other studies have investigated distributed algorithms [46,110,111].

6.2.2. Other Studies II

A set of studies based on a similar logical queueing model is now discussed. This model

fI17.

kFigure 2.7) has also been adopted in this study. The model is first presented by Ries [85,87,86] who

used it to investigate the effects of granularity in both centralised and distributed DB systems. In thýe

centralised case, the CCAs investigated were PRE (as defined in this study) and incremental static

locking which is labelled IPRE to distinguish it from PRE.

For PRE, balancing the lower lock overhe-ads at coarser granularity against higher lock overheads

at finer granularity, an optimum value of 10 granules resulted. If almost all transactions are small and

97

exhibit random access patterns then a finer granularity is recommended. For a large number of

transactions accessing a large proportion of the database, coarser granularity is again preferred. For

sequential access patterns, coarser granularity was also found to be the most effective. Quantitive values

suggested for coarse and fine are 10 and 100 granules respectively.

The results for IPRE were similar to those for PRE. The advantage of EPRE of only re-requesting

denied locks was more than offset by the cost of restarting deadlocked transactions. Finer granularity

benifited IPRE but overall, PRE performed better. Ries suggested that CCA information could be stored

in primary memory for greater efficiency. Even in our study where the CCA information is held in

secondary memory, our results aggree with those of Ries. Since locks are exclusive under PRE and

IPRE, the proportion of update transactions has no effect. The results of Ries are also confirmed in the

prototype experiment, where nearest equivalent to IPRE is 2PLE. At lower T-REQ and finer

granularity, 2PLE outperforms PRE. As PC rises, 2PLE is less efficient in terms of resource usage due

to restarts.

Cmey extended Ries's queueing model and performed a comparative study of seven CCAs [231.

In addition to the five in this study (PRE, 2PLE, 2PLU, BTO, SV), two additional CCAs were studied:

WD (2PLU with "WAIT-DEE" deadlock prevention [901 and TWW (BTO with the Thomas Write Rule

[1121)). Under the no blind writes assumption, TWW performed identically to BTO.

In this study, both the logical and physical queueing models used by Carey were adopted as the

basis for the simulation implementation. Since there are a number of papers based on this model this

provides a reasonable framework for comparison. The simulation here was used to model the prototype

testbed and these results compared in Chapter 5.

ne relevant simulation results from Experiment 1 are now compared with the corresponding

results of Carey. Firstly the differences in parameter values and factor levels are presented in Tables 6.3

and 6.4, followed by a comparison of quantitive results for T and RC in Tables 6.5 and 6.6. The

comparison is made for PRE, 2PLE, 2PLU, BTO and SV for fixed blocking and restarting delays.

Carey's results are presented in brackets. Finally, Table 6.7 summarises the comparison by ranking the

CCAs in order of decreasing T.

98

Factors Factor Levels
DATABASE:

DB
-

SZ 1000 tuples (10000 objects)
DB

-
PG 100 pages

GRAN 1,10 pages/granule (100,10 granules)
NR 1 (1)

TRANS:
NT 10 (10)
T_REQ 1,2,5,10 (1,2,5,10 (mean values))
T_ACC random (random)
T UPD 1.0 (0-5)

CC:
CCA PRE, 2PLE, 2PLU, BTO, SV (PRE, 2PLE, 2PLU, BTO, SV)
MWL 10 (10)
B-DLY 2 seconds (I second)
R DLY 2 seconds (1 second)

Table 6.3: Factor Level Comparison: This Study/(Carey)

Parameter Value (MiHiseconds)
CC-10 2 (0)
CC-CPU 3 (1)
TR-10 20 (35)
TR CPU 25 (10)

_STGM
20 (20)

Table 6.4-, Parameter Value Comparison: This Study/(Carey)

The differences in factor levels occur in T_REQ where Carey used stochastic values, in T_UPD

and in the delay values B_DLY and R_DLY. The parameter value differences are mainly in the CC

overheads where Carey assumes the CCA tables to be resident in primary memory. The transaction

costs, IR_10 + TR-CPU, are the sme. The allocation of values to TRJO and TR-CPU was based on

the SU results of Chapter 3.

Table 6.5 below gives a comparison of T values and Table 6.6, RCs for this study and the relevant

figures from Carey's study which are given in brackets.

99

GRAN= 1 (100 Granules)

7ý-REQ PRE 2PLE 2PLU BTO Sv

1 17.8W (11.420) 17.760 (11,419) 16.270 (11-373) 16.650 (11.328) 18.640 (11.262)

2 9.069 (7.163) 8.769 (7.161) 7.786 (7.039) 8.390 (6.906) 9.052 (6.714)
5 3.425 (3.360) 1.976 (3.335) 1.952 (2.823) 3.077 (2.231) 2,974 (2.408)

10 1.397 (1.759) 0.481 (1.414) 0.442 (0.827) MY74 (0.235) 0.980 (0.784)

GRAN 10 (10 Granules)

7ý-REQ PRE 2PLE 2PLU BTO Sv

1 -15.770
(11.421) 8.456 (11.420) 6.613 (10.971) 14.560 (10.648) 16.572 (10.314)

2 6.775 (7.161) 1.685 (7.096) 1.521 (5.974) 6.690 (5.119) 7.239 (5.231)
5 2.173 (3.028) 0.234 (2.097) 0.169 (0.946) 1.687 (0.405) 2.005 (1.200)

10 1.045 (1.415) 0.032 (0.432) 0.024 (0.074) 0.458 (0-004) 0.649 (0.355)

Table 6.5: Throughput Comparison, This Study/(Carey)

GRAN =1 (100 Granules)

Tý_REQ PRE 2PLE 2PLU BTO Sv

1 0 (0) 0 (0) 52 (109) 55 (224) 76 (378)
2 0 (0) 0 (3) 63 (247) 67 (508) 127 (879)
5 0 (0) 12 (66) 63 (907) 114 (1910) 193 (1617)

10 0 (0) 40 (769) 62 (1543) 193 (2492) 200 (1612)

GRAN = 10 (10 Granules)

7ý-REQ PRE 2PLE 2PLU BTO Sv

1 0 (0) 0 (0) 15 (1096) 268 0909) 311 (2753)
2 0 (0) 13 (242) 131 (2366) 299 (4071) 348 (3844)
5 0 (0) 65 (3123) 117 (4061) 359 (4940) 346 (3651)

10
I

0 (0) 81 (4223) 118 (2816) 383 (2848) 263 (2293)

Table 6.6: Restart Count Comparison, This Study/(Carey)

Comparing results for BTO and SV, which use restarting, T is higher and RC lower in this study.

For the locIdng based methods, as PC increases, T tends to be lower despite the lower RC. Carey's

study did not provide figures for blocking counts (13C) so it is not possible to compare these directly.

Carey concluded that locking based CCAs outperfonned resrart base CCAs. In this study, with the

exception of PRE, the opposite is true.

In both studies 2PLE pefonned better than 2PLU, and PRE generally perfonned better than 2PLE.

In the majority of cases, SV performed better than BTO. Carey found that 2PLE outperformed both

BTO and SV whereas the results of this study are less defi-nite. In this study, the restart based CCAs

perform better probably due to the increased R-DLY whereas the locking based CCAs perform worse

with an increased B_DLY. The result of the adaptive restart from Chapters 4 and 5 support the

argument that increased R_DLY favours, restart based transactions. Comparison of the two studies also

100

indicates that the smaller B_DLY improves T for the locking based CCAs. Recall that PRE and 2PLE

will be unaffected by the T_UPD value although the transactions in this study will have extra overhead

from TR-10 caused by the write.

GRAN 1 (100 Granules)

T-REQ This Study Carey

I Sv PRE 2PLE BTO 2PLU PRE 2PLE 2PLU BTO Sv
2 PRE Sv 2PLE BTO 2PLU PRE 2PLE 2PLU Sv BTO
5 PRE BTO Sv 2PLE 2PLU PRE 2PLE 2PLU Sv BTO

10 PRE BTO Sv 2PLE 2PLU PRE 2PLE 2PLU Sv BTO

GRAN 10 (10 Granules)

T REQ This Study Carey

I Sv PRE BTO 2PLE 2PLU PRE 2PLE 2PLU BTO Sv
2 Sv PRE BTO 2PLE 2PLU PRE 2PLE 2PLU Sv BTO
5 PRE Sv BTO 2PLE 2PLU PRE 2PLE Sv 2PLU BTO

10 PRE Sv BTO 2PLE 2PLU PRE 2PLE Sv 2PLU BTO

Table 6.7: CCA Rank Order by Descending T, This Study/Carey

The CCAs from both studies are given in Table 6.7, ranked in order of decreasing T. In both

studies, the relative rank order of the three locking CCAs is the same: PRE, 2PLE, 2PLU. For BTO and

SV, the differences are greater. Table 6.6 shows that in Carey's study the RC for BTO and SV is higher,

in some cases considerably. In this study, both B-DLY and R_DLY are twice the corresponding value

in Carey, thus removing blocked and restarted transactions from the system for longer periods and

implying a lower ENDL. CCAs based solely on restarts, BTO and SV, will then have fewer conflicts.

This seems to be confirmed by the higher T under BTO and SV in this study. Examining ET values in

Appendix 4, Tables A4.9 and A4.11 also shows that in most cases, ET < R-DLY for transactions under

BTO and SV.

With an increased R-DLY, CCAs based on locking will incur higher cost per block, increasing

ET and consequently reducing T. The values in Table 6.5 confirms this. Direct comparison on blocking

patterns is not possible since BC was also not provided by Carey. Increasing B-DLY therfore seems to

reduce the performance of locking based CCAs but increasing the value of R-DLY seems to improve

the performance of restart based CCAs.

The difference in T-UPD does not affect PRE and 2PLE so that differences for PRE and 2PLE

can be ascribed to the effects of B_DLY. The increase in update transactions wiH produce greater

101

conflict and a further reduction in ENPL under 2PLU, BTO and SV. The RC for Carey's results for

10 granules suggest thrashing and cyclic restarts were occurring. Carey notes this in the case of BTO at

higher T_REQ values as an algorithm anomaly.

The main outcome of this comparison is in demonstrating the diffrence in results under different

assumptions and parameter values using basically the same model. The major difference in this study

being the longer delay times and setting all transactions to be update transactions. The CC overheads

were set to higher values to reflect the use of secondary memory for the CC information in the

prototype. In addition, this study investigated the effects of adaptive restarts for 2PLU and BTO. Again

there is no "best" CCA although the very conservative approach under PRE gave good overaH

performance in both studies. The relative movement under different factors and assumptions is of more

importance in understanding CCA performance.

The model used by Carey was further extended in a study by Agrawal. [4,3j. The extensions

consisted of the addition of think times in the object access and a delay time in the restart. See

Figure 2.7. Agrawal et al. examined the performance of two versions of 2PLU and SV under different

assumptions concerning resources, modelling of restarts (fake/non fake) and write acquisition policies.

Resources were modelled from being finite (1 CPU, 2 disks) to infinite. Here we are mainly concerned

with the results for the finite resource case. The database comprised 1000 objects, transactions had an 8

page readset (maximum 12, minimum 4) with T_UPD = 0.25 and transaction overheads

(TR_CPU` + CC-CPU + TRJO + CQ_IO) set at 50 milliseconds. A variation of 2PLU used immediate

restarts to resolve conflicts [1071, where instead of blocking the transaction is restarted after a delay of

approximately ET (the delay is adaptive). This algorithm is referred to here as I2PLU. The other

version corresponds to 2PLU as defined in this study. Both the 2PLU and SV algorithms did not have

restart delays.

The results of Agrawal et al. showed that for the finite resource ýcase, T peaked at MIPL = 25 for

2PLU and at MPL = 10 for I2PLU and SV. Maximum T was obtained with 2PLU and 12PLU

performed better or as well as SV, restarts being more expensive for the latter. The restart mechanism

of 12PLU was noted as a crude mechanism for limiting the NTL when restarts become frequent. It was

also suggested that a restart delay would benefit the Performance of 2PLU and SV- The blocking CCA

102

gave the best performance and was considered best for situations with medium to high levels of resource

utilisation. Restart policies were considered better for situations where a Large amount of wasted

resources could be tolerated and a large number of transactions were available to execute, in which case

SV was the best choice. This situation could occur in a database machine with a large number of CPUS

and disks or, in a primarily interactive environment where transactions have large think times. However

doubt was voiced as to whether this reflected real systems in which case blocking was the solution. It

was also noted that VIPL should be carefully controlled to avoid thrashing behaviour and an adaptive

algorithm to control VPL was proposed.

While concentrating on the effects of resource assumptions (finite/infinite), the study also

examined assumptions about restarts and write lock acquisition, again using 2PLU, 12PLU and SV.

Restart based CCAs were shown to be more sensitive to the fake restart assumption, non fake restarts

giving lower T, although there was little difference at NTL < 25. Tle write lock acquisition policy had

a significant effect on T. Again 2PLU emerged as the best CCA.

In this simulation study, there is no equivalent to 12PLU, ABTO being the nearest. The 2PLU

version of Agrawal et al. corresponds to <A2PLU (small restart delay) and SV is the same CCA but

used here with a fixed length restart. Examining Tables 5.16 and 5.17 reveals that overall, SV

performed best. In Experiment 1, where restarts were fake, <A2PLU performed worst and in

Experiment 2, where restarts were non fake, ABTO performed worst at LC = 50%, 80%. Although we

should beware of making direct comparisons, the results suggest that the performance of SV is

considerably enhanced by a restart delay and even when compared to BTO in Table 5.17, still performs

better. In a comparison of SV, BTO and 2PLU, where each has the same fixed R_DLY, the conclusions

from this study are still that overall SV performs best and 2PLU worst. One other difference between

the two studies is in T-UPD. The higher update rate in this study has possibly led to a higher restart rate

and greater reduction in ENTL, favouring the restart based CCAs. On the write acquisition assumption,

the results here show that it can have considerable effect on CCA performance. Differences between

Experiments I and 2 here also support the conclusion about restarts in Agrawal et al. Even with a

similar model, different assumptions reflecting our simulation model of the prototype have led to

different conclusions. By contrasting these differences, the behaviour of the CCAs under varying

103

modelling assumptions is explained.

6.3. An Analytic Study

In the previous sections, the results of this study have been compared with other related

experimental and simulation studies. We conclude by comparing the results with those from an analytic

study of locking perfonnance [1071. nis is a compilation of previous works [105,106,1031 in turn

derived from [1041.

The model used, considered the database as a set of granules, a number of transactions making

requests to a scheduler (the CCA) and was represented as a flow diagram. A set of equations was

derived describing the behaviour of the system using steady state average values. It is also noted that

within the system, ENTL cannot be known exactly. Two factors influence locking performance:

1) DC, data contentionover access to data granules

2) RC*, resource contenfion over access to OS resources

RC is mainly factored out in Tay's study but is reintroduced from time to time to make statements about

real systems.

When too many transactions access some shared data, DC-thrashing is said to occur. The DC-

thrashing point is where the two forces affecting T balance out. These forces are (1) increasing the

number of transactions which increases T and (2) the resultant increase in conflict which reduces T. The

two main parameters of the model were "k ", the number of lock requests per transaction and the load

'W', defined as "N/D", where "N" is the number of transactions and "D" the number of granules. Two

techniques are used to resolve conflicts:

1) immediate restart: the "no-waiting" case

2) blocking: the "waiting" case

* RC in this section is used to refer to resource contention and NOT restart counts as elsewhere in this documenL

104

The DC-workload was defined as k2X and a rule of thumb gave k 2X <6 for the "no-waiting" ease and

k2k < 1.5 for the "waiting" case. Two classes of transaction were defined, query and update, which set

readlocks and writelocks respectively. Uniform access was assumed. Different length transactions were

studied as well as mixes of query and update transactions. Both static and dynamic locking were

considered.

Before comparing results, the DC-workloads for this study are presented in Table 6.8. In

Experiment 1, k is T-REQ. In Experiment 1, D is decreasing.

T-REQ 1 2 5 10
GRAN =1
GRAN = 10

0.1
1.0

0.4
4.0

2.5
25.0

10.0
100.0

LC 1 20% 50% 80% 100%
1.7 3.3 10.0

Table 6.8: Experiments 1 and 2: M-workload

In both the protoPA)e and simulation runs in this study, no distinction in DC/RC was made. This

introduces a new factor into the performance evaluation discussion, which may prove useful in

explaining CCA behaviour. RC and RC-thrashing are dependent on EVIPL and/or the available

resources. Since in this study the resources were fixed and limited, RC will be interpreted as depending

on ENIPL.

Comparison of the "waiting" and "no-waiting" cases, that is blocking and restarts, showed that as

N increased, restarts performed better despite a high restart rate. If the cost of restarts is high then

blocking performs better. At low levels of RC, restarts performed better. The "waiting" case in our

study is 2PLE but there is no precise equivalent to the "no-waiting" case. The nearest equivalent is

BTO.

For 2PLE, DC-dirashing occurs at (GRAN = 1, T-REQ = 5,10), (GRAN = 10,7ý_REQ = 2,5,10)

and LC > 20%. For BTO the corresponding values are (GRAN = 1, T_REQ = 10), (GRAN = 10,

T_REQ = 5,10) and LC = 100%. In the protorAv, restarts were found to perform well under ABTO

which gave a greater reduction in EMPL, hence RC, supporting Tay's result that restarts performed

better at low RC. Further, the restarted transaction costs are lower under ABTO (Appendix 3). Beyond

the DC-thrashing limits for 2PLE, the restart costs for ARTO were lower than those for 2PLE. The

105

result depends on R_DLY. Tay suggested an average conflict avoidance delay of ET/2. In the

prototype 2PLE/BTO comparison, the restart costs for BTO, where R-DLY < ET/2, are more expensive

than those for ABTO. The simulation results also agree with Tay's assertions (recall that BTO here has

a large R_DLY compared to ET) with BTO performing better above the DC-thrashing point for 2PLE.

Comparing atomic static locking with dynamic locking, that is PRE with 2PLE in this study, Tay

predicted PRE would perform better when 2PLE starts to thrash at some level of N. Again RC will

determine the cross-over point between T for PRE and 2PLE. In our simulation study, PRE performed

better that 2PLE throughout. For 2PLE in both the simulation and prototype, restarts occur beyond the

DC-thrashing points predicted by Tay. In the prototype, 2PLE performed slightly better where PC is

lower, that is under the light DC-workload condition of Tay's study.

The effects of parametric changes in the model for N, k, and D wereexamined. Increasing N led

to more restarts which would be expected since PC would be expected to rise. Increasing k was shown

to reduce T and increase the restart costs, presenting an argument in favour of short transactions.

Restart costs in Appendices 3 and 4 agree with this result. As the granularity D increased, a point is

reached where finer granularity makes little difference to T. A curve of T vs D was presented, firstly

decreasing at coarse granularity due to excessive DC, then increasing and finally decreasing again, with

excessive RC taking place. It was noted that the choice of system parameters would define a window on

this granularity curve. In this study only two granularities were examined since the subject has been

already investigated in detail [85,87,86,23,251. The finer granularity gave better performance.

Tay concluded his study with a comparison with other analytic and simulation studies, including

those of Carey and Agrawal. Carey concluded that blocking was preferable to restarts in most

situations, even with heavy DC-workloads. The apparent contradiction with Tay's results was explained

by possible high RC in Carey's study. A second point noted is the effect of R_DLY on restarts where

Tay noted that in Carey's study the conflict avoidance delay was less than the response time. This is

confirmed by results in this study for the cases R-DLY < ET and R-DLY = ET in the prototype

experiments (BTO and ABTO respectively). Carey ascribed his result to the correlation between a high

restart count and low T. In one of his experiments (10 granules, mean value of 10 granules accessed)

2PLE had a higher restart count than BTO but still better T. Carey explained this by suggesting that

106

under 2PLE, transactions restarted earlier in their lifetimes. Tay notes that in such high conflict

situations, the number of blocks will also rise. Ilis can be observed in the simulation results in

Appendix 4. The high block count will reduce EVEPL and hence RC, confirming Tay's explanation.

Despite the fact that, as in Carey's study, the results presented here lie partly in the thrashing

region as defined by Tay, there is general agreement on a number of points. Tay also contributes a

number of ideas which are useful in interpreting CCA performance results.

6.4. Conclusions

In comparing the results here with other studies, in some cases the results agree and in others,

where the outcome apparently contradicts results of previous studies, examination of different

assumptions and parameter settings has accounted for such differences. In the prototyrpe and other

experimental studies, SV was found to perform well under a wide range of assumptions, including high

incidence of update transactions. This is perhaps surprising in view of the basic assumption for SV to

perform well, namely that conflicts are rare. The results here agreed with those of Kersten and Tebra,

that SV outperformed 2PLU but with the qualffication that other locking policies, PRE and 2PLE,

outperformed SV in some cases. That SV outperforms 2PLU also agrees with the result of Peinl and

Reuter who used a radically different experimental framework. Results from this prototype were also in

agreement with some conclusions of Kohler et al. which examined only factors affecting locking

performance.

The results from the simulation studies under consideration were less clearly in agreement.

Again, contrasting assumptions and parameter values led to the conclusion that the relationship between

restart and blocking delay times, R-DLY and B-DLY, and ET is an important factor in determining

CCA performance. Comparison of values from Carey's study show similar trends as T_REQ increased

but gave different relative performance orders for the CCAs. From the adaptive restart delay results in

Appendix 4, Tables A4.20 to A4.25, the effect of R_DLY on T, RC (restart count), BC and ET can be

seen in quantitive terms. This comparison and that with the study by Agrawal et al. suggest that the

model is sensitive to changes in assumptions and parameter values. Lock upgrades were shown to have

107

a high cost, which has not been considered in some previous studies, and the effects of restart

assumptions were notecL

Finally, comparison with the analytic model of Tay introduced some new concepts to explain

CCA perfon-nance: the separation of data and resource contention considerations. Results in this study

confirmed some predictions by Tay, in particular the behavior of locking algorithms in DC-thrashing

regions. The results suggest that further detailed comparison with the analytic model may well prove

useful.

From most of the above studies, PRE remains a good "best" choice of CCA where it is possible to

determine transaction requirements in advance. Otherwise, our results suggest a restart based technique

with adaptive restart delay will give good performance. The comparison highlighted important points

about the choice of parameter values for the model and explained apparently contradictory results. Each

of the studies has by necessity had to restrtict the number of factor levels studied which in turn imposes

a window on the performance space. Tay notes this as a disadvantage of simulation (and by extension,

prototyping). The advantage of analytic models is the relative ease with which parametric changes can

be studied. The great difficulty is in interpreting an analytic model in terms of a real life database.

6.5. Chapter Summary

The prototype results were compared with those of the few other experimental studies performed

to date. The conclusions from these experimental studies agrud Next, the simulation results were

compared at a general level with two previous simulation studies. A more detailed comparison was then

undertaken with a set of simulations studies based on the same model and differences and similarities

explored. Lastly a comparison with an analytic study was made and points of agreement noted. From

these comparisons, a better understanding of the mechanisms of CCAs in different contexts was gained

which helped further clarify the results of previous chapters.

108

Chapter 7

SUMMARYAND CONCLUSIONS

In this final chapter, the results and conclusions of this study are summarised, reviewed and

placed in the wider context of other studies concerning database performance. The limitations of this

study are noted and points made for future research.

7.1. A Wider Context

In examining database technology, a wide range of techniques, both hardware and software, has

been implemented in order to improve performance. Hardware solutions have included database

machines, for example the Bitton Lee IDW500*, or specialised hardware as in ICL CAFS [6,19]. The

software approach is the more usual and includes many systems currently operational. This approach

includes optimisation of database sub-parts and [102,70] and extension of existing programming

language features [97,88,281. Between these two approaches lies the "firrnware" approach involving

operating system extensions [101,1021 or bypassing the file system and providing direct access to the

tf raw" disk as in WiSS (Wisconsin Storage System) [271 implemented under UNIX. In this context,

TDBC/C running in single-user mode represents a software implemented system running on a dedicated

machine (software database machine).

Although optimal conditions within the database organisation were created (Chapter 3), no

performance improvements have been carried out. Similarly no external load, representing other non-

DBMS users of the O/S was added [17). A realistic estimation of such loads is at best extremely

difficult and system dependent. Again, in the wider context, experimental benchmarks of database

systems are few. Performance measurements of the IDM 500 database machine and "university" and

11 commercial" INGRES appeared in [17] (the single user case) and [18] (the multi-user case). The two

* Bitton Lee InQ, Los Gatos, Califomia, USA.

109

INGRES versions were compared with WiSS in [27]; the performance of INGRES and ORACLE

compared in [80]. A more descriptive evaluation of INGRES, DREANVCS5 (a Swedish product,

written in C running under UNIX), PROGRESS (a relational based system) and UNIPLEX-II/DBMS

(C/IJNIX version) was given in [831. Other evaluations have also been more descriptive than quantitive

[22,1081. Evaluations of commercial products are no doubt also rare because of commercial

sensitivities. New technologies will change the order of magnitude of DB costs, but not the

fundamental components of the database system, including CCAs, hence the methodology used here

will still be valid.

7.2. Review of This Study

The component parts of this study, the prototype system TDBS/C, the CCAs, the prototype and

simulation experiments are reviewed. Results and conclusions are summarised.

7.2.1. TDBS/C Revisited

One disadvantage of prototyping is that the results apply to a particular system running under a

particular O/S. As far as possible, the prototype was benchmarked to minimise or identify bottlenecks

or anomalies (see Chapter 3 and Appendix 5). For example, one feature, that of embedding procedure

calls to a DBCS was identified as having a substantial effect on performance, using tuple access there is

one dbcs call/access whereas only one dbcs call is made using relational access. Although only one

tuple access method was used in the prototype experiments, the benchmark results in Chapter 3 indicate

that the results can be generalised to include the other DML operations. Updates to the index

(PINDEX) were not dealt with since the test transactions updated the data only. Recall that, in these

experiments, each index page holds information on ten data pages. Two solutions are possible: (1) that

the data granule includes the corresponding portion of the index or (2) hierarchichal granularifies can be

implemented.

The NIIPL of the O/S was also not considered in detail. A preliminary experiment indicated that

costs were linear up to 25 concurrent transactions. This limit is important in determining any potential

110

thrashing limit for resource contention and also in answering Kohler's question about the effects of the

scaling up of results. Again preliminary experiments indicated that this had little effect on the relative

perfonnance. Tay also argues that scaling has little effect in order to justify reducing N (the NTL) and

D (the number of granules) to the load X, but in a real system, some upper bound must exist. From

Table 3.8, severe limits are imposed on practical experiments simply by the costs involved.

Nonetheless, in setting up a prototype system, we have shown that multiuser benchmarks are possible

using relatively simple techniques. We believe that TDBS/C is representative of modular DBMS

systems, and the choice of UNIX provides an O/S which is in widespread use.

7.2.2. The CCAs Revisited

The main points affecting the behaviour and performance of the CCAs are summarised. CCAs

included are those considered in this study and related CCAs from other studies.

PRE The transaction requirements must be known in advance or be determined by some pre-

execution analysis. Two categories are atomic and incremental static locking. Here atomic

exclusive locking was used but, if the transaction read/write requirements can be determined,

share and exclusive locks would prove a greater advantage. No work done by the transaction is

wasted and if the CCA costs are low, this method should be efficient. With atomic static

locking deadlocks do not occur but may do so under incremental static locking. All

transactions are guaranteed to commit once started.

2PLE has advantages over PRE: (1) requirements need not be known in advance and (2) locks are

held for a shorter period. Restarts due to deadlock may occur. Instead of blocking, the

immediate restart technique of Tay may be used. For read-only transactions, the technique may

be too conservative. Performance may also depend on the transaction restart selection criteria.

2PLU reduces the disadvantage of 2PLE for read-only transactions while retaining the advantage of

2PLE over PRE. In frequent update situations, restarts can also arise as a result of lock

upgrades causing deadlocks. Instead of blocking, the immediate restart technique of Tay may

be used. The performance was found to increase dramatically using an adaptive restart

III

technique.

BTO is an alternative to the IocIdng techniques. In high conflict situations, BTO may be subject to

cyclic restarts. Restarts also represent wasted work which may be an unacceptable use of

resources. The perfonnance was found to increase dramaticaUy using an adaptive restart

technique.

SV has low overhead in terms of CC since transactions are allowed to execute and are then

validated. Most suitable for read-only transaction mixes.

In this study, it was also found that R-DLY ýý ET and B-DLY: 5, ET gave better per-fonnance. At

low PC there was little difference in performance. The adaptive restart delay was found to improve

restart based CCAs.

7.2.3. The Experiments Revisited

Given awareness of the factors, described above, affecting CCA performance, the purpose of any

experiment is to determine how each CCA behaves in a given situation described by the experimental

factors and parameters representing the DB system. By comparing CCA behaviour at different factor

levels, and the results of independent experiments, factors affecting each CCA can be determined.

Previous, "apparently contradictory", results have differed because each study has explored a different

window on a very large problem space. No overall "best" CCA has emerged although PRE is the

nearest contender. The experiments in this study have provided some answers and also some questions,

and indicate that further refinement is required in setting up such experiments. This study has

demonstrated that quantitive results can be obtained for a real database using relatively simple

techniques. It also indicates that suitable scaling of parameter values and relative costs in a simulation

model would realistically reflect the performance of real systems.

112

7.2.4. Lin-titations of This Study

One of the limiting factors is the cost of the prototype experiments, Galler notes the cost

advantage of analysis over (one) simulation as being in the order of seconds of computing time

compared to minutes [46). For a more comprehensive set of simulation experiments, the cost is

probably measured in hours and for prototype studies in tens of hours (or more). The disadvantage of

analytical techniques is the difficulty in extending one model to encompass the range of CCAs studied

here. Conclusions from simulation studies, while useful, are incomplete. The next stage in performance

studies is either to test prototype systems or to increase the sophistication of the analytical and

simulation models.

In previous studies, linle difference between CCAs was noted at low PCs. To increase PC,

T_UPD was set to 1.0 in this study. This has a particularly negative effect on 2PLU but does allow the

effect of restarts due to lock upgrades to be directly measured. Mixed transaction loads (large/small)

were studied elsewhere but not here. Both different levels of 7ý_UPD and mixed loads should be

subjects of future research.

In the prototype experiments, BC was not measured directly as it was in the simulation

experiments. However, the effects of blocking were filtered out in the prototype by using iET as a

measure. This, for example, gives a more realistic comparison of efficiency measures than using ET

where B-DLY is included as useful work. A more precise measurement of BC and average length of

blocking delay/ transaction would have been more useful.

In the simulation experiments, while useful for a first order approximation, fixed overhead costs

are probably too simplistic. The resultant use of ET only, meant that B-DLY was included in the

efficiency measure in these experiments.

In both the prototype and simulation experiments, we extended the performance metrics beyond T

and ET to provide a greater level of detail than in previous studies, particularly for CPU and 10 costs

and overheads. One disadvantage in interpreting the overhead costs is in not being able to precisely

determine EMPL. In some cases the overhead costs fall below 100%. Since the base against which this

113

is measured is ten concurrently executing transactions without CC, this implies that EMIPL has fallen

below MADL. Blocking effects were observed to increase, and restart effects to decrease the overhead

costs which thus provides a crude measure of which effect is dominant. Again this may be acceptable as

a first order approximation and is used as such by Tay for atomic static locking [1071. Measurement of

the average ENTL could be achieved by sampling the transaction table at regular intervals.

Finally, neither the prototype nor simulation experiments took crash recovery into account [14].

Both assumed a "perfect" system. Other CCA studies have made a similar assumption, Crash recovery

costs have been studied experimentally by Kent et al. [59,601. The two crash recovery techniques

studied were shadowing and logging, using a testbed system (PREDATOR) to model the transaction

processing systern. PREDATOR ran on a Vax[750 under Berkeley 4.1 UNIX but ft kernel was

modified to bypass the file system. The implementation language was C. Two phase locking with per-

item deadlock detection was used, together with page granules. The implementation was the equivalent

of the System R RSS component [52] complete with crash recovery and concurrency control.

(Interestingly WiSS was also modelled on RSS). The transactions and request were driven by a

simulator. Kent et al. made the following observations:

1) logging was preferred when DB access was random and a dedicated recovery device was

available

2) transactions aborts could strongly influence the perfon-nance of logging recovery mechanisms...

This was especiaHy important in environments where aborts were common, e. g., SV

the disk scheduler and 10 device could affect performance in unexpected ways

4) concurrency control takes up little CPU resources

Observation (1) was qualified by a later statement that shadowing was recommended for small

databases. Observation (3) is interesting since in this study the file system was assumed to be well

behaved. Observation (4) was confirmed in this study by the prototype experiments. Kent et al. 's study

also suggests extending the TDBS/C prototype to cope with crash recovery as future research.

114

7.2.5. Summary of Results

Of the CCAs examined in this study, (PRE, 2PLE, 2PLU, BTO, SV), PRE gave the best overall

performance in both the prototype and simulation experiments. Under random access (Experiment 1),

SV perfonned. surprisingly well even in high conflict situations. The adaptive restart technique

improved the performance of 2PLU and BTO in the protorype. Under high levels of contention for one

granule (Experiment 2) in the prototype, the exclusive locking based techniques, PRE and 2PLE,

performed best. The principle explanation for differences in results between the prototype and

simulation experiments in this study and between this study and other studies, was shown to be in the

relationship of B-DLY and R-DLY to ET.

7.3. Future Research

Firstly the range of this study should be extended to include different values for T-UPD, mixed

workloads and the crash recovery mechanism. The prototype should also be extended to be a distributed

system.

Secondly, and more importantly, the results suggest further refinements to both the prototype and

simulation models are required. The basic performance metrics T and ET are essential for any

performance study together with BC and RC. A division of CPU and 10 costs into TR-CPU, TR-IO,

CC__CPU and CC-10 is also required to pinpoint bottlenecks and/or anomalies in the model. Results

presented here show that CC-CPU costs are low but CC-IO costs are significant. Expressing

(CPU + 10) as iET and comparing values with ET can also give an idea of O/S overheads in a prototype

system. A measure of the average time/transaction lost through blocking would also complement the

information on resources wasted through restarts presented in Appendices 3 and 4.

For both systems, a measurement of average EMPL is required. In any discussion of blocking vs

restarts, this measure will reveal if the better performance of either technique is due mainly to a

relatively large reduction in EMPL. In turn, this would help determine overhead costs more accurately

and might be used in place Of MAPL to calculate the adaptive restart.

115

The values of B_DLY and R_DLY relative to ET were shown in this study to be crucial in

determining relative CCA performance. These values should be determined by ET; B-DLY! ý ET and

R_DLY ý: ET. An adaptive restart technique, such as the one user here, is recommended. Further study

of the effect of these parameters on performance is required. From comparisons with other studies in

Chapter 6, we feel that the values chosen for these parameters in the different studies (where present)

have strongly influenced the outcome and explain the "apparently contradictory" results obtained.

in the simulation, the CPU and 10 costs for both the transaction and CCA should be stochastic.

Further work is also required to see if the simulation model, with changes in the values of B_DLY and

R_DLY, would have more accurately predicted the outcome of the prototype experiments. In any

prototype, a clearer statement of the O/S limits is required. Changing the O/S characteristics is probably

easiest achieved by running the prototype on a different machine or under a different version of the

operating system. Such an experiment is expensive and assumes the availability of different machine

environments. A more open ended topic for research is the incorporafion of Tay's ideas with the

separation of resource and data contention measures, especiaBy for a prototype system.

7.4. Concluding Remarks

At the outset of this project, the prototype experiments were designed to determine the

performance of CCAs in a real database system, given the inconclusive results of previous analytic and

simulation studies and the lack of comparative experimental studies. A second question, "could a

suitably designed simulation experiment have predicted the prototype results? ", was then posed. Given

the large degrees of difference between other simulation studies and the protot3W, a set of

corresponding simulation experiments were designed and run. The answer to that question, borrowing

from the Scottish legal system, is "not proven". Comparison and contrast with some previous studies

has provided explanation for both sets of studies and pointed the way for future research. If, as Gray

contends, conflict in database systems is rare [53], then it makes little difference which CCA is used. if,

on the other hand, such a claim is made from average measurements of performance metrics, and a real

system may have peaks of high conflict, i. e., is not in a "steady state", then the choice and performance

of a CCA remains imPOrtanL

116

ne combined results of this and previous studies point the way to an adaptive form of CCA [211,

possibly using an expert system, based on continous performance measurements of the running system.

There is no "best" CCA for all situations. What the various studies have identified is areas in which, and

conditions under which, some CCAs perform better than others.

117

Appendix 1

TESTBED DA TABASE SYSTEM (TDBSIC) DESCRIP770N

This appendix provides an overview of the component parts of TDBS/C

(Testbed. Database System in Q, the internal organisation and primitive functions, the identifier list,

buffer manager, example schemas for the relation used in Chapter 3 and finally syntax diagrams for the

schema, storage schema, view schema definitions, relational expressions and the database definition. A

tutorial introduction can be found in [92].

I. I. Historical Background

TDBS/C was developed as a tool for database understanding and research, in particular to allow

different aspects of database design to be studied within a testbed prototype system. TDBS/C follows

the PRECI (Protype of a RElational Canonical Interface) proposal [36), for a testbed database system

with a data manipulation language (DUEL) embedded in a standard programming language. This gave

rise to three implementations, PRECI/H [37,1191, at Aberdeen University and PRECI/C [91] and

TDBS/C at Heriot-Watt University. The details are summarised in Table Al. I.

Prototype Implementation (lang. -O/S)_ DML+ date
PRECI/H PL/l Honeywell (batch) Fortran 1981
PRECI/C CAJNIX Zilog Z-80 (inter.) C 1983
TDBS/C C/UNIX Vax-750 (inter.) C 1985

Table ALI: TDBS/C Historical Development.

The PRECI/C implementation highlighted some design and implementation problems which were

removed in TDBS/C but in order to retain an outward functional similarity, TDBS/C has kept the

separate schema/storage schema/view schema translators which were influenced by the batch

environment of PRECI/H. Some alternatives such as relation definition (combined schema/storage

schema definition with default values for storage) and an interactive command interpreter have been

lie

added.

1.2. PRECI

The PRECI proposal was to implement a relational-like database capable of interfacing to user-

views defined in network, hierarchical or relational tenns. It followed the ANSI/SPARC 3-level

architecture (Figure ALI) [1141 where the database is separated into a user (view), conceptual and

storage level, each independent of the others.

r ---------------------------------------

View View View User Views Schema I Schema 2 Schema n

L -- J

Conceptual
Schema Database

I

Level

Storage Physical

Schema Database
I

Level

Figure AM: ANSI/SPARC Three Level Architecture.

The ideas being that the user could deal with his abstraction of the database (TDBS/C View

Schema), the totality of the database is expressed by the conceptual level (TDBS/C Schema) and this in

turn is separated from the physical implementation (TDBS/C Storage Schema) of the database.

Proposed research included investigations of data allocation (on pages), indexing strategies, buffer

management strategies, concurrency control, schema extensions for data consistency, storage schema

enhancements, hash storage organisation versus B-trees and natural languqgc interface. TDBS/C has

tried to retain the philosophy of a modular system allowing diverse investigations into database design.

119

1.3. TDBS/C Implementation

TDBS/C is implemented following the relational model which may be described by the following

abstract model. A database is a set of RELATIONS and each relation is a set of AT"TRIBUTES. Each

attribute is defined on a set called a DOMAIN.

DD = IR 1, R 2,..., R.]

(A 1, A 2,..., Aj

where each Ai belongs to a set Di

where [D 1. Dz..., D,,) are the DOMAINS of R

The basic implementation philosophy has been to use an absu-act data type (data

structure + operations on those structures) approach which follows the above abstract definition of the

database.

A Data Dictionary (DD) [33), contains descriptions of all objects in a database system. In

TDBS/C the DD is the set of all named objects in the database (name space) and is implemented as a

linked list. Finally the UNIX philosophy on commands has been adopted where each sub-system is

called as a simple command (with possible options) and may be used to build up more complex

commands.

L4. TDBS/C Overview

A diagrammatic overview of the system is given in Figure A1.2. The sub-systems are:

Schema Translator

Process the schema (database) definition (file), produce listing (optional) and generate output file

to be read by (a) Storage Schema Translator and (b) View Schema Translator.

120

Storage Schema Translator

Process the storage schema definition and add this information to that read from the schema

translator output to generate an output file to be read by the database initialiser (DBI).

Database Initialiser

Produce initialised (empty) database i. e. one file per relation and a database directory containing a

list of relations in this database from the output of the storage schema translator.

View Schema Translator

Process view definitions given in the view schema definition (file). View definitions are relational

expressions on the relations defined in the schema definition. The output of the schema translator is

read, the relational expressions checked syntactically and an output file for the view definition (used by

the precompiler) is generated.

Precompiler

Precompile DML+C programs and convert DML (Data Manipulation I-anguage) statements into

calls on the database control system (dbcs) thus producing aC program. At the same time generate

structures (tuple buffers) for relations used in tuple operations (see next section). These structures are

included in the C program generated and are processed by the C compiler.

listdb

List internal structures (diagnostic). This is a utility program to examine the various subparts of

the database.

121

Natural Language Interface

Experimental system for "Natural Language" queries. Semantic information is added to the

schema and is used to disambiguate queries in a (very) restricted subset of English.

ici

Interactive Command Interpreter gives direct access to a database. Also useful as a teaching tool.

QBE

Query-by-Example interface: Partial implementation of Zloof's [124) QBE.

DBCS

Database Control System (for compiled progs). Interface between C programs and the database

primitives.

122

r------
Schema

Definition
L

Schema
Translator

r---, - -- -1
,

Schema
i Translator i
I Output
L

Stolge/
View Schema
Translators/
Precompiler

Storage
Schema

Definition
L---. - - -. J

Storage
Schema

Translator

Relational
i Information i

(RINs)

Database
Initialiser

r- --- -- -I

Database
Directory

L-------J

Listdb

Initialised
Database

L-------J

Database
Access

Primitives

I Namual I
Language
Interface

r- -VI --- -i ew
Schema

Definition
L-- --- --

view
Schema

Translator

;Tcm 'ý jAýýZfTe- ý
i Translator i

Ou ut L----- ---J

Precompiler

ici

ource
Program
+ DML

L

Precompiler

V Tk- -i 01
Area I

(CWA)

QBE

c

Piogram

C

Compiler

Run Unit/

DBCS

Figure All: TDBS/C - System Overview.

1.5. Internal Organisation

This section deals with the logical and physical structures within TDBS/C. The most important

layout is that of the relation object file (<relation name>-rob) followed by the IDLIST (identifier list

which contains information about all named entities in the database, similar to a data dictionary) and the

buffer organisafion.

123

1.5.1. Relation File Organisation

Each relation is stored in a file with the layout shown in Figure A 1.3.

RIN
PINDEX AREA
DATA AREA

Figure AI. 3: Relation File LaYout.

The primary key index and tuple storage both use hashing techniques and may therefore be

logically viewed as a set of home slots plus overflow slots. The physical implementation is described

below.

RIN (Relation Information)

Domain and attribute information; layout information for the DATA and PPýDEX areas; data area

directory. The RIN is held in primary memory when the relation is open.

SEE Figures AIA and A1.5 for details.

PA- HP: number of home pages
PA

_HS: number of home slots/page
PA

-HW:
home slot width

PA
-OP: number of overflow pages

PA- OS: number of overflow slots/page (global)
PA

-OW: overflow slot width Oocal/global)
PA- PO: percentage global overflow
PA

-
LP: percentage local overflow/home page

PA- LO: number of local overflow slots/home page
PA_ CK: primary key size
PA_ KR: primary key range
PA- FS: first slot
PA- FP: first page of PINDEX
PA- BM: bit map size - overflow pages
PA- HB: bit map size - local overflow slots
PA- OB: bit map size - global overflow slots
PN DEX area bit map (global overflow pages)

Figure AM: RIN Layout - PINDEX AREA.

124

DA- IHP: number of home pages
DA_ HS: number of home slots
DA

-HW:
home slot width

DA
-IHP: number of overflow pages

DA
_HS: number of overflow slots

DA
-HW: overflow slot width

DA-'TS: tuple size
DA_

_CC: current cardinality
D, ata area
directory: one entry/slot (home + overflow).

Figure AI. 5: RIN Layout - DATA AREA.

PINDEX AREA (primary key index)

Pages are divided into home and overflow pages and comprise a number of slots each having a

slot header. In addition home pages have a local overflow area to minimise page faults. The page layout

is given in FiguTe A1.6 and the slot layout in FiguTe Al. 7.

header bit map

primary slots

local overflow slots

home page

header bit map

global overflow slots

overflow page

Figure AI. 6: PINDEX AREA page layout.

The bit map for the home page refers to the local overflow slots and that for the overflow page to

the global overflow slots (free/used). In addition there is a page bit map in the RIN for the global

overflow pages.

125

KCPN KY DP

Figure AI. 7: PINDEX AREA slot layout.

Slot Header K:
C:
P:
N:

Slot (Index) Entries KYi
DPi:

DATA AREA (tuple storage)

Pages are diyided into home and oyerflow pages.

Both PINDEX and DATA area pages have page headers giving the creation and update dates for

the page, page number within area and version number. The DATA AREA page layout is given in

Figure A1.8.

header

tuple slots

slot kind (home, local overflow, global overflow)
number of entries currently in slot
pointer to prior slot (slot number)
pointer to next slot (slot number)
key value (ith entry)
position in DATA AREA (ekey)

home and overflow slots

Figure AI. 8: DATA AREA page layout.

DATA AREA Slot Layout: each slot contains n tuples; each tuple is prefixed with a marker A

(active) or D (deleted).

126

Page Header

The page header for both PINDEX AREA and DATA AREA pages is given in Figure A1 .
9.

time created time updated page no. version no.

Figure AI. 9: Page Header LaYout.

1.5.2. Identifier List (IDLIST)

This is a list of named objects, Figure Al. 10, in the database system, for example relations,

attributes, database definitions etc. The IDLIST is organised as a simple linked list in alphabetical

order. Within this, to improve access efficiency, there are sub-lists for important objects such as

relations and domains. The logical structure is:

name name name name
kind kind kind kind
info info info info

Figure ALIO:]IDLIST.

The main kinds of objects (& info/definitions) are:

database: set of relations
domain: domain type & storage size
view: set of base relations,

relational expression defining view
relation: number of attributes & attribute list,

storage & access information,
pkey & tuple buffers, currency pointers

attribute: set of relations with this attribute name,
set of synonyms for this attribute name

synonym: set of attributes for which this is a synonym
(used only for the Nat. Lang. interface)

user: user names for access control

127

Most definitions are sets of objects e. g.

database = frell, reI2, ..., rel,,)
relation = fdom 1, doM 2, ...,

dom,) X fatt 1, att 2. ..., att.)
domain = fval 1, val 2, ..., val,,)

and by extension, a distributed database

ddb = fdb 1, db z ..., db,,)

The kinds ("types") these objects may assume are:

database: local, remote

relation: persistent, transient, intermediate, remote,

view: renaming, sub- or super-view

attribute: primary key/non (primary) key

domain: character/integer (enumerated char/int)

access: ALL; PERNUT/DENY + user list

Other objects such as operators are included in the IDLIST at startup time (all objects in the

database system must be defined in the IDLIST).

This list is the central structure of TDBS/C. All sub-systems work on the IDLIST (creating/adding

information). A number of functions are therefore "housekeeping" functions operating on this structure

e. g. copying to/from files, lookup, search, retrieval, print sub-parts (diagnostics & list functions). An

idea of the importance of the IDLIST (name space in primary memory) is given Figure Al. 11.

The main buffer management function called from the system is "getpage". The main "primitive

functions" which operate on the IDLIST and page/slot structures described in this section are:

128

phkey(*) hash function: vkey->slotno p-space
dhkey(*) hash function: vkey->slotno d-space

calcpkey(*) calculate pkey value (int)
calcekey(*) calculate effective key (position in DATA AREA - data space only)

getpslot(*) get a PENDEX slot
getdslot(*) get a data slot
getpelem(*) get a PENDEX element from (slotpos)
getdelem(*) get a data element (tuple) "
getpIN(*) get PINDEX entry given pkey

pkleyýeopy(*) copy pkey from tuple to pkey buffer
copytuple(*) copy tuple TO/FROM database and a character buffer
ft-insert(*) insert pkey in PINDEX

finLdpos(*) -- set up tuple POSMON in descriptor (for NEW tuples)
setdpos(*) set tuple position (dslot, dpos) (for EXISTING tuples - from ekey)
setp(*) set tuple pos - pkey (dslot, dpos)

setdf(*) set first tuple pos (dslot, dpos)
setdn(*) set next tuple pos (dslot, dpos)
setdp(*) set previous tuple pos (dslot, dpos)

setpf(*) set first PINDEX pos (pslot, ppos)
setpn(*) set next PINDEX pos (pslot, ppos)
setpp(*) set previous PR, 4DEX pos (pslot, ppos)

inserel(*) insert tuple in relation (pkey)
dputrel(*) insert tuple in relation (no pkey)
replrel(*) replace tuple in relation
delerel(*) delete tuple in relation

Tle "vkey" is the numeric value of the primary key ("pkey"), the "ekey" (effective key) is the

tuple position in the data space.

129

+ DMLI I QL II interactive session

user interfaces
... relational operations

If expression analysis -relational
o tree handling

results are relations
... I tuple operations

insert delete
tuple operations replace gets

results are tuples
.................... ..

>- etc.
primary memory
name space references

Root p etc.
object information

rin

e buff

conceptual schema level
.. o .. primitive functions

buffer management
buffer primitive input / output

manager functions intemal structure
representation level

... secondary memory
storage schema level

R info IIR info IIR info

PINDEX II PINDEX II PNDEX

DATA II DATA II DATA

p. rob qxob rxob

Figure A1.11: TDBS/C Organisation Levels.

1.5.3. Buffer Management

This is part of the database system and comprises a pool of (lKbyte) pages and a buffer table with

I entry/page. Requests for index entries/ tuples: are translated into logical page requests which in turn are

translated into physical page requests within the buffer manager and a page pointer returned. The

implementation is a module with two structures as shown in Figure A1.12.

130

Rel Name pgno Ik upd acc time

R 3 0 0

R 4 1 1

-%0
1

-% , %
1

0
1
%f I

1
v 1%. -

1

1

1
Buffer Table

PaLye Pool
G;

Figure A1.12: Buffer Manager Structures.

The buffer manager operations are:

create and initialise buffer pool & table
get page (from file)
put page (to file)
set update marker on page
set lock on page (lock within buffer)

The concurrency control mechanisms (at page granularity) also operate within the buffer manager

by checking access before get/put page operations.

The buffer manager uses a hash function to select a page and if the page is not free, searches

within a "virtual window" (the page pool is treated as a circular buffer) for a free page. If there is no

free page then a least recently used CLRU) algorithm is used to select a free page. This algorithm will

also try to choose a data page first rather than an index page on the assumption that index pages are

more frequently used. LRU is not perhaps the most efficient algorithm [171 but it is commonly used in

other systems [59,601. The virtual window with a hash algorithm is used to avoid increasing linear

search costs as the size of the buffer pool (and hence buffer table) increases. For these tests the size of

the virtual window is that of the smallest page pool used i. e., 10 pages.

131

1.6. Schema Examples

The schema, storage schema and view schema definitions used in the single-user benchmarks of

Chapter 3 are presented in Figures A 1.13, A 1.14, A 1,15, respectively. This is followed by an example

listing of the corresponding RIN for the initialised database in Figure Al. 16. The syntax definitions for

the schernas are given in the next section.

I TDBS/C V1.0 Schema Definition Listing Thu Jul 16 13: 34: 44 1987

1:
2 SCHEMA tdb
3
4 DOMAIN
5
6 dtint2 INTE 2
7 dtint4 INTE 4
8 : dtfill CHAR 12
9 : dtch20 CHAR 20

10 :
11 : RELATION trl
12 : PKEY tkey dtint2
13 : ATTR tp50 dtint4
14 : ATTR tp25 dtint4
15 : ATTR tp20 dtint4
16 : ATTR tplO dtint4
17 : ATTR tp5 dtint4
18 : ATTR tpl dtint4
19 : ATTR tfill dtfill
20 : ATTR tpadl dtch20
21 : ATTR tpad2 dtch20
22 : ATTR tpad3 dtch20
23 :

*** End of Schema Definition ***

Figure A1.13: Schema Definition.

132

TDBS/C V1.0 Storage Schema Defn. Listing Thu Jul 16 13: 35: 11 1987

1:

1

2 STORAGE SCHEMA tdb
3
4
5 DATA SECTION
6
7 trl 10 10 10 1

9: PINDEX SECTION
10 :
11 : trl 10 151 02

*** End of Storage Schema File ***

Figure A1.14: Storage Schema Definition.

The entries under the DATA SECTION are respectively, the relation name, home slot width

(number of tuples), number of home slots, the overflow slot width (number of tuples) and the number of

overflow slots.

The entries under the PINDEX SECTION are respectively, the relation name, home slot width

(number of index entries), the percentage of home area to be allocated to global overflow slots, the local

overflow slot width (number of index entries), the percentage of the home page area to be allocated to

local overflow slot(s), and the primary key range specifier n (pkey is in range O.. (10**n -1)).

I TDBS/C V1.0 View Schema Listing Thu Jul 16 13: 35: 45 1987 1

1: VIEW SCHEMA tdbv
2
3 IMPORT tdb;
4
5

6 tvl trl;
7

*** End of View-Schema File ***

Figure A1.15: View Schema Definition.

The view (virtual relation) is defined on one (or more) base relations and the appropriate schemas

are specified in the import list. Here the view coffesponds: to the base relation trl.

133

I TDBS/C V1.0 Relation Information Listing Thu Jul 16 13: 36: 50 1987

Domains: Type Size

dtint2 INTE 2
dtint4 INTE 4
dtfill CHAR 12
dtch20 CHAR 20

Relation: trl

tkey
tp5o
tp25
tp20
tplo
tp5
tP1
tf ill
tpadl
tpad2
tpad3

dtint2
dtint4
dtint4
dtint4
dtint4
dtint4
dtint4
dtf ill
dtch20
dtch20
dtch20

Data Area:

DA_HP: 10 DA_HS: 10 DA-HW:
DA-OP: 1 DA-OS: I DA-OW:
DA_TS: 98 DA-CC: 0

Pindex Area:

10
10

PA
_HP:

1 PA_ HS: 10 PA
_HW:

10
PA

-OP:
1 PA- OS: 17 PA

-OW:
5

PA
-PO:

1 PA_ LP: 1 PA
_LO:

0
PA

_CK:
2 PA_ KR: 100 PA

-FS:
0

PA
-FP:

2 PA_ BM: 4 PA
_HB:

0

PA OB: 20

DA Dir: 00000000000

Pindex Area Bit Map: 0000

*** No entry for relation : trl

Figure A1.16: Relation Information (RIN) Listing.

An explanation of the various fields is given in section 1.5 of this appendix.

134

1.7. Syntax Definitions

<schema>
<schema-def>
<domset>
<domain-list>
<domain>
<domain_ýtype>
<domain-size>
<rel-list>
<relation>
<attr-list>
<attr>
<attr-kind>
<id>
<Ietdig>
<int>
<letter>
<digit>

<schema-def> <domset> <rel-list>
SCHEMA <id>
DOMAIN <domain-hst>
<domain-list> <domain> I <domain>
<id> <domain-jype> <domain_size>
E14TE I CHAR
<int>
<rel-list> <relation> I <relation>
RELATION <id> <attr-list>
<attr-lis> <attr> I <attr>
<attr-kind> <id> <id>
ATTRIPKEY
<id> <Ietdig> I <letter>
<letter> I <digit>
<int> <digit> I <digit>
A. 21a.. z
0.9

Figure ALM Schema Definition Syntax.

<st-schema>
<da-sect>
<pi-secv-.
<da-lisr, >
<da-entry>
<pi-Hst>
<pi-entry>
<id>
<Ietdig>
<int>
<letter>
<digit>

STORAGE SCHEMA <id> <da-sect> <pi-sect>
DATA SECTION <da-list>
PINDEX SECTION <pi-list>
<da-list> <da - entry> I <da - entrp
<id> <int> <int> <int> <int>
<pijst> <pi-entry> I <pi-entry>
<id> <int> <int> <int> <int> <int>
<id> <Ietdig> I <letter>
<letter> I <digit>
<int> <digit> I <digit>
A. 2 I a.. z
o.. 9

Figure A1.18: Storage Schema Definition Syntax.

135

<viewschema>
<viewname>
<schimpor>
<snamelist>
<snwne>
<viewdefs>
<vdef>
<id>
<Ietdig>
<letter>
<digit>

<rel-expr>

<rel-term>
<relop>

<relation-name>
<Aname-lis>
<attr-list>
<attr-name>
<Iexpr>

<cexpr>
<conop>
<expr>
<id>
<Ietdig>
<letter>
<digit>
<int>
<string>

<viewname> <schimport> <viewdefs>
VEEW SCBEMA <id>
IMPORT <snamelist>
<snamelist> <sname> I <sname>
<id>
<viewdefs> <vdef> I <vdef>
<id>: = <rel-expr>;
<id> <Ietdig> I <letter>
<letter> I <digit>
A.. Z I a.. z
OA

Figure A1.19: View Schema Definition Syntax.

-ael-tertn>
I <xel_term> <relop> <rel-term>
I <rel-term> SELECT <Iexpr>
I <rel-term> PROJECT <Aname-list>
<reladon_name> I(<rel - expr>)

UNION I D=RENCE I INTERSECTION
I EQUIJOIN i DIVISION
<id>
<attr_name> I[<attr-list>
<attr-name> I <attr-name> , <attr-list>
<id>

(<Iexpr>)I <Iexpr> AND <Iexpr>
I <Iexpr> OR <Iexpr> I NOT <Iexpr> I <cexpr>
<attr-name> <conop <expr>

<attr_name> I <string> I <int>
<id> <Ietdig> I <letter>
<letter> I <digit>
A.. Z I a.. z
o.. 9
<int> <digit> I <digit>
10 <id> "

Figure A1.20: Relation Expression Syntax.

136

<schema> <schema -
def> <rel -

list>

<schema_def> SCHEMA <id>
<rel-list> RELATIONS <idlist>
<idlist> <idlist> <id> I <id>
<id> <id> <Ietdig> I <letter>
<Ietdig> <letter> I <digit>
<int> <int> <digit> I <digit>
<letter> A. 2 I a.. z
<digit> o.. 9

Figure A1.21: Database Definition Syntax.

137

Appendix 2

SINGLE-USER BENCHMARK RESULTS

For experiment 1, BF_SZ is 10,100,100 pages, T-ACC is uniform, Table A2.2 gives a summary

of the throughput values for this experiment. The remaining factor levels and corresponding table of

results are given in Table A2.1.

Experiment I
Table DB-SZ TR TYP
A2.3 100 get-replace
A2.4 100 select-replace
A2.5 100 select
A2.6 1000 get-replace
A2.7 1000 select-replace
A2.8 1000 select
A2.9 10000 get-replace
A2.10 10000 select-replace
A2.11 10000 select

Experiment 2
A2.12 100 get-replace
A2.13 1000 get-replace
A2.14 10000 get-replace

Table A2.1: Experiments I&2 Results Tables

For experiment 2, BF_SZ is 10,100,1000 pages, T-TYP is get-replace, T-ACC is sequential,

uniform and DB_ACC is 1,2,5,10,100 tuples. The sequential get-replace and uniform get-replace are

abbreviated to "grs" and "gru" respectively. DB_SZ for this experiment is given in Table A2.1.

138

Database DB2 (100) DB3 (1000) DB4 (10000)

Buffer(K) 10 100 1000 10 100 1000 10 100 1000

overhead 1.548 0.955 0.220 1.590 0.980 0.219 1.662 1.000 0.221

grp 1% 0.909 0.667 0.199 0.597 0.508 0.168 0.094 0.087 0.073

grp 5% 0.729 0.534 0.186 0.223 0.174 0.111 0.029 0.026 0.024

grp 10% 0.612 0.476 0.178 0.143 0.124 0.087 0.017 0.016 0.014

grp 20% 0.488 0.399 0.166 0.089 0.082 0.065 0.010 0.009 0.009

grp 25% 0.452 0.370 0.161 0.075 0.069 0.061 0.008 0.008 0.008

grp 50% 0.309 0.269 0.139 0.042 0.040 0.038 0.004 0.004 0.004

grp 1,00% ý0.191 0.175 0.109 0.022 0.022 0.021 0.002 0.002 0.002

srp 1% 0.263 0.241 0.130 0.083 0.083 0.065 0.011 0.011 0.011

srp 5% 0.255 0.230 0.128 0.077 0.076 0.061 0.010 0.010 0.010

srp 10% 0.252 0.232 0.127 0.074 0.074 0.060 0.010 0.010 0.010

srp 20% 0.251 0.229 0.126 0.071 0.071 0.058 0.009 0.009 0.009

srp 25% 0.247 0.228 0.128 0.070 0.070 0.058 0.009 0.009 0.009

srp 50% 0.236 0.216 0.123 0.063 0.064 0.053 0.008 0.008 0.008

srp 100% 0.219 0.204 0.119 0.051 0.053 0.045 0.006 0.006 0.006

sel 1% 0.426 0.355 0.157 0.089 0.086 0.069 0.010 0.010 0.010

sel 5% 0.410 0.344 0.154 0.078 0.076 0.063 0.009 0.009 0.009

sel 10% 0.369 0.325 0.151 0.070 0.069 0.059 0.008 0.008 0.008

sel 20% 0.344 0.317 0.147 0.061 0.063 0.055 0.006 0.007 0.007

sel 25% 0.349 0.313 0.146 0.059 0.060 0.053 0.006 0.006 0.007

sel 50% 0.306 0.283 0.140 0.046 0.050 0.044 0.004 0.005 0.005

sel 100% 0.251 0.225 0.127 0.032 0.035 0.033 0.002 0.003 0.004

Table A2.2: Throughput Results - Summary

139

Experimental Times Time - Overhead
Program Elapsed CPU 1/0 Thru'put Elapsed CPU 1/0
BUFFER = 10K

overhead 0.65 0.30 0.20 1.538

grp 1% 1.10 0.49 0.43 0.909 0.45 0.19 0.23
grp 5% 1.38 0.65 0.46 0.725 0.73 0.35 0.26
grp 10% 1.64 0.87 0.50 0.610 0.99 0.47 0.30
grp 20% 2.05 1.25 0.52 0.488 1.40 0.95 0.32
grp 25% 2.22 1.44 0.52 0.450 1.57 1.14 0.32
grp 50% 3.24 2.44 0.54 0.309 2.59 2.14 0.34
grp 100% 5.25 4.39 0.60 0.190 4.60 4.09 0.40
BUFFER = 100K

overhead 1.05 0.41 0.43 0.952
grp 1% 1.48 0.61 0.65 0.676 0.43 0.20 0.22
grp 5% 1.87 0.78 0.70 0.535 0.82 0.37 0.27
grp 10% 2.10 0.98 0.75 0.476 1.05 0.57 0.32
grp 20% 2.51 1.38 0.76 0.398 1.46 0.97 0.33
grp 25% 2.71 1.56 0.76 0.369 1.66 1.15 0.33
grp 50% 3.71 2.56 0.78 0.270 2.66 2.15 0.35
grp 100% 5.71 4.50 0.84 0.175 4.66 4.09 0.41
BUFFER = 1000K

overhead 4.55 1.60 2.73 0.220
grp 1% 5.04 1.84 2.93 0.198 0.49 0.24 0.20
grp 5% 5.37 1.98 3.00 0.186 0.82 0.38 0.27
grp 10% 5.61 2.19 3.05 0.178 1.06 0.59 0.32
grp 20% 6.01 2.59 3.06 0.166 1.46 0.99 0.33
grp 25% 6.22 2.80 3.06 0.161 1.67 1.20 0.33
grp 50% 7.21 3.76 3.08 0.139 2.66 2.16 0.35
grp 100% 9.22 5.71 3.13 0.108 4.67 4.11 0.40

Table A2.3: DB_SZ = 100, T_TYP = get-replace

140

Experimental Times Time - Overhead
Program Elapsed CPU 1/0 Thru'put Elapsed CPU 1/0

BUFFER = 10K

overhead 0.. 65 0.30 0.20 1.538

srp 1% 3.81 1.32 1.79 0.262 3.16 1.02 1.59
srp 5% 3.92 1.35 1.81 0.255 3.27 1.05 1.61
srp 10% 3.97 1.40 1.82 0.252 3.32 1.10 1.62
srp 20% 3.98 1.44 1.82 0.251 3.33 1.14 1.62
srp 25% 4.05 1.41 1.89 0.247 3.40 1.11 1.69
srp 50% 4.24 1.55 1.89 0.236 3.59 1.25 1.69
srp 100% 4.56 1.84 1.95 0.219 3.91 1.54 1.75

BUFFER = 100K

overhead 1.05 0.41 0.43 0.952
srp 1% 4.16 1.46 2.03 0.240 3.11 1.05 1.60
srp 5% 4.34 1.48 2.06 0.230 3.29 1.07 1.63
srp 10% 4.32 1.49 2.08 0.231 3.27 1.08 1.65
srp 20% 4.38 1.53 2.12 0.229 3.33 1.12 1.69
srp 25% 4.37 1.51 2.15 0.228 3.32 1.10 1.72
srp 50% 4.63 1.65 2.15 0.216 3.58 1.24 1.72
srp 100% 4.91 1.96 2.19 0.204 3.86 1.55 1.76
BUFFER = 1000K

overhead 4.55 1.60 2.73 0.220
srp 1% 7.71 2.69 4.32 0.130 3.16 1.09 1.59
srp 5% 7.84 2.68 4.37 0.128 3.29 1.08 1.64
srp 10% 7.90 2.69 4.41 0.127 3.35 1.09 1.68
srp 20% 7.92 2.75 4.41 0.126 3.37 1.15 1.68
srp 25% 7.83 2.74 4.43 0.128 3.28 1.14 1.70
srp 50% 8.14 2.87 4.45 0.123 3.59 1.27 1.72
srp 100% 8.41 3.18 4.46 0.119 3.86 1.58 1.73

Table A2.4: DB_SZ = 100, T_TYP = select-replace

141

Experimental Times Time - Overhead
Program Elapsed CPU 1/0 Thru'put Elapsed CPU 1/0

BUFFER = 10K

overhead 0.65 0.30 0.20 1.538

sel 1% 2.35 1.20 0.92 0.426 1.70 0.90 0.72

sel 5% 2.44 1.30 0.92 0.410 1.79 1.00 0.72

sel 10% 2.71 1.38 0.97 0.369 2.06 1.08 0.77

sel 20% 2.91 1.52 1.00 0.344 2.26 1.26 0.80

sel 25% 2.87 1.55 1.00 0.348 2.22 1.25 0.80

sel 50% 3.26 1.90 1.05 0.307 2.61 1.60 0.85

sel 100% 3.98 2.48 1.13 0.251 3.33 2.18 0.93

BUFFER = 100K

overhead 1.05 0.41 0.43 0.952

sel 1% 2.82 1.30 1.14 0.355 1.77 0.89 0.71

sel 5% 2.91 1.39 1.14 0.344 1.86 0.98 0.71

sel 10% 3.08 1.46 1.20 0.325 2.03 1.05 0.77

sel 20% 3.16 1.54 1.22 0.316 2.11 1.13 0.79

sel 25% 3., 20 1.60 1.23 0.313 2.15 1.19 0.80

sel 50% 3.54 1.93 1.27 0.282 2.49 1652 0.84

sel 100% 4.45 2.57 1.39 0.225 3.40 2.16 0.96

BUFFER = 1000K

overhead 4.55 1.60 2.73 0.220

sel 1% 6.38 2.52 3.44 0.157 1.83 0.92 0.71

sel 5% 6.49 2.59 3.47 0.154 1.94 0.99 0.74

sel 10% 6.62 2.65 3.50 0.151 2.07 1.05 0.77

sel 20% 6.78 2.77 3.53 0.147 2.23 1.17 0.80

Sel 25% 6.83 2.81 3.55 0.146 2.28 1.21 0.82

sel 50% 7.16 3.16 3.57 0.140 2.61 1.56 0.84

sel 100% 7.87 3.81 3.67 0.127 3.32 2.21 0.94

Table A2.5: DB SZ = 100, T_TYP = select

142

Experimental Times Time - Overhead
Program Elapsed CPU 1/0 Thrufput Elapsed CPU 1/0

BUFFER = 10K

overhead 0.63 0.30 0.20 1.587

grp, 1% 1.68 0.92 0.57 0.595 1.05 0.62 0.37

grp 5% 4.49 2.71 1.10 0.223 3.86 2.41 0.90

grp 10% 6.99 4.94 1.60 0.143 6.36 4.64 1.40

grp 20% 11.28 9.02 1.69 0.089 10.65 8.72 1.49

grp 25% 13.36 11.05 1.75 0.075 12.73 10.75 1.55

grp 50% 23.83 21.29 1.97 0.042 23.20 20.99 1.77

grp, 100% 44.79 41.73 2.42 0.022 44.16 41.43 2.20

BUFFER = 100K

overhead 1.02 0.40 0.45 0.980

grp 1% 1.97 1.00 0.77 0.508 0.95 0.60 0.32

grp 5% 5.75 2.72 1.35 0.174 4.73 2.32 0.90

grp, 10% 8.06 4.92 1.87 0.124 7.04 4.52 1.42
grp 20% 12.23 8.99 1.97 0.082 11.21 8.59 1.52

grp 25% 14.45 11.05 2.02 0.069 13.43 10.65 1.57

grp 50% 24.95 21.26 2.26 0.040 23.93 20.86 1.81

grp 100% 45.86 41.72 2.72 0.022 44.84 41.32 2.27

BUFFER = 1000K

overhead 4.57 1.62 2.77 0.219

grp 1% 5.95 2.28 3.11 0.168 1.38 0.66 0.34

grp 5% 8.98 4.00 3.66 0.111 4.41 2.38 0.89

grp 10% 11.50 6.20 4.14 0.087 6.93 4.58 1.37

grp, 20% 15.45 10.04 4.21 0.065 10.88 8.42 1.44

grp 25% 16.35 12.01 4.15 0.061 11.78 10.39 1.38

grp 50% 26.63 22.04 4.39 0.038 22.06 20.42 1.72

grp 100% 47.14 42.05 4.89 0.021 42.57 40.43 2.12

Table A2.6: DB_SZ = 1000, T_TYP = get-replace

143

Experimental Times Time - Overhead
Program Elapsed CPU 1/0 Thru'put Elapsed CPU 1/0

BUFFER = 10K

overhead 0.63 0.30 0.20 1.587

srp 1% 11.99 7.29 3.70 0.083 11.36 6.99 3.50

srp 5% 13.00 7.50 4.09 0.077 12.37 7.20 3.89

srp 10% 13.47 7.74 4.36 0.074 12.84 7.44 4.16

srp 20% 14.15 8.26 4.47 0.071 13.52 7.96 4.27
srp 25% 14.33 8.43 4.55 0.070 13.70 8.13 4.35
srp 50% 15.93 9.80 4.73 0.063 15.30 9.50 4.53
srp 100% 19.45 12.86 5.27 0.051 18.82 12.56 5.07

BUFFER = 100K

overhead 1.02 0.40 0.45 0.980
srp 1% 12.00 6.67 4.04 0.083 10-98 6.27 3.59
srp 5% 13.23 6.79 4.35 0.076 12.21 6.39 3.90
srp 10% 13.52 7.11 4.68 0.074 12.50 6.71 4.23
srp 20% 14.03 7.47 4.78 0.071 13.01 7.07 4.33
srp 25% 14.24 7.71 4.77 0.070 13.22 7.31 4.32
srp 50% 15.67 8.91 5.06 0.064 14.65 8.51 4.61
srp 100% 18.87 11.70 5.47 0.053 17.85 11.30 5.02

BUFFER = 1000K

overhead 4.57 1.62 2.77 0.219
srp 1% 15.45 7.96 6.33 0.065 10.88 6.34 3.56
srp 5% 16.36 8.03 6.65 0.061 11.79 6.41 3.88
srp 10% 16.74 8.27 6.95 0.060 12.17 6.65 4.18
srp 20% 17.36 8.69 7.08 0.058 12.79 7.07 4.31
srp 25% 17.37 8.84 6.99 0.058 12.80 7.22 4.22
srp 50% 19.02 10.22 7.21 0.053 14.45 8.60 4.44
srp 100% 22.17 12.94 7.70 0.045 17.60 11.32 4.93

Table A2.7: DB_SZ = 1,000, T_TYP = select-replace

144

Experimental Times Time - Overhead
Program Elapsed CPU 1/0 Thru'put Elapsed CPU 1/0

BUFFER = 10K

overhead 0.63 0.30 0.20 1.587

sel 1% 11.28 7.18 3.01 0.089 10.65 6.88 2.81
sel 5% 12.88 7.89 3.66 0.078 12.25 7.59 3.46
sel 10% 14.27 8.83 4.28 0.070 13.64 8.53 4.08
sel 20% 16.28 10.26 4.74 0.061 15.65 9.96 4.54
sel 25% 16.91 10.82 4.95 0.059 16.28 10.52 4.75
sel 50% 21.79 14.53 6.04 0.046 21.16 14.23 5.84
sel 100% 31.39 22.15 8.06 0.032 30.76 21.85 7.86

BUFFER = 100K

overhead 1.02 0.40 0.45 0.980
sel 1% 11.62 7.18 3.27 0.086 10.60 6.78 2.82
sel 5% 13.15 7.81 3.77 0.076 12.13 7.41 3.32
sel 10% 14.48 8.62 4.30 0.069 13.46 8.22 3.85
sel 20% 15.84 9.92 4.51 0.063 14.82 9.52 4.06
sel 25% 16.56 10.42 4.58 0.060 15.54 10.02 4.13
sel 50% 20.18 13.76 5.02 0.050 19.16 13.36 4.57
sel 100% 28.45 20.79 6.07 0.035 27.43 20.39 5.62

BUFFER = 1000K

overhead 4.57 1.62 2.77 0.219
sel 1% 14.56 7.98 5.54 0.069 9.99 6.36 2.77
sel 5% 15.94 8.65 5.93 0.063 11.37 7.03 3.16
sel 10% 16.84 9.42 6.25 0.059 12.27 7.80 3.48
sel 20% 18.10 10.58 6.42 0.055 13.53 8.96 3.65
sel 25% 18.83 11.10 6.48 0.053 14.26 9.48 3.71
sel 50% 22.48 14.42 6.93 0.044 17.91 12.80 4.16
sel 100% 29.97 20.92 7.80 0.033 25.40 19.30 5.03

Table A2.8: DB_SZ = 1000, T_TYP = select

145

Experimental Times Time - Overhead
Program Elapsed CPU 1/0 Thru'put Elapsed CPU 1/0

BUFFER = 10K

overhead 0.60 0.30 0.20 1.667

grp 1% 10.70 5.11 2.31 0.094 10.10 4.81 2.11
grp 5% 34.10 22.66 7.21 0.029 33.50 22.36 7.01
grp 10% 60.41 44.54 12.08 0.017 59.81 44.24 11.88
grp 20% 102.34 84.99 13.06 0.010 101.74 84.69 12.86
grp 25% 123.18 105.21 14.02 0.008 122.58 104.91 13.82
grp 50% 226.63 207.24 16.20 0.004 226.03 206.94 16.00
grp 100% 430.49 407.00 20.72 0.002 429.89 406.70 20.52

BUFFER = 100K

overhead 1.00 0.41 0.43 1.000
grp 1% 11.48 5.24 2.69 0.087 10.48 4.83 2.26
grp 5% 38.98 23.34 8.28 0.026 37.98 22.93 7.85
grp 10% 64.31 46.00 13.41 0.016 63.31 45.59 12.98
grp 20% 106.60 86.81 14.47 0.009 105.60 86.40 14.04
grp 25% 127.79 107.40 14-95 0.008 126.79 106.99 14.52
grp 50% 232.14 209.29 17.89 0.004 231.14 208.88 17.46
grp 100% 439.70 412.25 22.74 0.002 438.70 411.84 22.31

BUFFER = 1000K

overhead 4.52 1.59 2.77 0.221
grp 1% 13.72 6.10 4.80 0.073 9.20 4.51 2.03
grp, 5% 42.42 23.14 10.34 0.024 37.90 21.55 7.57
grp 10% 69.05 44.66 15.49 0.014 64.53 43.07 12.72
grp 20% 110.19 85.06 16.34 0.009 105.67 83.47 13.57
grp 25% 131.28 105.37 16.90 0.008 126.76 103.78 14.13
grp 50% 234.37 206.11 19.20 0.004 229.85 204.52 16.43
grp 100% 451.80 419.98 23.72 0.002 447.28 418.39 20.95

Table A2.9: DB_SZ = 10000, T_TYP = get-replace

146

Experimental Times Time - Overhead

Program Elapsed CPU 1/0 Thrufput Elapsed CPU 1/0

BUFFER = 10K

overhead 0.60 0.30 0.20 1.667

srp 1% 92.21 68.40 21.60 0.011 91.61 68.10 21.40

srp, 5% 98.32 69.43 25.05 0.010 97.72 69.13 24.85

srp 10% 103.64 71.31 28.21 0.010 103.04 71.01 28.01

srp 20% 109.08 76.48 28.87 0.009 108.48 76.18 28.67

srp 25% 110.91 78.10 29.48 0.009 110.31 77.80 29.28

srp 50% 127.24 93.13 31.23 0.008 126.64 92.83 31.03

srp 100% 163.20 122.90 36.08 0.006 162.60 122.60 35.88

BUFFER = 100K

overhead 1.00 0.41 0.43 1.000

srp 1% 89.01 63.94 21.94 0.011 88.01 63.53 21.51

srp 5% 99.13 66.59 25.58 0.010 98.13 66.18 25.15

srp 10% 102.82 67.36 28.77 0.010 101.82 66.95 28.34

srp 20% 110.66 74.05 29.68 0.009 109.66 73.64 29.25

srp 25% 111.90 74.98 30.34 0.009 110.90 74.57 29.91

srp 50% 126.97 87.86 32.33 0.008 125.97 87.45 31.90

srp 100% 161.80 118.24 36.76 0.006 160.80 117.83 36.33

BUFFER = 1000K

overhead 4.52 1.59 2.77 0.221

srp 1% 88.95 60.36 24.29 ý0.011 84.43 58.77 21.52

srp 5% 96.98 62.64 27.29 0.010 92.46 61.05 24.52

srp 10% 102.04 63.61 30.36 0.010 97.54 62.02 27.59

srp 20% 106.84 68.29 31.25 0.009 102.32 66.70 28.48

srp 25% 109.69 70.14 31.81 0.009 105.17 68.55 29.04

srp 50% 125.18 83.24 34.11 0.008 120.66 81.65 31.34

srp 100% 155.52 110.18 37.36 0.006 151.00 108.59 34.59

Table A2.10: DB_SZ = 10000, T_TYP = select-replace

147

Experimental Times Time - Overhead
Program Elapsed CPU 1/0 Thru'put Elapsed CPU 1/0

BUFFER = 10K

overhead 0.60 0.30 0.20 1.667

sel 1% 96.86 67.47 23.42 0.010 96.26 67.17 23.22
sel 5% 109.79 74.38 30.87 0.009 109.19 74.08 30.57
sel 10% 126.31 84.67 38.38 0.008 125.71 84.37 38.18
sel 20% 157.63 103.82 51.14 0.006 157.03 103.52 50.94
sel, 25% 174.23 112.73 58.52 0.006 173.63 112.43 58.32
sel 50% 256.08 160.90 92.18 0.004 255.48 160.60 91.98
sel 100% 417.92 259.61 155.08 0.002 417.32 259.31 154.88

BUFFER = 100K

overhead 1.00 0.41 0.43 1.000
sel 1% 99.98 70.55 23.35 0.010 98.98 70.14 22.92
sel 5% 113.08 76.80 30.00 0.009 112.08 76.39 29.57
sel 10% 129.16 88.35 36.60 0.008 128.16 87.94 36.17
sel 20% 148.66 103.93 40.66 0.007 147.66 103.52 40.23
sel 25% 154.88 108.26 42.32 0.006 153.88 107.85 41.89
sel 50% 201.26 146.84 50.49 0.005 200.26 146.43 50.06
sel 100% 299.26 222.06 72.83 0.003 298.26 221.65 72.40
BUFFER = 1000K

overhead 4.52 1.59 2.77 0.221
sel 1% 97.57 68.38 24.15 0.010 93.05 66.79 21.38
sel 5% 109.70 72.58 29.60 0.009 105.18 70.99 26.83
sel 10% 126.11 85.97 35.62 0.008 121.59 84.38 32.85
sel 20% 141.03 97.54 38.11 0.007 136.51 95.95 35.34
sel 25% 147.92 103.07 39.21 0.007 143.40 101.48 36.44
sel 50% 186.17 136.35 44.35 0.005 181.65 134.76 41.58
sel 100% 265.26 206.14 54.07 0.004 261.74 204.55 51.30

Table A2.11: DB_SZ = 10000, T_TYP = select

148

Experimental Times Time - Overhead
Program Elapsed CPU 1/0 Thrufput Elapsed CPU 1/0

BUFFER = 10K

overhead 0.65 0.30 0.20 1.538

grs 1 1.11 0.52 0.41 0.901 0.46 0.22 0.21

gru 1 1.10 0.51 0.41 0.909 0.45 0.21 0.21

grs 2 1.20 0.56 0.41 0.833 0.55 0.26 0.21
gru 2 1.15 0.55 0.42 0.870 0.50 0.25 0.22
grs 5 1.30 0.69 0.41 0.769 0.65 0.39 0.21
gru 5 1.34 0.68 0.45 0.746 0.69 0.38 0.25
grs 10 1.51 0.90 0.42 0.632 0.86 0.60 0.22
gru 10 1.60 0.91 0.50 0.625 0.95 0.61 0.30
grs 100 5.61 4.82 0.57 0.178 4.96 4.52 0.37
gru 100 -- -- -- --- -- -- --
BUFFER = 100K

overhead 1.05 0.41 0.43 0.952
grs 1 1.42 0.61 0.64 0.704 0.37 0.20 0.21
gru 1 1.41 0.59 0.66 0.709 0.36 0.18 0.23
grs 2 1.50 0.64 0.66 0.667 0.45 0.23 0.23
gru 2 1.49 0.64 0.66 0.671 0.44 0.23 0.23
grs 5 1.60 0.77 0.65 0.625 0.55 0.36 0.22
gru 5 1.62 0.79 0.68 0.617 0.57 0.38 0.25
grs 10 1.80 0.98 0.65 0.556 0.75 0.57 0.22
gru 10 1.90 0.99 0.75 0.526 0.85 0.58 0.32
grs 100 5.74 4.74 0.81 0.174 4.69 4.33 0.38
gru 100 -- -- -- --- -- -- --
BUFFER = 1000K

overhead 4.55 1.60 2.73 0.220
qrs 1 5.00 1.84 2.96 0.200 0.45 0.24 0.23
gru 1 4.99 1.81 2.98 0.200 0.44 0.21 0.25
grs 2 5.04 1.88 2.97 0.198 0.49 0.28 0.24
gru 2 5.01 1.88 2.97 0.200 0.46 0.28 0.24
grs 5 5.19 2.04 2.94 0.193 0.64 0.44 0.21
gru 5 5.20 2.01 2.98 0.192 0.65 0.41 0.25
grs 10 5.40 2.23 2.97 0.185 0.85 0.63 0.24
gru 10 5.44 2.19 3.07 0.184 0.89 0.59 0.34
grs 100 9.59 5.98 3.17 0.104 5.04 4.38 0.44
gru 100 -- -- -- --- -- -- --

Table A2.12: DB_SZ = 100, T_TYP = get-replace (sequential/uniform)

149

Experimental Times Time - overh ead
Program Elapsed CPU 1/0 Thrutput Elapsed CPU 1/0

BUFFER = 10K

overhead 0.63 0.30 0.20 1.587
grs 1 1.10 0.52 0.41 0.910 0.37 0.22 0.21

gru 1 1.09 0.50 0.41 0.917 0.46 0.20 0.21

grs 2 1.10 0.56 0.41 0.906 0.37 0.26 0.21
gru 2 1.11 0.53 0.41 0.901 0.48 0.23 0.21
grs 5 1.26 0.68 0.42 0.794 0.53 0.38 0.22
gru 5 1.30 0.66 0.46 0.769 0.67 0.36 0.26

grs 10 1.50 0.90 0.43 0.667 0.87 0.60 0.23

gru 10 1.60 0.88 0.50 0.625 0.97 0.58 0.30

grs 100 5.59 4.78 0.59 0.179 4.96 4.48 0.39

gru 100 7.47 5.22 1.59 0.134 6.84 4.92 1.39

BUFFER IOOK

overhead 1.02 0.40 0.45 0.980

grs 1 1.40 0.61 0.65 0.714 0.38 0.21 0.20

gru 1 1.50 0.62 0.66 0.667 0.48 0.22 0.21
grs 2 1.46 0.64 0.66 0.685 0.44 0.24 0.21

gru 2 1.50 0.67 0.66 0.667 0.48 0.27 0.21
grs 5 1.60 0.77 0.66 0.625 0.58 0.37 0.21

gru 5 1.70 0.81 0.70 0.588 0.68 0.41 0.25

grs 10 1.80 0.99 0.66 0.556 0.78 0.59 0.21

gru 10 2.00 1.04 0.74 0.500 0.98 0.64 0.29

grs 100 5.70 4.69 0.84 0.175 4.68 4.29 0.39

gru 100 8.31 5.07 1.84 0.120 7.29 4.67 1.39

BUFFER 1000K

overhead 4.57 1.62 2.77 0.219

grs 1 4.98 1.82 2.97 0.201 0.41 0.20 0.20

gru 1 5.00 1.85 2.97 0.200 0.43 0.23 0.20

grs 2 5.00 1.88 2.96 0.200 0.43 0.26 0.19

gru 2 5.04 1.89 2.99 0.198 0.47 0.27 0.22

grs 5 5.12 2.00 2.96 0.195 0.55 0.38 0.19

gru 5 5.21 2.03 3.02 0.192 0.64 0.41 0.25

grs 10 5.35 2.20 2.98 0.187 0.78 0.58 0.21

gru 10 5.50 2.27 3.05 0.182 0.93 0.65 0.28

grs 100 9.31 6.00 3.14 0.107 4.74 4.38 0.37

gru 100 11.70 6.37 4.20 0.085 7.13 4.75 1.43

Table A2.13: DB_SZ = 1000, T_TYP = get-replace (sequential/uniform)

iso

Experimental Times Time Overhead
Program Elapsed CPU 1/0 Thru'put Elapsed CPU 1/0

BUFFER = 10K

overhead 0.60 0.30 0.20 1.667
grS 1 1.10 0.48 0.48 0.909 0.50 0.18 0.28

gru 1 1.10 0.48 0.44 0.909 0.50 0.18 0.24

grs 2 1.19 0.52 0.48 0.840 0.59 0.22 0.28

gru 2 1.13 0.52 0.45 0.885 0.53 0.22 0.25

grs 5 1.30 0.64 0.48 0.769 0.70 0.34 0.28

gru 5 1.33 0.67 0.46 0.752 0.73 0.37 0.26

grs 10 1.50 0.85 0.49 0.667 0.90 0.55 0.29

gru 10 1.60 0.87 0.54 0.625 1.00 0.57 0.34

grs 100 5.46 4.61 0.65 0.183 4.86 4.31 0.45

gru 100 6.71 5.03 1.50 0.149 6.11 4.73 1.30

BUFFER 100K

overhead 1. -00 0.41 0.43 1.000
grs 1 1.50 0.62 0.70 0.667 0.50 0.21 0.27

gru 1 1.47 0.61 0.67 0.679 0.47 0.20 0.24

grs 2 1.56 0.67 0.70 0.641 0.56 0.26 0.27

gru 2 1.50 0.66 0.68 0.667 0.50 0.25 0.25

grs 5 1.70 0.79 0.71 0.588 0.70 0.38 0.26

gru 5 1.70 0.78 0.72 0.588 0.70 0.37 0.29

grs 10 1.90 1.01 0.71 0.526 0.90 0.60 0.28

gru 10 1.93 1.01 0.76 0.518 0.93 0.60 0.33

grs 100 5.92 4.79 0.91 0.169 4.92 4.38 0.48

gru 100 7.71 5.09 1.87 0.130 6.71 4.64 1.44

BUFF ER 1000K

overhead 4.52 1.59 2.77 0.221

grs 1 5.22 1.87 3.01 0.192 0.70 0.28 0.24

gru 1 5.00 1.80 3.01 0.200 0.48 0.21 0.24

grs 2 5.09 1.88 3.00 0.196 0.57 0.29 0.24

gru 2 5.03 1.87 3.00 0.199 0.51 0.28 0.23

grS 5 5.20 2.02 3.00 0.192 0.68 0.43 0.23

gru 5 5.20 2.00 3.01 0.192 0.68 0.41 0.24

grs 10 5.41 2.24 3.00 0.185 0.89 0.64 0.23

gru 10 5.49 2.20 3.09 0.182 0.97 0.61 0.32

grs 100 9.43 6.08 3.16 0.106 4.91 4.49 0.39

gru 100 11.45 6.15 4.24 0.087 6.93 4.56 1.47

Table A2.14: DB_SZ = 10000, T_TYP = get-replace (sequential/uniform)

151

Appendix 3

PRO TO TYPE RESULTS

152

Experiment 1 Results: (GRAN = 1, T_TYP = get-replace)

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

A13TO

sv

T

0.824 0.307%)

0.752 0.323%)

0.758 0.216%)

0.708 0.563%)

0.700 0.269%)

0.757 0.557%)

0.753 0.390%)

0.781 0.406%)

ET RUNS Comm RSRT

12.132 0.307%) 400 400 0
13.299 0.323%) 400 400 0
13.191 0.216%) 400 400 0
14.123 0.565%) 400 400 0
14.278 0.268%) 400 400 0
13.209 0.557%) 400 400 0
13.280 0.393%) 400 400 0
12.812 0.407%) 400 400 0

Table AM: T_REQ = 1, Throughput, ET and run counts

I CCA ET CPU io I

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

A13TO

sv

12.132 0.307%)

13.299 0.323%)

13.191 0.216%)
14.123 0.565%)

14.278 0.268%)
13.209 0.557%)

13.280 0.393%)

12.812 0.407%)

0.650 0.328%)
0.674 0.345%)
0.670 0.174%)
0.684 0.682%)

0.684 0.480%)
0.682 0.779%)
0.678 0.696%)

0.679 0.780%)

0.551 0.481%)

0.643 0.354%)
0.635 0.259%)
0.70'2 0.532%)

0.716 0.218%)
0.620 0.309%)

0.630 0.308%)

0.583 0.259%)

Table A3.2: T_REQ = 1, Useful Work Costs

I CCA ET CPU io I

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

0.000 0.000%)
0.000 0.000w)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)

0.000 0.000t)
0.000 0.000%)
0.000 0.000%)

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)

Table AM: T_REQ = 1, Wasted Work Costs

153

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

T

0.787 0.303%)

0.685 0.223%)

0.689 0.232%)

0.591 0.751%)

0.600 0.685%)

0.670 0.767%)

0.678 0.735%)
0.684 1.167%)

ET

12.705 0.302%)
14.590 0.224%)
14.508 0.232%)

16.924 0.762%)
16.667 0.687%)
14.933 0.765%)
14.742 0.734%)
14.624 1.147%)

RUNS Comm RSRT

400 400 0

400 400 0

400 399 0

400 376 23

400 378 21

400 378 22

400 378 21

400 368 31

Table A3.4: T_REQ = 2, Throughput, ET and run counts

CCA

NO CC

P RE

2PLE

2PLU

A2PLU

ETO

A13TO

sv

ET

12.705 0.302%)

14.590 0.224%)
14.503 0.224%)
15.916 0.256%)

15.009 0.640%)

14.014 0.508%)

13.187 1.163%)
13.302 0.635%)

CPU

0.694 0.410%)
0.733 0.262%)
0.722 0.444%)
0.752 0.519%)
0.750 0.616%)
0.734 0.498%)

0.738 0.689%)
0.731 0.710%)

io

0.572 0.444%)
0.707 0.498%)
0.698 0.301%)
0.805 0.416%)
0.808 1.105%)
0.677 0.370%)
0.688 0.391%)
0.609 1.074%)

Table A3.5: T_REQ = 2, Useful Work Costs

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

ET

0.000 0.000%)

0.000 0.000%)

1.576 ---)

14-000 3.632%)

13.449 2.786%)

13.872 2.733%)

12.955 2.614%)

13.448 2.731%)

CPU

0.000 0.000%)

0.000 0.000%)

0.140 ---)

0.749 1.432%)

0.746 1.558%)

0.731 1.088%)

0.723 1.150%)

0.715 0.796%)

io

0.000 0.000%)
0.000 0.000%)
0.110 ---)
0.748 1.029%)
0.753 1.536%)
0.639 1.847%)
0.659 1.648%)
0.513 1.088%)

Table A3.6: T_REQ = 2, Wasted Work Costs

154

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

"1

0.695 0.471%)

0.493 0.359%)

0.517 0.806t)

0.254 2.525%)

0.399 1.115%)

0.291 2.650t)

0.389 1.923%)

0.398 1.399%)

ET

14.392 0.470%)

20.298 0.357%)
19.336 0.804%)
39.371 2.506%)
25.102 1.121%)
34.452 2.549%)
25.744 1.955%)
25.138 1.409%)

RUNS Comm RSRT

400 400 0

400 400 0

400 388 11

400 218 182

400 274 125

400 202 197

400 262 137

400 237 163

Table A3.7: T_REQ = 5, Throughput, ET and run counts

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

A13TO

sv

ET

14.392 0.470%)
20.298 0.357%)

18.792 0.302%)
22.342 0.898%)
11.421 2.458%)
16.888 0.473%)
10.677 1.819%)
14.434 0.438%)

CPU

0.825 0.283%)
0.961 0.291%)

0.913 0.371%)
0.963 0.444%)
0.942 0.490%)
0.913 0.432%)
0.907 0.614%)
0.887 0.558%)

Ic

0.611 0.655%)
1.031 0.475%)
0.911 0.457%)
1.166 0.504%)
1.020 0.388%)
0.842 0.391%)
0.856 0.276%)
0.643 0.505%)

Table A3.8: T_REQ = 5, Useful Work Costs

CCA

NO CC
VRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

ET

0.000 0.000%)
0.000 0.000%)

16.085 8.348%)
18.312 1.039%)
10.282 2.138%)
15.942 0.709%)
11.192 1.559%)
13.564 1.055%)

CPU

0.000 0.000%)
0.000 0.000%)
0.818 2.244%)
0.954 0.549%)
0.939 0.56316)
0.897 0.659%)
0.893 0.920%)
0.844 0.713%)

io

0.000 0.000%)
0.000 0.000%)
0.739 2.114%)
1.009 0.600%)
0.897 0.457%)
0.763 0.755%)
0.777 0.816%)
0.541 0.724%)

Table A3.9: T_REQ = 5, Wasted Work Costs

155

CCA

NO CC

P RE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

T

0.577 0.276%)

0.277 0.809%)

0.235 2.196%)

0.048 8.153%)

0.218 5.735%)

0.023 (+-16.919%)
0.301 (+- 5.032%)

0.166 (+- 1.723%)

ET RUNS Comm RSRT

17.337 0.275*) 400 400 0
36.099 0.814%) 400 400 0
42.696 2.284%) 400 236 164

211.973 8.281%) 400 55 345
46.262 6.368%) 400 204 195

479.024 (+-19.606%) 400 19 380
33.457 (+- 4.744%) 400 219 180
60.161 (+- 1.723%) 400 115 284

Table A3.10: T_REQ = 10, Throughput, ET and run counts

I CCA ET CPU io I

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

17.337 0.275%)
36.099 0.814%)

26.228 0.539%)
36.094 2.917%)

9.819 4.681%)
21.291 1.487%)

5.159 4.924%)
17.390 0.801%)

1.049 0.291%)
1.494 0.350%)

1.245 0.240%)
1.341 0.719%)
1.233 0.362%)

1.200 0.580%)
1.182 0.532%)
1.151 0.625%)

0.670 0.439%)
2.043 1.082%)

1.324 0.495%)
1.781 1.005%)
1.446 0.507%)
1.067 0.736%)
1.130 0.973%)
0.706 0.891%)

Table A3.11: T_REQ = 10, Useful Work Costs

I CCA ET CPU io I

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

0.000 0.000%)
0.000 0.000%)

21.650 1.728%)
25.506 0.703%)
11.118 4.522%)
19.035 0.318%)
11.328 6.536%)
15.342 0.393%)

0.000 0.000%)
0.000 0.000%)
1.053 0.483%)

1.271 0.353%)
1.218 0.351%)
1.153 0.375%)
1.166 0.605%)
1.089 0.478%)

0.000 0.000%)
0.000 0.000%)
1.000 0.998%)
1.355 0.402%)
1.158 0.540%)
0.900 0.323%)
0.924 0.466%)
0.568 0.513%)

Table A3.12: T_REQ = 10, Wasted Work Costs

156

Summary Tables for GRAN = 1, T_REQ = 1,2,5,10, T_TYP = get-replace

ET: T_REQ PRE 2PLE 2PLU A2PLU BTO ABTO SV

1 110 109 116 118 109 109 106
2 115 114 133 131 118 116 115
5 141 134 274 174 239 179 175

10 208 246 1223 267 2763 193 347

CPU: T_REQ PRE 2PLE 2PLU A2PLU BTO ABTO sv

1 104 103 105 105 105 104 104
2 106 104 115 114 112 112 114
5 116 114 214 166 217 167 178

10 142 189 902 229 2508 204 366

10: T_REQ PRE 2PLE 2PLU A2PLU BTO ABTO sv

1 117 115 127 130 113 114 106
2 124 122 149 149 125 127 114
5 169 153 329 234 260 207 166

10 305 301 1558 382 3081 282 314

Table A3.13: Overhead Summary (%)

ET: T_REQ PRE 2PLE 2PLU A2PLU BTO ABTO SV

1 100 100 100 100 100 100 100
2 100 100 94 90 94 90 91
5 100 97 57 46 49 41 57

10 100 61 17 21 5 15 29

CPTJ: T_REQ PRE 2PLE 2PLU A2PLU BTO A. BTO sv

1 100 100 100 100 100 100 100
2 100 100 94 95 95 95 92
5 100 98 55 69 51 66 60

10 100 63 14 51 5 55 30

10: T_REQ PRE 2PLE 2PLU A2PLU BTO ABTO SV

1 100 100 100 100 100 100 100
2 100 100 95 95 95 95 93
5 100 98 58 71 53 68 63

10 100 66 17 57 6 60 33

Table A3.14: Efficiency Summary (%)

157

Experiment I Results: (GRAN = 10, T_TYP = get-replace)

CCA T ET RUNS Comm RSRýTý

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

0.824 0.307%)

0.727 0.290%)

0.734 0.519%)

0.529 1.248%)
0.640 0.484%)

0.583 1.073%)

0.711 0.849%)
0.513 1.220%)

12.132 0.307%) 400 400 0
13.757 0.290%) 400 400 0
13.630 0.520%) 400 400 0
18.910 1.250%) 400 300 99
15.625 0.482%) 400 340 59
17.170 1.072%) 400 302 97
14.068 0.850%) 400 345 54
19.506 1.223%) 400 262 137

Table A3.15: T_REQ = 1, Throughput, ET and run counts

I
CCA ET CPU io

I

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

12.132 0.307%)
13.757 0.290%)
13.630 0.520%)
14.304 0.655%)

11.488 0.839%)
12.493 0.637%)
10.327 1.283%)
12.048 0.890%)

0.650 0.328%)
0.690 0.278%)
0.680 0.640%)
0.693 0.607%)
0.690 0.537%)
0.668 0.838%)
0.676 0.612%)
0.680 0.871%)

0.551 0.481%)
0.664 0.492%)
0.653 0.523%)
0.702 0.305%)

0.694 0.377%)
0.623 0.293%)
0.629 0.461%)
0.619 0.361%)

Table A3.16: T_REQ = 1, Useful Work Costs

I CCA ET CPU 10 1

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

A13TO

sv

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)

11.935 1.415%)
9.970 1.936%)

12.551 0.878%)

10.810 2.442%)

12.236 1.107%)

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)

0.696 1.004%)
0.691 0.594%)
0.668 0.796%)

0.676 0.930%)
0.660 0.909%)

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.644 0.616%)
0.645 0.873%)
0.601 0.395%)
0.610 0.805%)
0.520 0.498%)

Table A3.17: T_REQ = 1, Wasted Work Costs

158

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sxi

T

0.787 0.303%)

0.604 0.364%)

0.594 0.713%)

0.227 2.750%)

0.416 1.903%)

0.267 3.719%)

0.529 1.778%)

0.339 2.200%)

ET

12.705 0.302%)

16.545 0.361*)
16.832 0.714%)
44.187 2.756%)
24.050 1.923%)
37.549 3.574%)
18.937 1.842%)
29.562 2.243%)

RUNS Comm RSRT

400 400 0

400 400 0

400 382 17

400 152 247

400 250 150

400 149 251

400 256 143

400 177 222

Table A3.18: T_REQ = 2, Throughput, ET and run counts

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

ET

12.705 0.302%)
16.545 0.361%)
16.149 0.613%)
17.529 1.288%)

9.231 1.641%)
12.947 0.877%)

6.529 3.946%)

12.506 0.705%)

CPU

0.694 0.410%)
0.784 0.363%)
0.758 0.683%)
0.784 0.576%)
0.758 0.513%)
0.729 0.971%)
0.729 0.876%)
0.728 0.640%)

io

0.572 0.444%)
0.624 0.253%)
0.796 0.660%)
0.852 0.520%)
0.806 0.364%)

0.677 0.430%)
0.696 0.521%)
0.629 0.315%)

Table A3.19: T_REQ = 2, Useful Work Costs

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

ET

0.000 0.000%)
0.000 0.000%)

13.040 4.265%)
14.379 0.952%)

9.008 2.464%)

12.531 0.685%)
7.985 1.945%)

11.551 0.804%)

CPU

0.000 0.000%)
0.000 0.000%)
0.722 1.062%)
0.779 0.539%)
0.759 0.727%)
0.720 0.574%)
0.726 0.720%)
0.706 0.792%)

io

0.000 0.000%)

0.000 0.000%)

0.663 2.782%)
0.765 0.640%)
0.740 0.666%)
0.638 0.498%)
0.648 0.585%)
0.524 0.439%)

Table A3.20: T_REQ = 2, Wasted Work Costs

159

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

T

0.695 0.471%)

0.419 0.511%)

0.181 1.965%)

0.020 8.344%)

0.247 5.385%)

0.018 (+-23.181%)

0.326 4.015%)

0.159 1.574%)

ET

14.392 0.470%)
23.841 0.510%)
55.444 1.989%)

499.632 8.310%)
40.739 4.861%)

654.739 (+-24.686%)
30.824 3.956%)
62.919 1.545%)

RUNS Comm RSRT

400 400 0

400 400 0

400 143 256

400 17 383

400 185 214

400 11 388

400 206 193

400 92 308

Table A3.21: T_REQ = 5, Throughput, ET and run counts

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

ET

14.392 0.470%)

23.841 0.510%)

21.476 1.194%)

27.550 2.313%)

5.790 5.446%)

16.301 3.435%)

3.341 1.544%)

14.154 0.745%)

CPU

0.825 0.283%)
1.045 0.272%)
0.959 0.529%)
0.989 1.070%)
0.915 0.553%)
0.877 0.336%)
0.864 0.706%)
0.860 0.594%)

io

0.611 0.655%)
1.239 0.486%)
1.101 0.441%)
1.246 1.804%)
1.106 1.189%)
0.837 1.520%)
0.913 1.164%)
0.678 0.820%)

Table A3.22: T_REQ = 5, Useful Work Costs

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

ET

0.000 0.000%)
0.000 0.000%)

16.933 1.283%)
18.546 0.588%)

9.892 8.558%)
14.222 0.338%)
11.526 4.161%)

12.555 0.462%)

CPU

0.000 0.000%)
0.000 0.000%)
0.823 0.801%)
0.945 0.696%)
0.913 0.642%)
0.859 0.653%)
0.856 0.682%)
0.840 0.481%)

io

0.000 0.000%)
0.000 0.000%)
0.830 0.658%)
0.966 0.386%)
0.893 1.048%)
0.723 0.213%)
0.730 0.939%)
0.549 0.485%)

Table A3.23: T_REQ = 5, Wasted Work Costs

ISO

CCA T ET RUNS Comm RSRT

NO CC 0.577 0.276%) 17.337 0.275%) 400 400 0

PRE 0.341 0.278%) 29.290 0.278%) 400 400 0

2PLE 0.036 7.588%) 278.911 7.948%) 400 30 370

2PLU 0.001 2965.004 400 1 399

A2PLU 0.011 105.790 400 15 384

BTO 0.001 2623.789 400 1 399

ABTO 0.309 2.918%) 32.431 2.984%) 400 218 181

Sv 0.082 2.370%) 122.326 2.402%) 400 55 344

Table A3.24: T_REQ = 10, Throughput, ET and run counts

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

AETO

sv

ET

17.337 0.275%)

29.290 0.278%)

27.026 3.607%)

14.305

1.116

10.569

3.446 1.127%)

17.128 1.025%)

CPU

1.049 0.291%)
1.327 0.295%)
1.226 1.330%)
0.501

0.234
0.471

1.094 0.608%)
1.078 0.649%)

Io

0.670 0.439%)
1.466 0.609%)

1.404 1.394%)
0.686
0.294
0.417

1.159 0.457%)
0.345 0.636%)

Table A3.25: T_REQ = 10, Useful Work Costs

I
CCA ET CPU io

I

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

0.000 0.000%)
0.000 0.000%)

17.993 0.941%)
22.771 0.787%)
23.825 4.146%)
17.660 0.173%)
12.296 5.008%)
14.810 0.471%)

0.000 0.000%)
0.000 0.000%)
0.881 0.716%)
1.176 0.492%)

1.177 0.518%)
1.087 0.222%)
1.084 0.603%)
1.057 0.503%)

0.000 0.000%)
0.000 0.000%)
0.886 0.399%)
1.153 0.752%)
1.164 1.111%)
0.840 0.231%)
0.855 0.585%)
0.580 0.661%)

Table A3.26: T_REQ = 10, Wasted Work Costs

161

Summary Tables for GRAN = 10, T_REQ = 1,2,5,10, T_TYP = get-replace

ET: T_REQ PRE 2PLE 2PLU A2PLU BTO ABTO sv

1 113 112 156 129 142 116 161
2 130 132 348 189 296 149 233
5 166 385 3472 283 4549 214 437

10 169 1609 17102 610 15134 187 706

CPU: T_REQ PRE 2PLE 2PLU A2PLU BTO ABTO SV

1 106 105 142 125 136 120 158
2 113 114 296 175 281 163 233
5 127 295 2749 240 4213 202 446

10 126 1175 13457 256 13791 190 733

10: T_REQ PRE 2PLE 2PLU A2PLU BTO ABTO SV

1 120 119 166 146 148 132 162
2 144 144 366 219 307 185 225
5 203 424 3835 351 4794 262 412

10 219 1876 20602 410 16717 280 653

Table A3.27: Overhead Summary (%)

ET: T_REQ PRE 2PLE 2PLU A2PLU BTO ABTO SV

1 100 100 76 74 73 73 62
2 100 96 40 38 35 34 42
5 100 39 6 14 3 11 22

10 100 10 0 0 0 11 14

CPU: T_REQ PRE 2PLE 2PLU A2PLU BTO ABTO SV

1 100 100 75 85 76 86 66
2 100 96 38 62 38 64 45
5 100 39 4 46 3. 52 23

10 100 10 0 1 0 55 14

10: T_REQ PRE 2PLE 2PLU A2PLU BTO ABTO SV

1 100 100 77 86 76 87 69
2 100 96 41 64 39 66 49
5 100 43 5 52 3 57 27

10 100 11 0 1 0 62 17

Table A3.28: Efficiency Summary (%)

162

Experiment 2 Results: (T_TYP = get-replace)

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

T

0.505 0.133%)

0.468 0.192%)

0.467 0.203%)

0.461 0.282%)

0.459 0.200%)
0.475 0.100%)

0.475 0.145%)

0.478 0.342%)

ET RUNS Comm RSRT

19.816 1+- 0.132%) 400 400 0

21.354 0.192%) 400 400 0

21.418 0.203%) 400 400 0

21.679 0.283%) 400 400 0

21.781 0.200%) 400 400 0

21.048 0.099%) 400 400 0

21.072 0.145%) 400 400 0

20.899 0.342%) 400 400 0

Table A3.29: LC = 0%, Throughput, ET and run counts
I CCA ET CPU io I

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

19.816 0.132%)
21.354 0.192%)
21.418 0.203%)
21.679 0.283%)
21.781 0.200%)
21.048 0.099%)
21.072 0.145%)
20.899 0.342%)

1.178 (+- 0.190%)
0.200%)

1.205 0.171%)
1.211 0.153%)
1.209 0.143%)
1.191 0.157%)

1.189 0.233%)
1.195 0.193%)

0.787 0.362%)
0.914 0.288%)
0.910 0.283%)
0.926 0.503%)
0.935 0.203%)
0.888 0.267%)
0.887 0.254%)
0.878 0.284%)

Table A3.30: LC = 0%, Useful Work Costs

I CCA ET CPU Io I

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)

0.000 0.000%)

0.000 0.000%)
0.000 0.000*)

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)

0.000 0.000%)

0.000 0.000%)

0.000 0.000%)
0.000 0.00096)

0.000 0.000%)

0.000 0.000%)

0.000 0.000%)

0.000 0.000%)

0.000 0.000%)

Table A3.31: LC = 0%, Wasted Work Costs

163

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

T

0.505 0.133%)

0.467 0.215%)

0.466 0.305%)

0.417 0.236%)

0.447 0.554%)

0.419 1.084%)

0.466 0.315%)

0.445 0.296%)

ET

19.816 0.132%)
21.436 0.215%)
21.472 0.305%)
23.981 0.236%)
22.369 0.549%)
23.890 1.088%)
21.475 0.315%)
22.497 0.297%)

RUNS Comm RSRT

400 400 0

400 400 0

400 400 0

400 360 39

400 381 18

400 346 53

400 381 19

400 364 36

Table A3.32: LC = 20%, Throughput, ET and run counts

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

ET

19.816 0.132%)

21.436 0.215%)

21.472 0.305%)

21.593 0.125%)

20.459 0.229%)

20.799 0.137%)

19.498 0.172%)

20.391 0.238%)

CPU

1.178 0.190%)
1.197 0.046%)
1.210 0.275%)
1.207 0.147%)
1.208 0.319%)
1.187 0.193%)
1.189 0.302%)
1.191 0.105%)

io

0.787 0.362%)
0.919 0.293%)
0.912 0.203%)
0.934 0.329%)
0.937 0.508%)
0.878 0.270%)
0.876 0.291%)
0.858 0.777%)

Table A3.33: LC = 20%, Useful Work Costs

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

ET

0.000 0.000%)

0.000 0.000%)

0.000 0.000%)

19.790 1.141%)

17.277 2.001%)

18.130 1.294%)

18.785 1.358%)

19.309 3.104%)

CPU

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
1.221 0.627%)
1.203 0.817%)
1.179 0.445%)
1.178 1.101%)
1.173 0.448%)

io

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.788 0.832%)
0.750 1.213%)
0.723 1.092%)
0.797 1.263%)
0.600 1.489%)

Table A3.34: LC = 20%, Wasted Work Costs

164

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

T

0.505 0.133%)

0.476 0.944%)

0.461 0.346%)

0.289 0.512%)

0.448 0.678%)

0.248 0.851%)

0.471 0.609%)

0.319 0.443%)

ET

19.816 0.132%)
21.035 0.939%)
21.673 0.346%)
34.549 0.509%)
22.348 0.678%)
40.328 0.848%)
21.255 0.612%)
31.324 0.447%)

RUNS Comm RSRT

400 400 0

400 400 0

400 400 0

400 243 157

400 321 78

400 197 202

400 317 82

400 247 152

Table A3.35: LC = 50%, Throughput, ET and run counts
F-CCA

ET CPU io

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

19.816 0.132%)

21.035 0.939%)
21.673 0.346%)

21.405 0.325%)
13.986 1.241%)
20.448 0.350%)
12.545 1.059%)

19.785 0.231%)

1.178 0.190%)

1.232 0.151%)

1.231 0.294%)

1.206 0.259%)

1.206 0.276%)

1.189 0.189%)

1.185 0.266%)

1.196 0.141%)

0.787 0.362%)
0.979 1.018%)
0.990 0.349%)
0.921 0.240%)
0.913 0.423%)
0.875 0.357%)
0.854 0.259%)
0.824 0.317%)

Table A3.36: LC = 50%, Useful Work Costs

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

ET

0.000 0.000%)

0.000 0.000%)

0.000 0.000%)

18.361 0.515%)

13.0? 9 6.041%)

17.421 0.364%)

13.084 1.950%)

16.767 0.727%)

CPU

0.000 0.000%)

0.000 0.000%)

0.000 0.000%)

1.208 0.273%)

1.208 0.390%)

1.172 0.254%)

1.175 0.545%)

1.170 0.389%)

io

0.000 0.000%)

0.000 0.000%)

0.000 0.000%)

ý0.747 0.675%)

0.745 0.822%)

0.693 0.326%)

0.718 1.317%)

0.576 0.434%)

Table A3.37: LC = 50%, Wasted Work Costs

165

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

T

0.505 0.133%)

0.446 0.470%)

0.432 0.399%)

0.151 1.002%)

0.409 3.258%)

0.099 2.001%)

0.428 1.999%)

0.175 1.691%)

ET RUNS Comm RSRT

19.816 0.132%) 400 400 0
22.416 0.466%) 400 400 0
23.131 0.400%) 400 400 0
66.455 0.999%) 400 123 276
24.506 3.244%) 400 260 139

100.784 2.024%) 400 76 323

23.383 2.022%) 400 254 146

57.274 1.672%) 400 128 271

Table A3.38: LC = 80%, Throughput, ET and run counts

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

ET

19.816 0.132%)
22.416 0.466%)
23.131 0.400%)
21.716 0.769%)

6.865 2.699%)
20.097 0.757%)

5.763 1.160%)
19.092 0.451%)

CPU

1.178 0.190%)
1.284 0.166%)
1.247 0.260%)

1.208 0.360%)
1.190 0.214%)
1.186 0.252%)
1.177 0.231%)
1.180 0.292%)

io

0.787 0.362%)
1.067 0.573%)
1.099 0.303%)
0.905 0.670%)
0.889 0.627%)
0.869 0.466%)
0.838 0.348%)
0.792 0.482%)

Table A3.39: LC = 80%, Useful Work Costs

CCA

NO CC

PRE

2PLE

2PLU

A2PLTJ

BTO

ABTO

sv

ET

0.000 0.000%)

0.000 0.000%)

0.000 0.000%)

18.022 0.402%)

12.216 5.718%)

17.026 0.295%)

10.499 3.464%)

16.009 0.417%)

CPU

0.000 0.000%)

0.000 0.000%)

0.000 0.000%)

1.211 0.238%)

1.198 0.284%)

1.171 0.206%)

1.168 0.395%)

1.165 0.381%)

io

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.734 0.520%)
0.739 0.638%)
0.679 0.303%)
0.699 0.369%)
0.566 0.622%)

Table A3.40: LC = 80%, Wasted Work Costs

166

CCA T ET RUNS Comm RSRT

NO CC 0.505 0.133%) 19.816 0.132%) 400 400 0

PRE 0.390 0.329%) 25.668 0.330%) 400 400 0

2PLE 0.362 0.808t) 27.598 0.830%) 400 400 0

2PLU 0.048 1.979%) 210.614 2.029%) 400 39 360

A2PLU 0.401 3.876%) 25.061 3.789%) 400 258 141

BTO 0.012 ---) 1639.983 ---) 400 8 391

ABTO 0.387 2.342%) 25.857 2.444%) 400 232 167

Sv 0.073 2.242%) 137.865 2.235%) 400 51 348

Table A3.41: LC = 100%, Throughput, ET and run counts

I CCA ET CPU io I

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

19.816 0.132%)
25.668 0.330%)
27.598 0.830%)
26.243 1.075%)

7.067 3.647%)
15.609 (+-21.828%)

3.041 (+- 1.429%)
17.513 (+- 0.745%)

1.178 0.190%)
1.322 0.214%)
1.274 0.481%)
1.192 0.540%)
1.193 0.147%)
1.060 (+-20.405%)
1.163 (+- 0.238%)

1.167 (+- 0.593%)

0.787 0.362%)

1.111 0.407%)
1.195 0.615%)
0.833 1.126%)
0.896 0.396%)
0.662 (+-20.480%)
0.800 (+- 0.551%)
0.692 (+- 0.752%)

Table A3.42: LC = 100%, Useful Work Costs

I CCA ET CPU io I

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)

18.062 0.193%)
11.998 7.574%)
16.814 0.383%)
12.151 9.002%)
15.757-(+- 0.123%)

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
1.202 0.275%)
1.209 0.264%)
1.175 0.081%)
1.164 0.218%)
1.156 0.232%)

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.734 0.417%)
0.733 0.579%)
0.661 0.226%)
0.678 0.488%)
0.568 0.536%)

Table A3.43: LC = 100%, Wasted Work Costs

167

Summary Tables for LC = 0%, 20%, 50%, 80%, 100%, T_TYP = get-replace

ET: LC PRE 2PLE 2PLU A2PLU BTO ABTO sv

0% 108 108 109 110 106 106 105
20% 108 108 121 113 121 108 114
50% 106 109 174 113 204 107 158
80% 113 117 335 124 509 118 289

100% 130 139 1063 126 8276 130 696

CPU: LC PRE 2PLE 2PLU A2PLU BTO ABTO sv

0% 102 102 103 103 101 101 101
20% 102 103 114 108 116 106 ill
50% 105 104 169 127 203 127 163
80% 109 106 332 156 522 157 310

100% 112 108 1038 158 8740 170 '164

10: LC PRE 2PLE 2PLU A2PLU BTO ABTO sv

096 116 116 118 119 113 113 112
20% 117 116 130 124 126 116 117
50% 124 126 178 139 201 132 150
80% 136 140 323 163 476 158 253

100% 141 152 963 165 7344 164 577

Table A3.44: Overhead Summary (%)

ET: LC P RE 2PLE 2PLU A2PLU BTO ABTO sv

0% 100 100 100 100 100 100 100

20% 100 100 90 92 87 91 91
50% 100 100 62 63 51 59 63
80% 100 100 33 28 20 25 33

100% 100 100 12 28 2 12 13

CPU: LC PRE 2PLE 2PLU A2PLU BTO ABTO sv

0% 100 100 100 100 100 100 100

20% 100 100 90 95 87 95 91

50% 100 100 61 80 50 80 62

80% 100 100 31 65 19 64 32

100% 100 100 10 64 2 58 13

10: LC PRE 2PLE 2PLU A2PLU BTO ABTO sv

0% 100 100 100 100 100 100 100

20% 100 100 92 96 89 96 94

50% 100 100 66 83 55 82 70

80% 100 100 35 69 23 68 40

-- -

1 100% 100
1

100 11 69 2 62 15
1

Table A3.45: Efficiency Summary

168

Experiment 1 Results: (GRAN = 1, T_TYP = select-replace)
I CCA T ET RUNS Comm RSRT

I

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

0.734 0. -701%)

0.668 0.304%)

0.664 0.294%)

0.633 (+- 0.289%)

0.634 0.352%)

0.670 0.206%)

0.670 0.442%)

0.689 0.234%)

13.633 0.306%)
14.960 0.303%)
15.051 0.294%)
15.392 0.289%)
15.184 0.353%)
14.923 0.205%)
14.932 0.441%)
14.516 0.233%)

400 400 0

400 400 0

400 400 0
400 400 0

400 400 0

400 400 0

400 400 0

400 400 0

Table A3.46: T_REQ = 1, Throughput, ET and run counts

I CCA ET CPU io I

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

13.633 0.706%)
14.960 0.303%)
15.051 0.294%)

15.792 0.289%)
15.784 0.353%)
14.923 0.205%)
14.932 0.441%)
14.516 0.233%)

0.801 0.060%)
0.819 0.229%)
0.822 0.209%)
0.849 0.229%)
0.847 0.199%)
0.830 0.466%)
0.825 0.403%)
0.845 0.388%)

0.553 0.406%)
0.662 0.130%)
0.663 0.362%)
0.700 0.194%)
0.702 0.209%)
0.638 0.659%)
0.642 0.372%)
0.592 0.575%)

Table A3.47: T_REQ = 1, Useful Work Costs

I
CCA ET CPU io I

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)

Table A3.48: T_REQ = 1, Wasted Work Costs

169

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

T

0.721 0.483%)

0.625 0.284%)

0.624 0.268%)

0.553 0.366%)

0.564 1.397%)

0.622 0.992%)
0.625 0.690%)

0.627 1.837%)

ET

13.869 0.484%)
15-992 0.283%)
16.030 0.268%)
18.086 0.366%)
17.725 1.379%)
16.080 1.004%)
16.003 0.689%)
15.951 1.814%)

RUNS Comm RSRT

400 400 0

400 400 0

400 400 0

400 380 20

400 3ý8 21

400 384 15

400 384 16

400 367 33

Table A3.49: T_REQ = 2, Throughput, ET and run counts

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

ET

13.869 0.484%)

15.992 0.283%)
16.024 0.229%)
17.176 0.390%)
15.966 0.507%)

15.393 0.054%)

14.743 1.358%)

14.553 0.728%)

CPU

0.813 0.290%)
0.853 0.359%)
0.848 0.400%)
0.880 0-2ý4%)

0.864 0.299%)

0.854 0.264%)

0.851 0.435%)

0.851 0.423%)

io

0.567 0.590%)

0.725 0.721%)
0.721 0.342%)

0.799 0.508%)

0.795 0.330%)
0.692 0.301%)

0.696 0.672%)

0.607 0.484%)

I

Table A3.50: T_REQ = 2, Useful Work Costs

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

ET

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)

15.500 6.119%)

14.257 5.027%)

14.905 1.863%)

14.356 3.262%)

13.373 2.365%)

CPU

0.000 0.000%)
0.000 0.000%)

0.000 0.000%)
0.889 1.787%)

0.858 1.612%)

0.844 1.024%)
0.847 2.381%)

0.820 1.035%)

io

0.000 0.000%)
0.000 0.000%)

0.000 0.000%)
0.736 2.110%)
0.739 1.464%)
0.662 2.033%)

0.662 2.923%)

0.521 1.644%)

Table A3.51: T_REQ = 2, Wasted Work Costs

170

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

AETO

sv

T

0.680 0.137*)

0.476 1.034%)
0.521 0.515%)
0.276 2.126%)
0.386 0.423%)
0.334 2.502%)
0.396 2.223%)
0.384 1.254%)

ET

14.705 0.137%)
20.990 1.033%)
19.194 0.513%)
36.294 2.122%)
25.889 0.423%)
29.986 2.454%)
25.264 2.201%)
26.073 1.260%)

RUNS Comm RSRT

400 400 0

400 400 0

400 400 0

400 232 167

400 281 119

400 239 160

400 276 124

400 234 166

Table A3.52: T_REQ = 5, Throughput, ET and run counts

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

ET

14.705 0.137%)
20.990 1.033%)
19.194 0.513%)
21.657 0.645%)

12.507 3.861%)

17.556 0.747%)
11.800 2.330%)
14.797 1.022%)

CPU

0.849 0.285%)
1.004 0.737%)
0.959 0.190%)
0.981 0.310%)
0.968 0.286%)
0.936 0.518%)
0.932 0.376%)
0.910 0.351%)

Io

0.611 0.745%)
1.057 1.546%)
0.908 0.502%)

1.111 0.803%)
1.065 0.204%)
0.854 0.470%)
0.848 0.226%)
0.654 0.878%)

Table A3.53: T_REQ = 5, Vseful Work Costs

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

ET

0.000 0.000%)
0.000 0.000%)

0.000 0.000%)
18.326 2.090%)
11.192 2.567%)

16.500 0.366%)

12.148 3.782%)

13.860 1.546%)

CPU

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.975 0.522%)
0.960 0.495%)
0.919 0.295%)
0.920 1.277%)
0.870 0.542%)

10

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.976 1.255%)
0.940 0.988%)
0.780 0.640%)
0.786 1.072%)
0.554 0.847%)

Table A3.54: T_REQ = 5, Wasted Work Costs

171

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

T

0.630 0.773%)

0.296 1.205%)

0.262 4.289%)

0.059 (+-11.997%)
0.178 (+- 1.608%)
0.051 (+- 6.182%)

0.315 (+- 8.110%)
0.203 (+- 4.232%)

ET

15.874 0.775%)
33.829 1.196%)
38.223 4.298%)

172.926 (+-11.603%)
56.257 (+- 1.620%)

197.779 (+- 6.463%)
31.960 (+- 7.630%)
49.347 (+- 4.265%)

RUNS Comm RSRT

400 400 0

400 400 0

400 251 149

400 62 337

400 185 215

400 41 359

400 219 180

400 132 267

Table A3.55: T_REQ = 10, Throughput, ET and run counts

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

ET

15.874 0.775%)

33.829 1.196%)

24.502 1.556%)

33.451 4.427%)

10.932 4.873%)

20.732 1.485%)

5.088 (+-11.751%)

16.034 (+- 1.017%)

CPU

0.917 0.184%)
1.358 0.861%)

1.133 0.464%)
1.191 0.522%)
1.094 0.835%)
1.089 0.687%)
1.048 0.963%)
1.012 0.620%)

io

0.662 1.177%)

1.959 1.467%)

1.277 0.572%)
1.675 2.162%)
1.497 0.682-%)
1.072 0.455%)
1.144 2.127%)
0.738 0.962%)

Table A3.56: T_REQ = 10, Useful Work Costs

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

ET

0.000 0.000%)

0.000 0.000%)

20.989 2.990%)

23.384 0.740%)

13.086 2.383%)

18.248 0.447%)

10.798 (+-19.478%)

14.479 (+- 0.888%)

CPU

0.000 0.000%)
0.000 0.000%)
1.039 1.036%)
1.129 0.322%)
1.088 0.379%)
1.037 0.189%)
1.030 0.503%)
0.944 0.167%)

io

0.000 0.000%)
0.000 0.000%)
0.968 2.140%)
1.298 0.714%)
1.210 0.744%)
0.927 0.536%)
0.945 2.304%)
0.593 0.681%)

Table A3.57: T_REQ = 10, Wasted Work Costs

172

Summary Tables for GRAN = 1, T_REQ = 1,2,5,10, T_TYP = select-replace

ET: T_REQ PRE 2PLE 2PLU A2PLU BTO ABTO sv

1 110 110 116 116 109 110 106
2 115 116 130 128 116 115 115
5 143 131 247 176 204 172 177

10 213 241 1089 354 1246 201 311

CPU: T_REQ PRE 2PLE 2PLU A2PLU BTO ABTO sv

1 102 103 106 106 104 103 105
2 105 104 114 112 109 109 114
5 118 113 198 162 183 159 180

10 148 191 807 257 1108 207 318

10: T_REQ PRE 2PLE 2PLU A2PLU BTO A. BTO sv

1 120 120 127 127 115 116 107
2 128 127 148 148 127 128 115
5 173 149 297 240 226 197 172

10 296 280 1331 439 1386 291 293

Table A3.58: Overhead Summary (%)

ET: T_REQ PRE 2PLE 2PLU A2PLU BTO ABTO sv

1 100 100 100 100 100 100 100

2 100 100 95 90 96 92 91

5 100 100 60 48 59 47 57

10 100 64 20 19 10 16 32

CPU: T_REQ PRE 2PLE 2PLU A2PLU BTO ABTO sv

1 100 100 100 100 100 100 100
2 100 100 95 95 96 96 92
5 100 100 58 70 60 69 60

10 100 65 16 46 11 55 35

10: T_REQ PRE 2PLE 2PLU A2PLU BTO ABTO sv

1 100 100 100 100 100 100 100
2 100 100 95 95 96 96 93
5 100 100 61 73 62 71 62

10 100 69 19 52 12 60 38

Table A3.59: Efficiency Summary

173

Experiment 1 Results: (GRAN = 10, T_TYP = select-replace)

I
CCA T ET RUNS Comm RSRT

I

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

0.734 0.701%)

0.627 0.258%)

0.656 0.375%)

0.517 1.175%)

0.570 2.054%)

0.555 1.436%)

0.619 1.205%)

0.669 0.696%)

13.633 0.706%) 400 400 0
15.947 0.257%) 400 400 0
15.254 0.374%) 400 400 0
19.335 1.167%) 400 329 71
17.539 2.056%) 400 349 50
18.030 1.452%) 400 330 70
16.145 1.201%) 400 355 45
14.937 0.690%) 400 400 0

Table A3.60: T_REQ = 1, Throughput, ET and run counts
I CCA ET CPU io

I

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

13.633 0.706%)
15.947 0.257%)

15.254 0.374%)
15.886 0.533%)

13.567 1.540%)
14.490 0.373%)

12.660 1.563%)

14.937 0.690%)

0.801 0.060%)
0.841 0.245%)
0.819 0.319%)
0.846 0.532%)
0.836 0.350%)
0.826 0.315%)
0.819 0.254%)
0.845 0.208%)

0.553 0.406%)

0.729 0.368%)
0.681 0.293%)
0.720 0.640%)
0.718 0.422%)
0.644 0.437%)
0.652 0.271%)

0.628 0.218%)

Table A3.61: T_REQ = 1, Useful Work Costs

I CCA ET CPU Io I

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)

13.978 2.647%)

11.878 3.994%)
14.669 0.825%)
12.782 1.953%)

0.000 0.000%)

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.838 0.677%)

0.843 0.873%)
0.820 1.130%)
0.815 0.962%)
0.000 0.000%)

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.667 0.601%)
0.664 1.642%)
0.631 1.610%)
0.637 0.837%)
0.000 0.000%)

Table A3.62: T_REQ = 1, Wasted Work Costs

174

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

0.721 0.483%)

0.538 0.897%)

0.562 1.555%)

0.232 6.171%)

0.375 2.261%)

0.318 4.702%)

0.485 2.429%)

0.610 1.540%)

ET

13.869 0.484%)
18-588 0.894%)
17.783 1.539%)
43.269 6.382%)
26.679 2.276%)
31.556 4.767%)
20.613 2.431%)
16.406 1.547%)

RUNS Comm RSRT

400 400 0
400 400 0
400 385 15
400 167 233
400 251 149
400 195 205
400 271 128
400 365 35

Table A3.63: T_REQ = 2, Throughput, ET and run counts
[-C

CA ET CPU io
I

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

13.869 0.484%)
18.588 0.894%)
17.135 0.505%)
18.700 0.860%)
10.483 1.227%)
14.482 0.617%)

8.764 2.166%)
14.854 0.435%)

0.813 0.290%)
0.909 0.280%)
0.865 0.726%)
0.899 0.150%)
0.875 0.433%)
0.836 0.616%)
0.839 0.508%)
0.849 0.188%)

0.567 0.590%)
0.906 0.632%)
0.790 0.616%)
0.874 0.542%)
0.818 0.336%)
0.706 0.851%)

0.704 0.594%)
0.645 0.267%)

Table A3.64: T_REQ = 2, Useful Work Costs

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

ET

0.000 0.000%)

0.000 0.000%)

14.812 5.950%)

15.473 1.283%)

10.349 3.640%)

14.188 0.345%)

9.564 2.116%)

14.124 3.705%)

CPU

0.000 0.000%)
0.000 0.000%)
0.839 1.812%)
0.891 0.610%)
0.872 0.253%)
0.827 0.479%)
0.829 0.394%)
0.823 0.823%)

io

0.000 0.000%)
0.000 0.000%)
0.666 1.526%)
0.786 0.594%)
0.758 1.024%)
0.670 0.488%)
0.671 0.570%)
0.535 1.610%)

Table A3.65: T_REQ = 2, Wasted Work Costs

175

I
CCA T ET RUNS Comm RSRT

I

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

0.680 0.137%)

0.398 1.180%)

0.487 0.331%)

0.030 6.420%)

0.252 (+-10.989%)

0.056 (+-15.367%)
0.303 (+- 3.983%)

0.368 (+- 1.462%)

14.105 0.131%) 400 400 0
25.135 1.181%) 400 400 0
20.542 0.330%) 400 400 0

331.516 6.902%) 400 26 374
40-105 (+-11.417%) 400 196 204

181.048 (+-14.179%) 400 38 362
33.018 3.971%) 400 202 197
27.187 1.470%) 400 228 172

Table A3.66: T_REQ = 5, Throughput, ET and run counts

I CCA ET CPU io I

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

14.705 0.137%)

25.135 1.181%)
20.542 0.330%)

24.533 3.807%)
5.247 (+-13.830%)

16.835 (+- 1.376%)
3.983 (+- 3.920%)

15.207 (+- 1.247%)

0.849 0.285t)
1.076 0.410%)
0.976 0.334%)
1.013 1.210%)
0.929 0.743%)
0.901 1.300%)
0.882 0.492%)
0.912 0.456%)

0.611 0.745%)

1.344 1.864%)

0.996 0.363%)

1.188 1.747%)

1.130 1.081%)

0.850 1.810%)

0.935 0.437%)

0.691 0.831%)

Table A3.67: T_REQ = 5, Useful Work Costs

I CCA ET CPU io I

NO CC

PRE

2PLE

2PLU

A, 2PLU

BTO

ABTO

sv

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)

19.084 1.065%)
12.741 (+-17.137%)
14.975 (+- 0.547%)
11.555 (+- 8.344%)
13.877 (+- 1.956%)

0.000 0.000%)
0.000 0.000%)

0.000 0.000%)
0.983 0.288%)
0.936 0.461%)
0.881 0.170%)
0.868 0.559%)
0.873 0.471%)

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.990 1.005%)
0.932 0.653%)
0.770 0.567%)

, 0.773 0.851%)
0.558 0.913%)

Table A3.68: T_REQ = 5, Wasted Work Costs

176

CCA T ET RUNS Comm RSRT

NO CC 0.630 0.773%) 15.874 0.775%) 400 400 0

PRE 0.355 0.564%) 28.135 0.565%) 400 400 0

2PLE 0.045 (+-18.368%) 230-411 (+-17.225%) 400 36 364

2PLU 0.001 (+- ---) 3749.384 (+- ---) 400 1 399

A2PLU 0.106 (+-87.316%) 34.199 (+-87.299%) 400 106 293

BTO 0.003 (+- ---) 4404.053 (+- ---) 400 2 397

ABTO 0.322 3.219%) 31.076 (+- 3.224%) 400 218 181

Sv 0.099 4.446%) 101.289 (+- 4.249%) 400 62 338

Table A3.69: T_REQ = 10, Throughput, ET and run counts

I CCA ET CPU Io I

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

A13TO

sv

15.874 0.775%)
28.135 0.565%)
24.251 2.619%)
19.160

3.274
21.041 (+-16.633%)

3.319 (+- 3,171%)

15.961 (+- 1.962%)

0.917 0.184%)
1.177 0.267%)
1.081 1.269%)
0.662

0.619
0.929 5.951%)
0.963 0.594%)
0.958 0.851%)

0.662 1.177%)

1.499 0.310%)

1.321 2.182%)

0.990

0.916
1.123 5.805%)
1.201 0.710%)

0.739 1.292%)

Table A3.70: T_REQ = 10, Useful Work Costs

I CCA ET CPU Io I

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

0.000 0.000%)
0.000 0.000%)

17.854 0.616%)
21.478 0.461%)
18.544 (+-21.481%)

16.621 0.594%)
11.732 4.125%)
13.622 0.764%)

0.000 0.000%)
0.000 0.000%)
0.941 0.495%)
1.043 0.479%)
1.032 1.251%)
0.933 0.272%)
0.931 0.489%)
0.924 0.327%)

0.000 0.000%)
0.000 0.000%)
0.860 0.719%)
1.161 0.525%)
1.133 3.380%)
0.885 0.442%)
0.902 0.913%)
0.592 0.695%)

Table A3.71: T_REQ = 10, Wasted Work Costs

177

Summary Tables for GRAN = 10, T_REQ = 1,2,5,10, T_TYP = select-replace

ET -. T_REQ PRE 2PLE 2PLU A2PLU BTO ABTO sv

1 117 112 142 129 132 118 110

2 134 128 312 192 228 149 118

5 171 140 2254 273 1231 225 185

10 177 1451 23620 215 2ýý44 196 638

CPU: T_REQ PRE 2PLE 2PLU A2PLU BTO ABTO sv

1 105 102 128 120 125 115 105
2 112 110 265 171 210 152 114
5 127 115 1804 225 1109 204 185

10 128 1184 18198 151 23991 189 655

10: T_REQ PRE 2PLE 2PLU A2PLU BTO ABTO sv

1 132 123 156 147 141 132 114
2 160 144 349 224 249 180 123
5 220 163 2554 345 1358 277 182

10 226 1550 28076 264 31665 295 600

Table A3.72: Overhead Summary (%)

ET: T-REQ PRE 2PLE 2PLU A2PLU BTO ABTO sv

1 100 100 82 78 so 78 100

2 100 96 43 39 46 43 91

5 100 100 7 13 9 12 56

10 100 11 0 3 1 11 16

CPU: T_REQ PRE 2PLE 2PLU A2PLU BTO ABTO sv

1 100 100 82 87 83 89 100

2 100 96 42 63 49 68 91

5 100 100 7 49 10 51 58

10 100 10 0 18 0 55 16

10: T_REQ PRE 2PLE 2PLU A2PLU ETO ABTO sv

1 100 100 83 88 83 89 100

2 100 97 44 65 50 69 93

5 100 100 8 54 10 55 62

10 100 13 0 23 1 62 19

Table A3.73: Efficiency Summary (%)

178

Experiment 2 Results: (T_TYP = select-repIace)

I
CCA T ET RUNS Comm RSRT I

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

0.501 0.109%)

0.420 0.287%)

0.425 0.229%)

0.419 0.140%)

0.425 0.339%)

0.439 0.144%)
0.441 0.172%)
0.445 0.408%)

19.949 0.109%) 400 400 0
23.813 0.287%) 400 400 0
23.531 0.229%) 400 400 0
23.849 0.140%) 400 400 0
23.511 0.339%) 400 400 0
22.773 0.144%) 400 400 0
22.695 0.172%) 400 400 0
22.491 0.408%) 400 400 0

Table A3.74: LC = 0%, Throughput, ET and run counts

I
CCA ET CPU io I

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

19.949 0.109%)
23.813 0.287%)

23.531 0.229%)

23-849 0.140%)
23.511 0.339%)

22.773 0.144%)

22.695 0.172%)
22.491 0.408%)

1.331 0.313%)
1.389 0.260%)
1.390 0.301%)
1.388 0.272%)
1.371 0.238%)

1.362 0.257%)
1.362 0.253%)
1.361 0.206%)

0.640 0.644%)

0.962 0.574%)

0.933 0.337%)

0.960 0.415%)

0.947 0.702%)

0.883 0.449%)

0.876 0.340%)

0.864 0.296%)

Table A3.75: LC = 0%, Useful Work Costs

I CCA ET CPU io I

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.000 0.000%)

Table A3.76: LC = 0%, Wasted Work Costs

179

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

A13TO

sv

T

0.501 0.109%)

0.417 0.210%)

0.425 0.179%)

0.381 0.387%)

0.408 0.672%)

0.384 0.515%)

0.428 0.382%)

0.410 0.846%)

ET

19.949 0.109%)

23.999 0.210%)

23.515 0.180%)
26.215 0.386%)

24.504 0.668%)
26.042 0.519%)
23.359 0.382%)
24.363 0.845%)

RUNS Comm RSRT

400 400 0

400 400 0

400 400 0

400 361 39

400 381 19

400 344 56

400 380 20

400 362 38

Table A3.77: LC = 20%, Throughput, ET and run counts

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

ET

19.949 0.109%)

23.999 0.210%)

23.515 0.180%)

23.707 0.141%)

22.311 0.408%)

22.523 0.196%)

21.093 0.073%)

22.057 0.306%)

CPU

1.331 0.313%)
1.397 0.290%)
1.390 0.160%)
1.386 0.373%)
1.382 0.305%)

1.358 0.327%)
1.357 0.179%)
1.362 0.347%)

io

0.640 0.644-%)
0.971 0.315%)
0.934 0.447%)
0.955 0.614%)
0.951 0.572%)
0.875 0.375%)
0.871 0.353%)
0.845 0.625%)

Table A3.78: LC = 20%, Ijseful Work Costs

I
CCA ET CPU io

I

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)

21.207 1.412%)
20.160 1.574%)
19.609 0.873%)
20.332 2.787%)
20.104 1.983%)

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)

1.383 1.032%)
1.399 1.228%)
1.349 0.782%)
1.339 1.035%)
1.346 0.848%)

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)

-0.815 1.791%)
0.757 3.277%)
0.713 1.675%)
0.800 1.525%)
0.598 2.657%)

Table A3.79: LC = 20%, Wasted Work Costs

ISO

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

'I

0.501 0.109%)

0.426 0.975%)

0.426 1.200%)

0.262 0.482%)

0.393 1.288%)

0.226 1.550%)
0.419 2.175%)

0.291 1.078%)

ET

19.949 0.109%)

23.470 0.971%)

23.454 1.186%)
38.187 0.480%)
25.447 1.270%)
44.225 1.559%)
23.882 2.162%)

34.340 1.089%)

RUNS Comm RSRT

400 400 0

400 400 0

400 400 0

400 241 159

400 315 84

400 196 204

400 313 87

400 244 155

Table A3.80: LC = 50%, Throughput, ET and run counts

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

ET

19.949 0.109%)

23.470 0.971%)

23.454 1.186%)

23.415 0.517%)

15.615 0.886%)

22.314 0.317%)

13.823 1.518%)

21.440 0.738%)

CPU

1.331 0.313%)
1.436 0.210%)
1.414 0.371%)

1.378 0.253%)
1.376 0.247%)

1.363 0.249%)
1.353 0.197%)
1.357 0.241%)

Io

0.640 0.644%)
1.057 0.643%)

1.013 0.596%)

0.945 0.825%)
0.942 0.230%)

0.876 0.460%)
0.842 0.647%)
0.820 0.321%)

Table A3.81: LC = 50%, Useful Work Costs

CCA ET CPU io

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)

20.387 1.137%)
13.476 4.109%)
19.000 0.645%)

14.137 4.806%)

18.301 0.552%)

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
1.384 0.627%)
1.382 0.621%)
1.345 0.244%)
1.337 0.630%)
1.338 0.233%)

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.759 1.242%)
0.748 0.850%)
0.679 0.550%)
0.717 2.103%)
0.584 0.421%)

Table A3.82: LC = 50%, Wasted Work Costs

181

CCA

NO CC

P RE

2PLE

2PLU

A2PLU

BTO

AEýTO

sv

T

0.501 0.109%)

0.405 0.546%)

0.400 0.673%)

0.138 2.031%)

0.337 7.443%)

0.093 1.418%)
0.365 2.885%)
0.153 2.314%)

ET

19.949 0.109%)
24.681 0.543%)
25.018 0.676%)
72.269 2.050%)
29.858 7.488%)

106.995 1.436%)
27.387 2.866%)
65.502 2.297%)

RUNS Comm RSRT

400 400 0

400 400 0

400 400 0

400 124 275

400 244 156

400 78 322

400 246 153

400 122 277

Table A3.83: LC = 80%, Throughput, ET and run counts

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

ET

19.949 0.109%)
24.681 0.543%)
25.018 0.676%)
23.647 1.049%)

8.250 5.556%)
21.729 0.997%)

6.366 1.490%)
20.890 0.901%)

CPIU

1.331 0.313%)
1.497 0.262%)
1.436 0.274%)

1.384 0.528%)
1.367 0.277%)
1.346 0.731%)
1.341 0.270%)
1.348 0.179%)

Io

0.640 0.644%)

1.130 0.537%)

1.125 1.520%)
0.924 1.543%)
0.915 0.685%)
0.851 0.939%)
0.838 0.981%)
0.7ý8 1.376%)

Table A3.84 -0 LC = 80 %, Useful Work Costs

CCA

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

ET

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)

19.934 0.683%)

11-042 (+-23.524%)
18.585 (+- 0.241%)
11.960 (+-10.951%)
17.658 (+- 0.522%)

CPU

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
1.381 0.587%)

1.377 0.109%)
1.340 0.308%)
1.336 0.471%)
1.334 0.110%)

io

0.000 0.000%)

0.000 0.000%)
0.000 0.000%)
0.754 0.767%)
0.740 0.680%)
0.671 0.891%)
0.696 1.464%)
0.573 0.395%)

Table A3.85: LC = 80%, Wasted Work Costs

182

CCA T ET RUNS Comm RSRT

NO CC 0.501 0.109%) 19.949 0.109%) 400 400 0

PRE 0.343 1.520%) 29.183 1.509%) 400 400 0

2PLE 0.338 0.720%) 29.597 0.717%) 400 400 0

2PLU 0.047 2.152%) 213.192 2.132%) 400 42 358

A2PLU 0.309 9.635%) 32.597 9.708%) 400 230 170

BTO 0.003 ---) 3132.785 ---) 400 2 398

ABTO 0.316 8.848%) 31.805 8.422%) 400 220 iso

Sv 0.059 3.990%) 168.482 3.927%) 400 46 354

Table A3.86: LC = 100%, Throughput, ET and run counts

I
CCA ET CPU io

I

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

19.949 0.109%)
29.183 1.509%)
29.597 0.717%)
25.846 5.437%)

4.352 7.127%)

15.254 ---)
3.435 2.747%)

18.710 1.331%)

1.331 0.313%)

1.534 0.255%)
1.454 0.123%)
1.357 0.800%)
1.337 0.705%)

1.066 ---)
1.332 0.263%)
1.330 0.356%)

0.640 0.644%)

1.226 1.405%)
1.225 1.166%)
0.849 1.563%)
0.890 0.949%)

0.577
0.816 0.640%)
0.694 1.372%)

Table A3.87: LC = 100%, Useful Work Costs

I
CCA ET CPU Io I

NO CC

PRE

2PLE

2PLU

A2PLU

BTO

ABTO

sv

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)

19.854 0.637%)
15.725 4.318%)
18.429 0.188%)

13.160 5.501%)
17.527 0.231%)

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
1.367 0.459%)
1.366 0.222%)
1.339 0.258%)
1.331 0.317%)
1.329 0.186%)

0.000 0.000%)
0.000 0.000%)
0.000 0.000%)
0.745 0.653%)
0.732 0.735%)
0.665 0.490%)
0.687 0.771%)
0.569 0.481%)

Table A3.88: LC = 100%, Wasted Work Costs

183

Summary Tables for LC =0%9 20 %, 50 %, 80 %, 100 %, T_TYP = select-replace

ET: LC PRE 2PLE 2P LU A2PLU BTO ABTO sv

0% 119 lie 120 118 114 114 113
20% 120 118 131 123 131 117 122
50% lie 118 191 128 222 120 172
80% 124 125 362 150 536 137 328

10096 146 148 1069 163 15704 159 845

CPU: LC PRE 2PLE 2PLU A2PLU BTO ABTO sv

0% 104 104 104 103 102 102 102
20% 105 104 115 109 119 107 113
50% 108 106 172 131 208 130 166
80% 112 108 334 169 518 163 329

100% 115 109 982 177 15452 182 866

10: LC PRE 2PLE 2PLU A2PLU BTO ABTO SV

0% 150 146 150 148 138 137 135
20% 152 146 163 155 155 143 142
50% 165 158 226 179 248 163 186
80% 177 176 406 217 567 199 325

100% 192 191 1131 224 15877 216 790

Table A3.89: Overhead. Summary

ET: LC PRE 2PLE 2PLU A2PLU BTO ABTO sv

0% 100 100 100 100 100 100 100

20% 100 100 90 91 86 90 90
50% 100 100 61 61 51 58 62
80% 100 100 33 28 20 -23 32

100% 100 100 12 13 0 11 11

CPU: LC PRE 2PLE 2PLU A2PLU BTO ABTO sv

0% 100 100 100 100 100 100 100

20% 100 100 90 95 86 95 91

50% 100 100 60 79 49 78 61

80% 100 100 31 61 20 62 31

100% 100 100 10 57 0 55 11

10: LC PRE 2PLE 2PLU A2PLU BTO ABTO sv

0% 100 100 100 100 100 100 100

20% 100 100 92 96 88 95 93

50% 100 100 65 83 55 81 69

80% 100 100 36 66 23 66 37

100% 100 100 12 62 0 59 14

Table A3.90: Efficiency Summary (%)

184

Appendix 4

SIMULATION RESULTS

185

Experiment 1: Results

CCA T ET Comm BLCK RSRT

NO CC 20.000 0.000%) 0.500 2000 0 0

PRE 17.800 0.030%) 0.562 1780 94 0

2PLE 17.760 0.059%) 0.563 1776 125 0

2PLU 16.270 0.270%) 0.615 1626 102 52

A2PLU 16.410 0.232%) 0.609 1641 114 58

BTO 16.650 0.015%) 0.601 1664 0 55

XIBTO 16.650 0.097%) 0.601 1665 0 55

ABTO 16.640 0.100%) 0.601 1664 0 58

sv 18.460 0.080%) 0.542 1846 0 76

Table A4.1: GRAN = 1, T_REQ = 1, Throughput and run counts

CCA T ET Comm BLCK RSRT

NO CC 10.000 0.000%) 1.000 1000 0 0

PRE 9.069 0.083%) 1.103 906 197 0

2PLE 8.769 0.113%) 1.140 876 260 0

2PLU 7.786 0.658%) 1.284 778 187 63

A2PLU 7.869 0.716%) 1.271 786 202 70

BTO 8.390 0.038%) 1.192 839 0 67

XBTO 8.365 0.205%) 1.195 ý36 0 73

ABTO 8.381 0.040%) 1.193 838 0 70

sv 9.052 0.164%) 1.105 905 0 127

Table A4.2: GRAN = 1, T_REQ = 2, Throughput and run counts

CCA T ET Comm BLCK RSRT

NO CC 4.000 0.000%) 2.500 400 0 0

PRE 3.425 0.418%) 2.920 342 309 0

2PLE 1.976 0.827%) 5.061 197 414 12

2PLU 1.952 0.936%) 5.123 195 337 63

A2PLU 2.008 2.643%) 4.980 200 314 58

BTO 3.077 0.360%) 3.250 307 0 114

XBTO 3.017 0.705%) 3.315 301 0 131

ABTO 3.074 0.141%) 3.253 307 0 114

sv 2.974 0.526%) 3.362 297 0 193

Table A4.3: GRAN = 1, T_REQ = 5, Throughput and run counts

186

CCA T ET Comm BLCK RSRT

NO CC 2.000 0.000%) 5.000 200 0 0

PRE 1.397 0.218%) 7.158 139 377 0

2PLE 0.481 3.338%) 20.812 48 421 40

2PLU 0.442 4.241%) 22-599 44 393 62

A2PLU 0.536 3.474%) 18.657 53 295 48

BTO 1.074 1.582%) 9.311 107 0 193

XBTO 0.860 0.637%) 11.621 86 0 256

ABTO 1.140 1.657%) 8.772 113 0 163

sv 0.980 1.101%) 10.204 98 0 200

Table A4.4: GRAN = 1, T_REQ = 10, Throughput and run counts

CCA T ET Comm BLCK RSRT

NO CC 20.000 0.000%) 0.500 2000 0 0

PRE 15.770 0.532%) 0.634 1577 343 0

2PLE 8.456 1.617%) 1.183 845 437 0

2PLU 6.613 0.592%) 1.512 661 283 156

A2PLU 6.688 1.616%) 1.495 668 363 203

BTO 14.560 0.070%) 0.687 1455 0 268

XBTO 14.530 0.072%) 0.688 1452 0 389

ABTO 14.120 0.290%) 0.708 1412 0 520

sv 16.570 0.079%) 0.604 1657 0 311

Table A4.5: GRAN = 10, T_REQ = 1, Throughput and run counts

CCA T ET Comm BLCK RSRT

NO CC 10-000 0.000%) 1.000 1000 0 0

PRE 6.775 0.158%) 1.476 677 399 0

2PLE 1.685 3.234%) 5.935 168 466 13

2PLU 1.521 0.788%) 6.575 152 342 131

A2PLU 1.494 0.670%) 6.693 149 331 125

BTO 6.690 0.533%) 1.495 669 0 299

XBTO 6.354 0.396%) 1.574 635 0 472

ABTO 6.010 0.521*) 1.664 601 0 591

sv 7.239 0.103%) 1.381 723 0 348

Table A4.6: GRAN = 10, T_REQ = 2, Throughput and run counts

187

CCA T ET Comm BLCK RSRT

NO CC 4.000 0.000%) 2.500 400 0 0

PRE 2.173 0.447%) 4.602 217 432 0

2PLE 0.234 6.497%) 42.827 23 423 65

2PLU 0.169 2.144%) 58.997 16 368 117

A2PLU 0.255 1.538%) 39.139 25 266 91

BTO 1.687 1.138%) 5.928 168 0 359

X13TO 1.218 1.835%) 8.210 121 0 624

ABTO 1.192 0.555%) 8.389 119 0 655

sv 2.005 0.561%) 4.988 200 0 346

Table A4.7: GRAN = 10, T_REQ = 5, Throughput and run counts

CCA T ET Comm BLCK RSRT

NO CC 2.000 0.000%) 5.000 200 0 0

PRE 1.045 0.190%) 9.569 104 440 0

2PLE 0.032 (+-22.720%) 312.500 3 408 81

2PLU 0.024 (+-19.480%) 408.163 2 369 118

A2PLU 0.044 (+-28.560%) 227.273 4 324 ill

BTO 0.458 (+- 1.709%) 21.858 45 0 383

XBTO 0.045 (+- 5.656%) 222.222 4 0 675

A13TO 0.370 (+-11.650%) 26.991 37 0 538

sv 0.649 (+- 2.502%) 15.420 64 0 263

Table A4.8: GRAN = 10, T_REQ = 10, Throughput and run counts

188

Summary Tables for GRAN = 1, T_REQ = 1,2,5,10

CCA 2 5

NO CC 0.500 0.000%) 1.000 0.000%) 2.500 0.000%)

PRE 0.562 0.094%) 1.103 0.152%) 2.920 0.536%)

2PLE 0.563 0.149%) 1.139 0.552%) 4.276 2.645%)
2PLU 0.522 0.121%) 0.992 0.907%) 3.161 0.775%)

A2PLU 0.560 0.364%) 1.029 0.147%) 3.013 2.427%)

BTO 0.523 0.102%) 0.986 0.159%) 2.098 0.155%)
XBTO 0.555 0.347%) 1.054 0.464%) 2.339 0.777%)
ABTO 0.569 0.168%) 1.055 0.096%) 2.073 0.250%)
sv 0.449 0.659%) 0.765 0.787%) 1.530 0.951%)

CCA 10

NO CC 5.000 0.000%)

PRE 7.165 1.553%)

2PLE 5.547 1.140%)

2PLU 8.615 0.916%)

A2PLU 6.791 3.619%)

BTO 3.029 1.504%)
XBTO 3.506 1.305%)

A13TO 2.790 1.313%)

sv 2.958 0.869%)

Table A4.9: Useful Work Costs ET

CCA 2 5

NO CC 0.000 0.000%) 0.000 0.000%) 0.000 0.000%)

PRE 0.000 0.000%) 0.000 0.000%) 0.000 0.000%)
2PLE 0.000 0.000%) 0.000 0.000%) 0.506 (+-14.070%)
2PLU 0.851 5.009%) 1.615 1.114%) 4.116 (+- 0.980%)

A2PLU 0.833 4.679%) 1.689 3.332%) 3.905 (+- 4.041%)

BTO 0.015 (+-17.740%) 0.051 8.738%) 0.302 (+- 0.746%)

XBTO 0.017 (+- 5.547%) 0.051 3.108%) 0.374 (+- 0.965%)

ABTO 0.342 (+- 0.228%) 0.609 0.429%) 1.089 (+- 1.542%)

sv 0.239 (+- 0.868%) 0.409 0.975%) 0.822 (+- 1.052%)

CCA 10

NO CC 0.000 0.000%)

PRE 0.000 0.000%)

2PLE 4.859 2.737%)

2PLU 7.916 2.734%)

A2PLU 6.625 4.628%)

BTO 0.955 1.784%)

XBTO 1.277 0.993%)

ABTO 1.446 1.313%)

sv 1.543 0.162%)

Table A4.10: Wasted Work Costs ET

189

Summary Tables for GRAN = 109 T_REQ = 19 29 59 10

CCA 2 5

NO CC 0.500 0.000%) 1.000 0.000%) 2.500 0.000%)
PRE 0.634 0.583%) 1.476 0.670%) 4.627 1.861%)
2PLE 1.185 1.641%) 4.884 4.156%) 3.056 (+-14.490%)
2PLU 0.635 0.858%) 2.271 0.659%) 7.231 (+- 5.633%)
A2PLU 0.720 1.272%) 2.202 0.704%) 5.292 (+- 3.563%)
BTO 0.284 0.178%) 0.473 0.892%) 0.803 (+- 0.256%)
XBTO 0.359 0.842%) 0.581 (+- 0.780%) 0.901 (+- 0.978%)
ABTO 0.442 0.340%) 0.655 (+- 0.494%) 0.922 (+- 0.209%)
sv 0.204 0.267%) 0.323 (+- 0.808%) 0.760 (+- 0.547%)

CCA 10

NO CC 5.000 (+- 0.000%)

PRE 9.557 (+- 6.319%)
2PLE 0.565 (+-20.810%)
2PLU 9.743 (+- 3.689%)

A2PLU 6.955 (+- 5.983%)

BTO 1.226 (+- 1.092%)

XBTO 1.518 (+- 2.321%)

ABTO 1.336 (+- 0.248%)

sv 2.208 (+- 2.871%)

Table A4.11: Useful Work Costs ET

CCA 1 2 5

NO CC 0.000 0.000%) 0.000 0.000%) 0.000 0.000%)

PRE 0.000 0.000%) 0.000 0.000%) 0.000 0.000%)
2PLE 0.000 0.000%) 0.650 (+-10.060%) 6.860 5.181%)
2PLU 1.715 0.438%) 3.013 0.738%) 5.472 0.686%)

A2PLU 1.822 0.882%) 3.086 2.994%) 4.639 2.914%)

BTO 0.029 1.967%) 0.089 1.904%) 0.274 1.285%)

XBTO 0.049 0.304%) 0.144 0.908%) 0.356 0.237%)

ABTO 0.277 0.488%) 0.369 0.175%) 0.433 0.878%)

sv 0.126 0.231%) 0.197 1.208%) 0.443 0.990%)

CCA 10

NO CC 0.000 0.000%)

PRE 0.000 0.000%)
2PLE 9.449 0.863%)

2PLU 6.218 0.746%)

A2PLU 5.654 1.035%)

BTO 0.409 0.311%)

XBTO 0.467 0.249%)

ABTO 0.470 0.933%)

sv 1.249 0.153%)

Table A4.12: Wasted Work Costs ET

190

Experiment 2: Results

CCA T ET Comm BLCK RSRT

No CC 20.000 0.000%) 0.500 2000 0 0

PRE 17.860 0.064%) 0.560 1785 0 0

2PLE 17.860 0.064%) 0.560 1785 0 0

2PLU 16.950 0.046%) 0.590 1695 0 0

A2PLU 16.950 0.046%) 0.590 1695 0 0

BTO 166.950+ 0.046%) 0.590 1695 0 0

XBTO 16.950 0.046t) 0.590 1695 0 0

ABTO 16.950 0.046%) 0.590 1695 0 0

sv 18-870 0.051%) 0.530 1886 0 0

Table A4.13: LC = 0%, Throughput and run counts

CCA T ET Comm BLCK RSRT

No CC 20.000 0.000%) 0.500 2000 0 0

PRE 17.830 0.050%) 0.561 1-783 45 0

2PLE 17.820 0.007%) 0.561 1781 76 0

2PLU 16.770 0.027%) 0.5,96 1677 43 29

A2PLU 16.720 0.033%) 0.598 1671 69 37

BTO 16.730 0.018%) 0.598 1672 0 42

XBTO 16.950 0.070%) 0.590. 1695 0 0

ABTO 16.950 0.009%) 0.590 1694 0 0

sv 18.640 0.060%) 0.536 1864 0 42

Table A4.14: LC = 20%, Throughput and run counts

CCA T ET Comm BLCK RSRT

NO CC 20.000 0.000%) 0.500 2000 0 0

PRE 17.720 0.015%) 0.564 1771 191 0

2PLE 17.710 0.022%) 0.565 1770 231 0

2PLU 15.950 0.040%) 0.627 1595 127 98

A2PLU 15.600 0.042%) 0.641 1560 186 162

BTO 15.870 0.041%) 0.630 1587 0 176

XBTO 15.130 0.046%) 0.661 1512 0 328

ABTO 13.530 0.017%) 0.739 1352 0 626

sv 17.920 0.028%) 0.558 1792 0 178

Table A4.15: LC = 50%, Throughput and run counts

191

CCA T ET Comm BLCK RSRT

NO CC 20.000 0.000%) 0.500 2000 0 0

PRE 17.670 0.003%) 0.566 1767 343 0

2PLE 14.060 0.050%) 0.711 1405 388 0

2PLU 12.370 0.234%) 0.808 1236 210 172

A2PLU 11.950 0.030%) 0.837 1194 333 299

BTO 14.240 0.027%) 0.702 1423 0 301

XBTO 12.660 0.148%) 0.790 1265 0 598

ABTO 8.857 0.500%) 1.129 442 0 703

sv 17.110 0.019%) 0.584 1711 0 332

Table A4.16: LC = 80%, Throughput and run counts

CCA T ET Comm BLCK RSRT

NO CC 20.000 0.000%) 0.500 2000 0 0

PRE 9.961 0.002%) 1.004 996 448 0

2PLE 0.820 0.684%) 12.195 82 492 0

2PLU 0.434 0.448%) 23.041 43 43 390

A2PLU 0.475 0.236%) 21.053 47 259 218

BTO 7.835 0.246%) 1.276 783 0 436

XBTO 7.378 0.170%) 1.355 737 0 831

ABTO 0.554 (+-16.470%) 18.051 27 0 1392

sv 9.995 (+- 0.027%) 1.001 999 0 428

Table A4.17: LC = 100%, Throughput and run counts

192

Summary Tables for LC = 0%, 20%, 50%, 80%, 100%

CCA 046 20% 50%

NO CC 0.500 0.000%) 0.500 0.000%) 0.500 0.000%)

PRE 0.560 0.000%) 0.561 0.114%) 0.564 0.508%)
2PLE 0.560 0.000%) 0.561 0.043%) 0.565 0.186%)

2PLU 0.590 0.001%) 0.537 0.056%) 0.379 0.154%)

A2PLU 0.590 0.001%) 0.539 0.044%) 0.385 0.065%)

BTO 0.590 0.001%) 0.539 0.020%) 0.378 0.006%)

XBTO 0.590 0.001%) 0.590 0.001%) 0.393 0.023%)

ABTO 0.590 0.001%) 0.590 0.003%) 0.421 0.012%)

sv 0.530 0.000%) 0.484 0.005%) 0.338 0.015%)

CCA 80% 100%

NO CC 0.500 0.000%) 0.500 0.000%)

PRE 0.170 0.000%) 0.301 0.212%)

2PLE 0.711 0.348%) 12.190 0.371%)

2PLU 0.249 0.340%) 2.330 0.000%)

A2PLU 0.255 0.108%) 2.188 0.692%)

BTO 0.210 0.030%) 0.115 0.027%)

XBTO 0.233 0.046%) 0.125 0.050%)

ABTO 0.300 0.229%) 0.150 2.296%)

sv 0.175 0.018%) 0.102 0.025%)

Table A4.18: Useful Work Costs ET

CCA 0% 20% 50%

NO CC 0.000 0.000%) 0.000 0.000%) 0.000 0.000%)

PRE 0.000 0.000%) 0.000 0.000%) 0.000 0-000%)

2PLE 0.000 0.000%) 0.000 0.000%) 0.000 0.000%)

2PLU 0.000 0.000%) 1.339 0.970%) 1.999 1.890%)

A2PLU 0.000 0.000%) 2.100 0.460%) 2.071 0.508%)

BTO 0.000 0.000%) 0.015 4.042%) 0.028 0.827%)

XBTO 0.000 0.000%) 0.000 0.000%) 0.043 0.823%)

ABTO 0.000 0.000%) 0.000 0.000%) 0.264 0.113%)

sv 0.000 0.000%) 0.283 0.031%) 0.211 0.013%)

CCA 80% 100%

NO CC 0.000 0.000%) 0.000 0.000%)

PRE 0.000 0.000%) 0.000 0.000%)

2PLE 0.000 0.000%) 0.000 0.000%)

2PLU 2.019 1.081%) 0.300 0.000%)

A2PLU 2.064 0.222%) 1.991 0.235%)

BTO 0.057 0.737%) 0.029 0.645%)

XBTO 0.057 0.342%) 0.048 0.976%)

ABTO 0.218 1.402%) 0.141 1.207%)

sv 0.104 0.001%) 0.096 0.008%)

Table A4.19: Wasted Work Costs ET

193

Comparative Tables for Adaptive Restarts

GRAN =1 (100 Granules)

T_REQ 2PLU <A2PLU =A2PLU >A2PLU

1 16.270 16.420 16.410 16.130

2 7.786 7.971 7.869 7.536

5 1.952 1.911 2.008 2.109

10 0.442 0.397 0.536 0.756

GRAN = 10 (10 Granules)

T-REQ 2PLU <A2PLU =A2PLU >A2PLU

1 6.613 6.787 6.688 6.523

2 1.521 1.303 1.494 2.047

5 0.169 0.138 0.255 0.661

10 0.024 0.021 0.044 0.442

LC 2PLU <A2PLU =A2PLU >A2PLU

0% 16.950 16.950 16.950 16.950
20% 16.770 16.710 16.720 16.850
50% 15.950 15.580 15.600 16.120
80% 12.370 11.910 11.950 12.520

100% 0.434 0.480 0.475 1.033

Table A4.20: Adaptive Restart 2PLU: T

GRAN =1 (100 Granules)

T_REQ 2PLU <A2PLU =A2PLU >A2PLU

1 52 (106) 62 (122) 58 (114) 46 (87)

2 63 (187) 74 (224) 70 (202) 44 (129)

5 63 (337) 73 (398) 58 (314) 30 (143)

10 62 (393) 67 (448) 48 (295) 20 (113)

GRAN = 10 (10 Granules)

T_REQ 2PLU <A2PLU =A2PLU >A2PLU

1 156 (283) 239 (429) 203 (363) 106 (191)

2 131 (342) 170 (465) 125 (331) 61 (151)

5 117 (368) 137 (455) 91 (266) 41 (103)

10 118 (369) 131 (407) 111 (324) 35 (74)

LC 2PLU <A2PLU =A2PLU >A2PLU

0% 0 (0) 0 (0) 0 (0) 0 (0)
20% 29 (43) 37 (79) 37 (69) 16 (19)

50% 98 (127) 164 (215) 162 (186) 67 (105)

80% 172 (210) 313 (366) 299 (333) 157 (195)

100% 390 (43) 412 (446) 218 (254) 87 (119)

a Table A4.21: Adaptive Restart 2PLU: RC (BC)

194

GRAN =1 (100 Granules)

T_REQ BTO XBTO <ABTO =A13TO >ABTO

1 16.650 16.650 16.660 16.640 16.620

2 8.390 8.365 8.327 8.381 8.376

5 3.077 3.017 2.903 3.074 3.318

10 1.074 0.860 0.521 1.140 1.300

GRAN = 10 (10 Granules)

T_REQ BTO XBTO <ABTO =ABTO >ABTO

1 14.560 14.530 13.400 14.120 14.380

2 6.690 6.354 4.307 6.010 6.516

5 1.687 1.218 0.116 1.192 1.973

10 0.458 0.045 0.023 0.370 0.877

LC BTO XBTO <ABTO =ABTO >ABTO

0% 16.950 16.950 16.950 16.950 16.950
20% 16.730 16.950 16.950 16.950 16.950
50% 15.870 15.130 10.150 13.350 16.200

80% 14.240 12.660 4.373 8.857 13.870

100% 7.835 7.378 0.190 0.554 7.389

Table A4.22: Adaptive Restart BTO :T

GRAN = 1 (100 Granules)

T-REQ BTO XBTO <ABTO =ABTO >ABTO

1 55 55 54 58 47

2 67 73 81 70 47

5 114 131 161 114 47

10 193 256 388 16,3 45

GRAN = 10 (10 Granules)

T REQ BTO XBTO <ABTO =ABTO >ABTO

1 268 389 675 520 228

2 299 472 1065 591 184

5 359 624 1364 655 127

10 383 675 843 538 83

LC BTO XBTO <ABTO =ABTO >ABTO

0% 0 0 0 0 0

20% 42 0 0 0 0

50% 176 328 1292 626 100

80% 301 598 2369 1403* 307

100% 436 831 3042 2784* 694

Table A4.23: Adaptive Restart BTO : RC

* Estunated from a run with batch length of 50000 simulation units.

195

GRAN =1 (100 Granules)

T_REQ 2PLU <A2PLU =A2PLU >A2PLU

1 0.615 0.609 0.609 0.620

2 1.284 1.255 1.271 1.327

5 5.123 5.233 4.980 4.742

10 22.599 25.189 18.657 13.228

GRAN = 10 (10 Granules)

T_REQ 2PLU <A2PLU =A2PLU >A2PLU

1 1.512 1.473 1.495 1.533

2 6.575 7.675 6.693 4.885

5 58.997 72.464 39.139 15.129

10 408.163 476.190 227.273 22.624

LC 2PLU <A2PLU =A2PLU >A2PLU

0% 0.590 0.590 0.590 0.590
20% 0.596 0.598 0.598 0.593
50% 0.621 0.642 0.641 0.620
80% 0.808 0.840 0.837 0.799

100% 23.041 20.833 21.053 9.681

Table A4.24: Adaptive Restart 2PLU: ET

GRAN =1 (100 Granules)

T_REQ BTO XBTO <ABTO =ABTO >ABTO

1 0.601 0.601 0.601 0.601 0.602

2 1.192 1.195 1.201 1.193 1.194

5 3.250 3.315 3.445 3.253 3.014

10 9.311 11.621 19.194 8.772 7.692

GRAN = 10 (10 Granules)

T_REQ BTO XBTO <ABTO =ABTO >ABTO

1 0.687 0.688 0.746 0.708 0.695

2 1.495 1.574 2.322 1.664 1.535

5 5.928 8.210 8.621 8.389 5.068

10 21.858 222.222 434.783 26.991 11.403

LC BTO XBTO <ABTO =ABTO >ABTO

0% 0.590 0.590 0.590 0.590 0.590

20% 0.598 0.590 0.590 0.590 0.590

50% 0.630 0.661 0.985 0.739 0.617

80% 0.702 0.790 2.287 1.129 0.721

1001% 1.276 1.355 52.632 18.051 1.354

Table A4.25: Adaptive Restart BTO : ET

196

Appendix 5

EXPERIMENTAL TECHNIQUES

In this appendix, the O/S Environment and the experimental and statistical techniques used in this

study are described. The UNIX utility functions and commands used for the benchmark and prototype

experiments are described and some assumptions about the file system are noted.

5.1. Operating System Environment

The benchmark tests and Prototype experiments were carried out on a VAX/750 running

UNIX 4.2 bsd. The system had two disks; the system disk, a DEC RA81 with UDA50 Disk Controller

[38,391; and the user disk, A Fujitsu Eagle M2351A/AF NIini Disk Drive [45] with an Emulex

SC41/MS SMD disk controller [41]. The RA81 specifications were, disk capacity: 456MB (Winchester

double density), average access time: 28ms (maximum 50ms), and data transfer rate:

17.4 Megabits/second. The Fujitsu Eagle specifications were, disk capacity: 474MB, average access

time: 18ms (maximum 35ms), and data transfer rate: 1.859 MB/second.

The file system was as described by McKusick [72]. Our approach in this study has been not to

attempt changes to either the file system or the kernel, but to take a "macro" view as far as both were

concerned. Further we have assumed, since the benchmarks and prototype experiments were run in

single-user mode, that the file sytem is benevolent in its behaviour.

In the proptotype expriments of Chapter 4, a scheduler was written which read a file containing a

script of the transactions to be run. To run each transaction as a process, the scheduler "fork"ed a child

process which then "exec"ed the transaction [1161. Both the scheduler and transactions ran at the same

priority and no attempt was made to increase the priority of the scheduler.

197

For the CC information, advisory file locking ("flock") was used in exclusive mode to simulate a

semaphore [117,72). This was controlled by the DBMS CCA functions and hidden from the user.

Block and restart delays were implemented using the UNIX "sleep" command [117].

5.2. Chapter 3: Benchmark Tests

The benchmarks for the prototype system were designed to pinpoint potential bottlenecks in

TDBS/C or regions of the experiments in which unexpected behaviour such as thrashing might occur.

The UNIX commands used for the benchmarks were "time" [117] and "gprof" [1181.

Using gprof, the greatest percentage of time spent during transaction execution was found to be in

the string manipulation and IDLIST functions. This amounted to less than 10% of the total transaction

time. The time spent in all other subparts of the system was found to be less than 2-3% of the total time.

That the IDLIST functions are the most expensive in terms of cost is not surprising since all the other

database access primitive functions must look up relavant information in the IDLIST.

The UNIX "time" command provides three measures:

1) The elapsed time of the command (in seconds)

2) Time spent in the system (measured to 0.001 second)

Time spent in the execution of the command (measured to 0.001 second)

Here the "time spent in the system" is taken as a measure of the 10 activity of the transaction and

the "time spent in execution of the command" as the CPU time of the transaction. The three measures

are labelled ET, 10 and CPU in the tables of results.

Each benchmark transaction was run 110 times, the first ten results discarded and the remaining

100 sets of values used to calculate point estimators of the mean values for ET, CPU and 10, assuming a

normal distrIbution. The results are presented in Appendix 2. For each point estimator, the standard

deviation and variance were calculated. In general the standard deviation was in the order of 7% of the

mean value and the variance in the order of <1%. The error measurement was the 90% confidence

198

interval which is expressed below as a percentage of the point estimator.

Since the measurement of each transaction, including the overhead, is independent, a measure of

"database work" done by the transaction was estimated using (Time - Overhead) for each transac6on.

Examples are given below in Table A5.1 for the "get-repl" transaction in Table 3.8 and the "grs/gru"

transactions of Table A2.13 (both cases accessing a database of 1000 tuples, with a 100 * IK buffer).

transaction overhead (transaction- overhead)
ET CPU 10 ET CPU 10 ET CPU 10

get-repl 0.04 0.08 1.02 1.05 1.80 1.95 0.05 0.08 1.27
grs 1 1.06 1.30 1.59 4.84 5.08 6.54
gru 1 1.01 1.53 1.64 3.90 5.35 6.45
grs 2 0.53 1.66 1.68 3.03 5.26 6.72
gru 2 0.24 1.66 1.73 2.40 4.93 6.67
grs 5 0.16 1.35 1.54 1.66 2.87 5.46
gru 5 0.18 1.15 1.49 1.95 3.43 6.37
grs 10 0.08 1.05 1.64 1.41 2.16 6A7
gru 10 0.17 1.06 1.47 1.16 2.07 4.73
grs 100 0.06 0.24 1.41 0.24 0.31 3.72
gru 100 0.18 0.34 1.05 0.25 OAO 1.51

Table A5.1: Benchmark Error Estimations (90% CI)

As a first order approximation, the approach described above was felt to be reasonable. The most

variable measure is 10 with a standard deviation of up to 10% of the point estimator value. The

It grs/gru" transactions are very short as is the "overhead" transaction and the error becomes much less

for a larger transaction such as the "get-repl". The accuracy however, depends on that of the "time"

command where the ET is measured to the second and the sum of the CPU and 10 values may exceed

the ET value by one second. This raised questions about the use of the "time" command for the

prototype experiments.

5.3. Chapter 4: Prototype Experiments

From the benchmarks of Chapter 3, the ETs of the transactions were determined and by assuming

a perfect linear system, the requirements for the prototype experiments could be estimawA simply by

scaling up the benchmark results. For example, to take 50 timings from each of 10 concurrently running

transactions of 2 seconds ET, would give a batch length of 1000 seconds. Taking, say 10 batches, to

derive point estimators, gives a run time of just under 3 hours. nere is clearly a severe practical limit

199

placed on the size of transaction which can be tested. From the results in Appendix 2, a2 second ET

limit would indicate a transaction which accesses at most 10 tuples. In previous studies, a limited

number of tuples have been accessed. These two points led to the choice of T_REQ for the prototype

experiments.

As a further result of the benchmark experiments, the method of timing was changed. Using the

UNIX "time" command, the ET is expressed as the difference between the start and finish times of the

process. Inspecting the kernel code for the "time" command revealed that CPU and 10 are measured

using "gettimeofday" and "getrusage" commands [117]. The "gettimeofday" command returns a time

in seconds and microseconds (although the BUGS comment declares that the time is never correct

enough to believe the microsecond values). The "getrusage" returns the CPU and 10 times as well as

information on paging, swapping, block input/output operations and voluntary and involuntary context

switches. The voluntary context switch value gives an indication of the number of switches to await the

availability of a resource; here this is interpreted as mainly waiting for 10 resources. The involuntary

context switch value gives an indication of the number of switches caused by exceeding the time slice.

The results showed that there was no swapping, most page swaps did require 10 activity (as oppose to

reclaiming the page from the list of pages awaiting reallocation) pLnd the ratio of voluntary to

involuntary context switches was of the order of 1: 3, indicating that the transactions were making

efficient use of available time.

For the prototype experiments, the timing was embedded within the transaction and ET measured

over the period during which the database accesses were performed. This is iflustrated. in Figure A5.1

Each batch in the prototype experiments consisted of 500 transaction runs with NTL = 10. The

first 10 values were discarded to minimise, startup trarisient effects and the next 400 values used to

derive the results presented in Appendix 3. Within the batch, ET, CPU and 10 values were assumed to

be normally distributed. To derive a point estimator for T, 10 batches were run. The mean values for T,

ET, CPU and 10 from each batch were used to derive point estimators with a 90% confidence interval

using a Student-T distribution with 9 degrees of freedom [122]. In the prototype experiments, the CCA

overhead is being measured. The baseline used was the same transaction run without concurrency

control. Measures of average ET, CPU and 10 are presented for both committed and restarted

200

transactions. The latter is used to measure resources wasted by restarts. A measure of T is taken as

being statistically significant if 50 or more transactions have committed. The results are presented in

Appendix 3.

StartProcess
gettimeofday
OpenDatabase
a,
a2

a.
Close-Database
getrusage
gettimedday
StopProcess

Figure A5.1: Transaction Timing for Prototype Experiments

In Experiment 1, primary key values are randomly generated using the UNIX "random" function

[1771.

5.4. Chapter 5: Simulation Experiments

The simulation experiments were run using the method of batched means [32,96,43,76] where

each simulation run is divided into n batches, the first being discarded to avoid transient effects -on

starting the run. Here, 21 batches were run, each of length 100000 simulation units (I simulation unit

being interpreted as I millisecond for discussion). 71be main problem in using batched means is in

determining the independence of the batches. GeneraUy the batches are not independent of each other,

but in practice, given reasonably large sub-runs, the dependence can be assumed to extend over a small

number of sub-runs [761. In this study, only adjacent batches were assumed to be dependent and non-

adjacent batches were assumed to be independent, hence with a covariance value of zero [32). The

batch size of 100000 simulation units was chosen to support the assumption about the independence of

non-adjacent batches. The remaining 20 batches were analysed using a Student-T distribution with 19

degrees of freedom. Normally, the covariance for adjacent batches is likely to be positive [761 but since

the estimator from the experimental results is itself a random variable, a negative covariance value is

possible [23). Such a negative estimate indicates a tendency for the variables (from adjacent batches) to

move in opposite directions [122]. In the context of batched means simulation experiments, this may be

201

interpreted as indicating that the covariance is neglible. In fact, for our experiments, the covariance

estimates, whether positive or negative, were small as shown in Tables A5.2 and A5.3.

CCA avg 90% ci var covar SD
NO CC 4. OOOE+00 O. OOOE+00 0.000E+00 O. OOOE+00 O. OOOE+00
PRE 3.425E+00 IA33E-02 1.373E-03 -8.625E-03 3.706E-02
2PLE 1.976E+00 1.635E-02 1.788E-03 9.210E-02 4.228E-02
2PLU 1.952E+00 1.826E-02 2.230E-03 9.974E-02 4.723E-02
A2PLU 2.008E+00 5.306E-02 1.884E-02 -2.804E-02 1.373E-01
BTO 3.077E+00 1.109E-02 8.221E-04 -1.880E-03 2.867E-02
XBTO 3.017E+00 2.125E-02 3.022E-03 -6.960E-03 5.497E-02
ABTO 3.074E+00 4.329E-03 1.250E-04 2.400E-03 1.120E-02
sv 2.974E+00 1.564E-02 1.636E-03 -8.600E-03 4.044E-02

Table A5.2: (GRAN = 1, T_REQ = 5): Example Experimental Values (T)

Cf- A
%'Irv avg 90% ci var covar SD

NO CC 2.500E+00 2.455E-06 4.031E-11 7.987E-09 6.349E-06
PRE 2.920E+00 1.566E-02 1.640E-03 -8.845E-03 4.050E-02
2PLE 4.276E+00 1.131E-01 8.557E-02 -5.095E-01 2.925E-01
2PLU 3.161E+00 2.451E-02 4.018E-03 2.933E-01 6.339E-02
A2PLU 3.013E+00 7.31 IE-02 3.576E-02 -1.187E-01 1.891E-01
BTO 2.098E+00 3.246E-03 7.049E-05 1.235E-04 8.396E-03
XBTO 2.339E+00 1.817E-02 2.210E-03 -2.710E-03 4.701E-02
ABTO 2.073E+00 5.183E-03 1.800E-04 5.490E-03 1.341E-02
sv 1.530E+00 1.456E-02 1.418E-03 -3.826E-03 3.765E-02

Table A5.3: (GRAN = 1, T_REQ = 5): Example Experimental Values (ET)

Two random number generators were used in the simulation. The first was based on the method

used in DEMOS [40,161 and was used to generate seeds for the second, the standard SIMULA

procedure RANDR*4T [15,76] which provides an integer in a given range with equal probability. This

was done to avoid generating the same sequence of pseudo-random numbers for each transaction.

202

REFERENCES

Agrawal, R., Carey, M. J., and DeWitt, D. J., "Deadlock Detection is Cheap, " Memo No.
UCB/ERL M83/5, University of Berkeley (UCB), California, USA, (January 1983).

2. Agrawal, R., Carey, M. J., and Livny, M., "Models for Studying Concurrency Control
Performance: Alternatives and Implications, " Proceedings SIGMOD-85 (International
Conference on Management of Data), pp. 108-121, Austin, Texas, USA, (May 1985).

3. Agrawal, R., Carey, MJ., and Livny, M., "Concurrency Control Performance Modeling:
Alternatives and Implications, " ACM TODS , Vol. 12, (4), pp. 609-654, (December 1987).

4. Agrawal, R., Carey, M. J., and McVoy, L. W., "The Performance of Alternative Strategies for
Dealing with Deadlocks in Database Management Systems, " IEEE Transactions on So a" ýftw
Engineering, (1988). ToBePublished.

Amble, T. and et, al, "Draft Report on the Programming Language ASTRAL, " ASTRA-notat no.
3 1, RUNIT, Trondheim, Norway, (May 198 1).

6. Babb, E., "Implementing a Relational Database by Means of Specialized Hardware, " ACM TODS,
Vol. 4, (1), pp. 1-29, (March 1979).

7. Bayer, R., Heller, H., and Reiser, A., "Parallelism and Recovery in Database Systems, " ACM
TODS, Vol. 5, (2), pp. 139-156, (June 1980).

8. Bell, D. A. and Deen, S. M., "Hash Trees versus B-Trees, " The Computer Journal, Vol. 27, (3),
pp. 218-224, The British Computer Society, (1984).

9. Bernstein, P. A., Rothnie, J. B., Goodman, N., and Papadimitriou, C., "The Concurrency Control
Mechanism of SDD-l: A System for Distributed Databases, " IEEE Transactions on Software
Engineering, Vol. SE-4, (4), pp. 154-168, (May 1978).

10. Bernstein, P. A., Shipman, D. W., and Wong, W. S., 'Tormal Aspects of Serializability in Database
Concurrency Control, " IEEE Transactions on Software Engineering, Vol. SE-5, (3), pp. 203-216,
(N1ay 1979).

Bernstein, P. A. and Shipman, D. W., "The Coffectness of Concurrency Control Mechanisms in a
System for Distributed Databases (SDD- 1), " ACM TODS, Vol. 5, (1), pp. 52-68, (March 1980).

12. Bernstein, P. A. and Goodman, N., "Concurrency Control in Distributed Database Systems, "
Computer Surveys, Vol. 13, (2), pp. 185-22 1, (June 198 1).

13. Bernstein, P. A., "A Sophisticate's Introduction to Distributed Database Concurrency Control, "
Proceedings of the 8th VLDB, pp. 62-76, Mexico City, Mexico, (September 1982).

14. Bernstein, P. A., Goodman, N., and Hadzilacos, V., "Recovery Algorithms for Database Systems, "
Technical Report, TR 10-83, Aiken Computing Lab., Harvard University, Massachusets, USA,
(1983).

15. Birtwistle, G. M., Dahl, O-J., Myhrhaug, B., and Nygaard, K., Simula Begin, Auerbach,
Philadelphia, USA, (1973).

16. Birtwistle, G. M., "DEMOS - Discrete Event Simulation for Beginners, " SIMULA Newsletter,
Vol. 7, (1), pp. 4-7, (February 1979).

17. Bitton, D., DeWitt, D. J., and Turbyfill, C., "Benchmarking Database Systems: A Systematic
Approach, " Proceedings of the 9th VLDB, pp. 8-19, Florence, Italy, (1983).

203

18. Bitton, D. and Turbyfill, C., "Design and Analysis of Mulfi-User Benchmarks for Database
Systems, " Technical Report TR 84-598, Dept Computer Science, Cornell Univ, Ithaca, N. Y.,
USA, (January 1984).

19. Boorman, BJ., "CAFS-ISP -A UK Context Addressable File Store, " in Database Machines, ed.
A. K. Sood, NATO ASI Series, Vol. F24, Springer-Verlag, (1986).

20. Boral, H., "A Methodology for Database System Performance Evaluation, " Proceedings
SIGMOD-84 (International Conference on Managentent of Data), pp. 176-185, Boston,
Massachusets, USA, (January 1984).

21. Boral, H. and Gold, I., "Towards a Self-Adapting Centralized Concurrency Control Algorithm, "
Proceedings SIGMOD-85 (Internadonal Conference on Manage&wnt of Data), pp. 18-3 1, Austin,
Texas, USA, (May 1985).

22. Buer, DJ. Van, Gates, R. O., and Lund, E. O., "A Comparison of Performance of Similar Queries
on Similar Databases on Several Relational Systems: Hardware and Software, " in Database
Machines, ecL A. K. Sood, NATO ASI Series, Vol. F24, Springer-Verlag, (1986).

23. Carey, MI, "Modeling and Evaluation of Database Concurrency Control Algorithms, " Ph. D.
Thesis (Memo. No. UCB/ERL 83/56), University of Berkeley (UCB), California, USA,
(September 1983).

24. Carey, M. J., "An Abstract Model of Database Concurrency Control Algorithms, " SIGMOD
Record (Proceedings of SIGMOD-83), Vol. 13, (4), pp. 97-107, San Jose, California, USA, (May
1983).

25. Carey, M. J. and Stonebraker, M. R., "The Performance of Concurrency Control Algorithms for
Database Management Systems, " Proceedings of the 10th VLDB, pp. 107-118, Singapore,
(August 1984).

26. Chesnais, A., Gelenbe, E., and Mitrani, I., "On the Modelling of Parallel Access to Shared Data, "
Communications of the ACM, Vol. 26, (3), pp. 196-202, (March 1983).

27. Chou, H. T., DeWitt, D. J., Katz, R. H., and Klug, A. C., "rbe Design and Implementation of the
Wisconsin Storage System, " Computer Science Technical Report #524, University of Wisconsin-
Madison, USA, (November 1983).

28. Cockshot, W. P., Atkinson, M. P., Chisholm, K. J., Baily, P. J., and Morrison, R., "Persistent Object
Management System, " Software Practice & Experience, Vol. 14, (1), pp. 49-71, (January 1984).

29. Codd, E. F., "A Relational Model of Data for Large Shared Data Banks, " Communications of the
ACM, Vol. 13, (6), pp. 377-387, (June 1970).

30. Codd, E. F., "Extending the Database Relational Model to Capture More Meaning, " ACM TODS,
Vol. 4, (4), pp. 397-434, (December 1979).

3 1. Coold, E. F., "Relational Database: A Practical Foundation for Productivity (The 1981 Turing
Award Lecture), " Communications of the ACM, Vol. 25, (2), pp. 109-117, (February 1982).

32. Conway, R. W., "Some Tactical Problems in Digital Simulation, " Management Science, Vol. 10,
(1), pp. 47-61, (October 1963).

33. Date, C. J., An Introduction to Database Systems (3rdEd.), 1, Addison-Wesley, (1981).

34. Date, C. J., An Introduction to Database Systems (Vol. 2), 2, Addison-Wesley, (1983).

204

35. Date, C. J., An Introduction to Database Systems (4th Ed.), 1, Addison-Wesley, (1986).

36. Deen, S. M., Nikodem, D., and Vashishta, A., "The Design of a Canonical Database System
(PRECI), " The Computer Journal, Vol. 24, (3), pp. 200-209, The British Computer Society,
(August 1981).

37. Deen, S. M., Edgar, J. A., Nikodem, D., and Vashishta, A., "Run-Time Management in a Canonical
DBMS (PRECI), " Proceedings of BNCOD-2, pp. 218-239, J. Wiley, (July 1982).

38. Digital Ltd. Digital,, RA81 Disk Drive User Guide (ER-ORA81-UG-001), (1982).

39. Digital Ltd. Digital,, UDA50 User Guide (EK-UDA50-UG-002), (October 1982).

40. Downham, D. Y. and Roberts, F. D. K., "Multiplicative Congruential Pseudo-random Number
Generators, " The Computer Journal, Vol. 10, (11), pp. 74-77, I'lie British Computer Society,
(1967).

41. Emulex Ltd. Emulex,, SC411MD SMD Disk Controller Technical Manual, 3545 Harbor
Boulevard, Costa Mesa, California 92626, USA, (October 1985).

42. Eswaran, K. P., Gray, J. N., Lorie, R. A., and Traiger, I. L., "Ilie Notions of Consistency and
Predicate Locks in a Database System, " Communications of the ACM, Vol. 19, (11), pp. 624-633,
(November 1976).

43. Fishman, G. S., Principles of Discrete Event Simulation, John Wiley & Sons, (1978).

44. Franascek, P. and Robinson, J. T., "Limitation of Concurrency in Transaction Processing, " ACM
TODS, Vol. 10, (1), pp. 1-28, (March 1985).

45. Fujitsu Ltd. Fujitsu,, M2351AIAF Mini-Disc Drive (Eagle) Manual, (1981).

46. Galler, B. I., "Concurrency Control Performance Issues, " Ph. D. Thesis (Technical Report CSRG-
147), University of Toronto, Ontario, Canada, (September 1982).

47. Garcia-Molina, H., Germano, F., and Kohler, W. H., "Architectural Overview of a Distributed
Software Testbed, " Proceedings of the 16th Hawaii International Conference on System Sciences,
pp. 310-319, (1983).

48. Gardarin, G. and Melkanoff, M., "Concurrency Control Principles in Distributed and Centralised
Databases, " INRIA Rapports de Recherche No. 113,78153 Le Chesnay, France, (January 1982).

49. Gerritsen, R., Cortes, R., Ribiero, J., and Zowader, R., WAND Users' Guide, Dept. of Decision
Sciences, The Wharton School, Univ. of Pennsylvania, Pennsylvania, USA, (1976).

50. Graham, S J,., Kessler, P. B., and McKusick, M. K., "gprof. a Call Graph Execution Profiler, "
SIGPLAN Notices (Proceedings of the ACM SIGPLAN '82 Syrnposium on Compiler
Conctruction), Vol. 17, (6), pp. 120-126, (June 1982).

51. Gray, J., "Notes on Data Base Operating Systems, " IBM Research Lab. Research Report RJ2188
(30001) 2123178, (February 1978).

52. Gray, J. and , al et, "The Recovery Manager of the System R Database Manager, " Computer
Surveys, Vol. 13, pp. 223-242, (June 1981).

53. Gray, J., "A Straw Man Analysis of Probabihty of Waiting and De-adlock, " IBM Research Lab.
Research Report RJ3066 (38112) 2126181, (February 198 1).

205

54. Griffeth, N. D. and Morsi, M., SORCERER: A Distributed Database Testbed and Simulation Tool,
School of Inf & Comp Sci, Georgia Inst of Technology, Atlanta, Georgia, USA, (February 1983).

55. Holt,, "Some Deadlock Properties of Computer Systems, " Computer Surveys, Vol. 4, pp. 79-195,
(December 1972).

56. Jipping, M. j. and Ford, R., "Predicting Performance of Concurrency Control Designs, "
Proceedings of the 1987 ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, pp. 132-140, Banff, Alberta, Canada, (May 1987).

57. Kedem, Z. and Silberschatz, A., 'Won Two-Phase LocIdng Protocols with Shared and Exlusive
Locks, " Proceedings of the 6th VLDB, pp. 309-317, (1980).

58. Kedem, Z., Mohan, C., and Silberschatz, A., "An Efficient Deadlock Removal Scheme for Non
Two-Phase Locking Protocols, " Proceedings of the 8th VLDB, pp. 91-97, Mexico City, Mexico,
(September 1982).

59. Kentý J. and Garcia-Molina, H., "Performance Evaluation of Crash Recovery Systems, " Technical
Report 329, Princeton University, Princeton, NJ., USA, (November 1984).

er%

ov. Kent, J., Garcia-Molina, H., and Chung, J., "An Experimental Evaluation of Crash Recovery
Mechanisms, " Proceedings of the 4th ACM SIGACT-SIGMOD SyffTosium on Principles of
Database Systems, pp. 113-122, Portland, Oregon, USA, (March 1985).

61. Kernighan, B. W. and Ritchie, D. M., The C Progra"uning Language, Prentice Hall, (1978).

62. Kersten, M. and Wasserman, A. I., "'Ibe Architecture of the PLAIN Database Handler, " Software
Practice & Experience, Vol. 11, (2), pp. 175-186, (February 198 1).

63. Kersten, M. and Tebra, H., "Application of an Optimistic Concurrency Control Method, "
Software Practice & Experience, Vol. 14, (2), pp. 153-168, (Febniary 1984).

64. Kersten, M., Wasserman, A. I., and Riet, R. P. van der, TrollIUSE Ref. Manual; TrollIUSE Library
Ref. Manual; RAPIDIUSE Ref. Manual, 2, Wiskundig Seminarium, Vrije Universiteit, De
Boelaan 1081 HV, Amsterdam, The Netherlands, (May 1984).

65. Kohler, W. H., "A Survey of Techniques for Synchronization and Recovery in Decentralized
Computer Systems, " Computer Surveys, Vol. 13, (2), pp. 149-183, (June 1981).

66, Kohler, W. H., Wilner, K. C., and Stankovic, J. A., "An Experimental Comparison of Locking
Policies, " SIGMOD Record (Proceedings of SIGMOD-83), Vol. 13, (4), San Jose, California,
USA, (NIay 1983).

67. Kung, H. T. and Robinson, J. T., "On Optimistic Methods for Concuffency Control, " ACM TODS,
Vol. 6, (2), pp. 213-226, (June 198 1).

68. Lin, W. K. and Nolte, J., "Performance of Two Phase Locking, " Proceedings of the 6th Berkeley
Workshop on Distributed Database Management and CoiVuter Networks, (February 1982).

69. Lin, W. K. and Nolte, J., Basic TimestaffW, Multiple Version Timestwnp, and Two Phase Locking,
Computer Corporation of America, Four Cambridge Center, Cambridge, MA 02142, USA,
(1983). Internal Report

70. Mackert, L. F. and Lohman, G. M., "R* Optimizer Validation and Performance Evaluation for
Local Queries, " Proceeiiings SIGMOD-86 (International Conference on Management of Data),

pp. 84-95, Washington DC, USA, (May 1986).

206

71. Madelaine, J., 'Tvaluation d'AJgorithmes de Controle de Concurrence, " INRIA Rapports de
Recherche No. 164,78153 Le Chesnay, France, (October 1982).

72. McKusick, M. K., Joy, W. N., Leffler, SJ., and Fabry, R. S., "A Fast File System for UNIX, " ACM
Transactions on Computer Systems, Vol. 2, (3), pp. 181-197, (August 1984).

73. Menasce, D. A. and Muntz, R. R., "Locking and Deadlock Detection in Distributed Databases, "
IEEE Transactions Software Engineering, Vol. SE-5, (3), pp. 195-202, (May 1979).

74. Menasce, D. A. and Nakanishi, T., "Optimistic vs Pessimistic Concurrency Control Mechanisms, "
Infortwtion Systenu, Vol. 7, (1), pp. 13-27, (1982).

75. Milenkovic, M., Update Synchronization in Multiaccess Systems, U. M. I. Press, Ann Arbor,
Mchigan, USA, (1981).

76. Nfitrani, I., Simulation techniquesfor discrete event systems, CUP, (1982).

77. Mohan, C., "Strategies for Enhancing Concurrency and Managing Deadlocks in Data Base
Locking Protocols, " Ph. D. Tbesis, Univ of Texas at Austin, Texas, USA, (December 1981).

78. Mohan, C., Fussel, D., and Silberschatz, A., "A Biased Non Two Phased Locking Protocol, "
Improving Database Usability and Responsiveness, Academic Press, (1982).

79. Mohan, C., Fussel, D., Kedem, Z., and Silberschatz, A., "Lock Conversions in Non-Two Phase
Locking, " IEEE Transactions on Software Engineering, Vol. SE-11, (1), pp. 15-22, (January
1985).

80. Palmer, E. F., INGRESIORACLE Benchnwrk Tests (Internal Report), Impell Corporation, Georgia,
USA. Private Communication

81. Papadimitriou, C., "The Serializability of Concurrent Database Updates, " Journal of the ACM,
Vol. 26, (4), pp. 631-653, (October 1979).

82. Peinl, P. and Reuter, A., "'Empirical Comparison of Database Concurrency Control Schemes, "
Proceedings of the 9th VLDB, pp. 97-119, Florence, Italy, (November 1983).

83. Petri, G. and Oehman, M., 'Utvaerdering av Systemutvecklingsverktyg foer Struktur-90, "
(Evaluation of Systems Development Tools for Struktur-90), Stockholm, Sweden. Private
Communication .

84. Potier, D. and Leblanc, Ph., "Analysis of Locking Policies in Database Management Systems, "
Communications of the ACM, Vol. 23, (10), pp. 584-593, (October 1980).

85. Ries, D. R. and Stonebraker, M., 'Tffects of Locking Granularity in a Database Management
System, " ACM TODS, Vol. 2, (3), pp. 233-246, (September 1977).

86. Ries, D. R., "ne Effects of Concurrency Control on Database Mangement System Performance, "
Ph. D. Tbesis, Computer Science Department, University Berkeley, California, USA, (April 1979).

87. Ries, D. R. and Stonebraker, M., "Locicing Granularity Revisited, " ACM TODS, Vol. 4, (2),
pp. 210-227, (June 1979).

88. Riet, R. P. van der, Wasserman, A. I., Kersten, M., and Jonge, W. De, "High Level Programming
Features for Improving the Efficiency of a Relational Database System, " A CM TODS , Vol. 6, (3),
pp. 464-485, (September 1981).

207

89. Ritchie, D. M. and Thompson, K., "The UNIX Time-Sharing System, " Communications of the
ACM, (7), pp. 365-375, (July 1974).

90. Rosenkrantz, DJ., Steams, R. E., and Lewis, P. M. III, "System Level Concurrency Control for
Distributed Database Systems, " ACM TODS, Vol. 3, (2), pp. 178-198, (June 1978).

91. Ross, D. F., "Database Research Project Documentation, " Collection of Notes from PRECI
collaboration, Dept. of Computer Science, Heriot-Watt University, Edinburgh, Scotland, UK,
(April 1985).

92. Ross, D. F., "An Introduction to TDBS/C: Testbed Database in C, " Technical Report TR/87-03,
Dept. of Computer Science, Heriot-Watt University, Edinburgh, Scotland, UK, (April 1987).

93. Rubenstein, W. B., Kubicar, M. S., and Cattell, R. G. G., "Benchmarking Simple Database
Operations, " Procee&ngs SIGMOD-87 (International Conference on Management of Data),
pp. 387-394, San Francisco, California, USA, (May 1987).

94. SCOT,, "Detection et Prevention des Inter-Blocages dans un Systeme Transactionel Centralise, "
Rapports de Recherche SCOTNo. 17, IMAG, Grenoble, France, (April 1981).

95. SQL,, Database Language SQL (Final Dri#i ISO 9075-1987(F)), ISO TC97 Sc2l WG3-DBL
RENO-2, IBM Corp., J67 B47,555 Bailey Ave-, San Jose, California, 95150, USA, (November
1987).

96. Sargent, R., "Stastical Analysis of Simulation Output Data, " Proceedings of the 4(h Annual
Symposium on the Simulation of Computer Systems, Boulder, Colorado, USA, (July 1976).

97. Schmidt, J. W., "Some High Level Language Constructs for Data of Type Relation, " ACM TODS,
Vol. 2, (3), pp. 247-26 1, (September 1977).

98. Shannon, R. E., Systems Simulation: the art and science, Prentice-Hall, (1975).

99. Steams, R. E., Lewis, P. M., and Rosenkrantz, DJ., "Concurrency Control for Database Systems, "
Proceedings of the 17th Annual Symposium on Foundations of Coniputer Science, pp. 19-32,
(1976).

100. Stonebraker, M., "Retrospection on a Database System, " ACM TODS, Vol. 5, (2), pp. 225-240,
(June 1980).

101, Stonebraker, M., "Operating Systems Support for Database Management, " Communications of
the ACM, Vol. 24, (7), pp. 412-418, (July 198 1).

102. Stonebraker, M., Woodfill, J., Ranstrom, J., Mwphy, M., Meyer, M., and Allman, E.,
'? erformance Enhancements to a Relational Database System, " ACM TODS, Vol. 8, (2),
pp. 167-185, (June 1983).

103. Tay, Y. C., Goodman, N., and Suri, R., "Performance Evaluation of Locking in Databases: A
Survey, " Technical Report, TR 17-84, Aiken Computing Lab., Harvard University, Massachusets,
USA, (February 1984).

104. Tay, Y. C., "A Mean Value Performance Model for Locking in Databases, " Ph. D. 71besis (CRCT
Report TR-04-84), Harvard University, Massachusets, USA, (1984).

105. Tay, Y. C., Suri, R., and Goodman, N., "A Me-an Value Performance Model for bxking in
Databases: ne No-Waiting Case, " Journal of the ACM, Vol. 32, (3), pp. 618 -65 1, (July 1985).

208

106. Tay, Y. C., Goodman, N., and Suri, R., "Locking Performance in a Centralized Database, " ACM

TODS, Vol. 10, (4), pp. 415-462, (December 1985).

107. Tay, Y. C., Locking Performance in Centralized Databases, Academic Press, (1987).

108. Taylor, R. W., "User Experience with the Bitton Lee IDM 500, " in Database Machines, ed. A. K.

Sood, NATO ASI Series, Vol. F24, Springer-Verlag, (1986).

109. Tebra, J. R. B., Transaction Managentent in the PLAIN Database Handler, Wiskundig
Seminarium., Vrije Universiteit, De Boelaan 1081 HV, Amsterdam, The Netherlands, (January
1982).

110. Thanos, C., Carlesi, C., and Bertino, E., "Performance Evaluation of Two-Phase LocIcing
Algorithms in a System for Distributed Databases, " 3rd SYffW on Reliability in Distributed
Sof! ware, pp. 57-69, Florida, USA, (October 1983).

1. Thanos, C., Carlesi, C., and Bertino, E., "Performance Evaluation of Timestamp Ordering
Algorithms in a System for Distributed Databases, " Convencio Infortwtica Vatina, pp. 305-319,
Barcelona, Spain, (June 1983).

112. Thomas, R. H., "A Majority Consensus Approach to Concurrency Control for Multiple Copy
Databases, " ACM TODS, Vol. 4, (2), pp. 180-209, (June 1979).

113. Tbomasian, A., "Performance Evaluation of Centralized Databases with Static Locking, " IEEE
Transactions on Software Engineering, Vol. SE-11, (4), pp. 346-355, (April 1985).

114. Tsichritzis, D. and Klug, A., "The ANSI/X3/SPARC DBMS Framework. Report of the Study
Group on DBMS, " Inforrwtions System, Vol. 3, (1978).

115. Tsichritzis, D. C. and Lochovsky, F. H., Data Models, Prentice Hall, (1982).

116. UNIX,, UNIX Programmer's Manual, 4.2 Berkeley Software Distribution, 7th Edition, 2B,
Computer Science Division, Detp. of Electrical Engineering and Computer Science, University of
California, Berkeley, California 94720, USA, (January 1979).

117. UNIX,, UNIX Programtner's Manual, 4.2 Berkeley Software Distribution, Virtual VAX 11
Version, la and lb, Computer Science Division, Detp. of Electrical Engineering and Computer
Science, University of California, Berkeley, California 94720, USA, (August 1983).

118. Ullman, J. D., Principles ofDatabase Systems, Pitman, (1980).

119. Vashishta, A., "An Implementation of Schemas and a Relational Facility for a Canonical Data
Model, " Ph. D. Thesis, Aberdeen University, Aberdeen, Scotland, UK, (December 1982).

120. Wasserman, A. I., Sheretz, D. D., Kersten, M. L., Rietý R. P. van der, and Dippe, M., "Revised
Report on the Programming Language PLAIN, " ACM SIGPLAN Notices, Vol. 16, (5), pp. 59-80,
(1981).

121. Wasserman, A. I. and Kersten, M. L., TrollIUSE Tutorial; TBEITutorial; RAPIDIUSE Tutorial, 1,
Wiskundig Seminarium, Vrije Universiteit, De Boelaan 1081 HV, Amsterdarn, Ilie Netherlands,
(May 1984).

122. Wonnacot, RJ. and Wonnacot, T. H., Introductory Statistics, J. Wiley, (1969).

123. Zipf, J. K., Human Communication and The Principle of Least Effort, Addison-Wesley, (1949).

124. Zloof, M. M., "Query-By-Exwnple: a Database Language, " IBM System Journal, (4), (1977).

209

