285 research outputs found

    Detection of breast cancer with electrical impedance mammography

    Get PDF
    Electrical Impedance Tomography (EIT) is a medical imaging technique that reconstructs internal electrical conductivity distribution of a body from impedance data that is measured on the body surface, and Electrical Impedance Mammography (EIM) is the technique that applies EIT in breast cancer detection. The use of EIM for breast cancer identification is highly desirable because it is a non-invasive and low-cost imaging technology. EIM has the potential in detecting early stage cancer, however there are still challenges that hindering EIM to be provided as a routine health care system. There are three major groups of obstacles. One is the hardware design, which includes the selection of electronic components, electrode-skin contacting methods, etc. Second is theoretical problems such as electrode configurations, image reconstruction and regularization methods. Third is the development of analysis methods and generation of a cancerous tissue database. Research reported in this thesis strives to understand these problems and aims to provide possible solutions to build a clinical EIM system. The studies are carried out in four parts. First the functionalities of the Sussex Mk4 EIM system have been studied. Sensitivity of the system was investigated to find out the strength and weakness of the system. Then work has been made on image reconstruction and regularization methods in order to enhance the system’s endurance to noise, also to balance the reconstruction conductivity distribution throughout the reconstructed object. Then a novel cancer diagnosis technique was proposed. It was developed based on the electrical property of human breast tissue and the behaviour or systematic noise, to provide repeatable results for each patient. Finally evaluation has been made on previous EIM systems to find out the major problems. Based on sensitivity analysis, an optimal combined electrode configuration has been proposed to improve sensitivity. The system has been developed and produced meaningful clinical images. The work makes significant contributions to society. This novel cancer diagnosis method has high accuracy for cancer identification. The combined electrode configuration has also provided flexibilities in the designing of current driving and voltage receiving patterns, thus sensitivity of the EIM system can be greatly improved

    Clinical performance of a novel textile interface for neonatal chest electrical impedance tomography

    Get PDF
    Objective: Critically ill neonates and infants might particularly benefit from continuous chest electrical impedance tomography (EIT) monitoring at the bedside. In this study a textile 32-electrode interface for neonatal EIT examination has been developed and tested to validate its clinical performance. The objectives were to assess ease of use in a clinical setting, stability of contact impedance at the electrode–skin interface and possible adverse effects. Approach: Thirty preterm infants (gestational age: 30.3 ± 3.9 week (mean ± SD), postnatal age: 13.8 ± 28.2 d, body weight at inclusion: 1727 ± 869 g) were included in this multicentre study. The electrode–skin contact impedances were measured continuously for up to 3 d and analysed during the initial 20-min phase after fastening the belt and during a 10 h measurement interval without any clinical interventions. The skin condition was assessed by attending clinicians. Main results: Our findings imply that the textile electrode interface is suitable for long-term neonatal chest EIT imaging. It does not cause any distress for the preterm infants or discomfort. Stable contact impedance of about 300 Ohm was observed immediately after fastening the electrode belt and during the subsequent 20 min period. A slight increase in contact impedance was observed over time. Tidal variation of contact impedance was less than 5 Ohm. Significance: The availability of a textile 32-electrode belt for neonatal EIT imaging with simple, fast, accurate and reproducible placement on the chest strengthens the potential of EIT to be used for regional lung monitoring in critically ill neonates and infants

    Advanced electrode models and numerical modelling for high frequency Electrical Impedance Tomography systems

    Get PDF
    The thesis discusses various electrode models and finite element analysis methods for Electrical Impedance Tomography (EIT) systems. EIT is a technique for determining the distribution of the conductivity or admittivity in a volume by injecting electrical currents into the volume and measuring the corresponding potentials on the surface of the volume. Various electrode models were investigated for operating EIT systems at higher frequencies in the beta-dispersion band. Research has shown that EIT is potentially capable to distinguish malignant and benign tumours in this frequency band. My study concludes that instrumental effects of the electrodes and full Maxwell effects of EIT systems are the major issues, and they have to be addressed when the operating frequency increases. In the thesis, I proposed 1) an Instrumental Electrode Model (IEM) for the quasi-static EIT formula, based on the analysis of the hardware structures attached to electrodes; 2) a Complete Electrode Model based on Impedance Boundary Conditions (CEM-IBC) that introduces the contact impedances into the full Maxwell EIT formula; 3) a Transmission line Port Model (TPM) for electrode pairs with the instrumental effects, the contact impedance, and the full Maxwell effects considered for EIT systems. Circuit analysis, Partial Differential Equations (PDE) analysis, numerical analysis and finite element methods were used to develop the models. The results obtained by the proposed models are compared with widely used Commercial PDE solvers. This thesis addresses the two major problems (instrumental effects of the electrodes and full Maxwell effects of EIT systems) with the proposed advanced electrode models. Numerical experiments show that the proposed models are more accurate in the high frequency range of EIT systems. The proposed electrode models can be also applicable to inverse problems, and the results show promising. Simple hardware circuits for verifying the results experimentally have been also designed

    Clinical performance of a novel textile interface for neonatal chest electrical impedance tomography

    Get PDF
    Objective: Critically ill neonates and infants might particularly benefit from continuous chest electrical impedance tomography (EIT) monitoring at the bedside. In this study a textile 32-electrode interface for neonatal EIT examination has been developed and tested to validate its clinical performance. The objectives were to assess ease of use in a clinical setting, stability of contact impedance at the electrode–skin interface and possible adverse effects. Approach: Thirty preterm infants (gestational age: 30.3 ± 3.9 week (mean ± SD), postnatal age: 13.8 ± 28.2 d, body weight at inclusion: 1727 ± 869 g) were included in this multicentre study. The electrode–skin contact impedances were measured continuously for up to 3 d and analysed during the initial 20-min phase after fastening the belt and during a 10 h measurement interval without any clinical interventions. The skin condition was assessed by attending clinicians. Main results: Our findings imply that the textile electrode interface is suitable for long-term neonatal chest EIT imaging. It does not cause any distress for the preterm infants or discomfort. Stable contact impedance of about 300 Ohm was observed immediately after fastening the electrode belt and during the subsequent 20 min period. A slight increase in contact impedance was observed over time. Tidal variation of contact impedance was less than 5 Ohm. Significance: The availability of a textile 32-electrode belt for neonatal EIT imaging with simple, fast, accurate and reproducible placement on the chest strengthens the potential of EIT to be used for regional lung monitoring in critically ill neonates and infants

    Radio-derived three-dimensional structure of a solar active region

    Get PDF
    Solar active regions are the source of the most violent events observed on the Sun, some of which have a direct impact to modern civilization. Efforts to understand and predict such events require determination of the three-dimensional distributions of density, temperature, and magnetic fields above such active regions. This thesis presents the structure of the solar atmosphere above active region AR 10923, observed on 2006 Nov 10, as deduced from multi-wavelength studies including combined microwave observations from the Very Large Array (VLA) and the Owens Valley Solar Array (OVSA). The VLA observations provide excellent image quality at a few widely spaced frequencies while the OVSA data provide information at many intermediate frequencies to fill in the spectral coverage. In order to optimize the OVSA data for spectroscopic studies, the L1 method of self-calibration was implemented at this observatory, producing the best single frequency maps produced to date. Images at the 25 distinct, available frequencies are used to provide spatially resolved spectra along many lines of sight in the active region, from which microwave spectral diagnostics are obtained for deducing two-dimensional maps of temperature, magnetic field strength, and column density. The derived quantities are compared with multi-wavelength observations from SoHO and Hinode spacecraft, and with a standard potential magnetic field extrapolation. It is found that a two component temperature model is required to fit the data, in which a hot (\u3e 2 MK) lower corona above the strong-field plage and sunspot regions (emitting via the gyroresonance process) is overlaid with somewhat cooler (~ 1 MK) coronal loops that partially absorb the gyroresonance emission through the free-free (Bremsstrahlung) process. It is also found that the potential magnetic field extrapolation model can quantitatively account for the observed gyroresonance emission over most of the active region, but in a few areas a higher field strength is required. These areas of discrepancy are found to coincide with the foot points of hot X-ray loops over the sunspot\u27s penumbra. The results and the extrapolation are used to explore the coronal configuration needed to explain the observations, from which it is found that the bulk of radio and X-ray free-free emission emanates from two loop systems, distinguished by the location of their loop foot points. The proposed stratification may explain the observed distribution of column emission measure and the differences in this quantity as obtained from X-rays or radio emission

    Probabilistic Structures Analysis Methods (PSAM) for select space propulsion system components

    Get PDF
    The basic formulation for probabilistic finite element analysis is described and demonstrated on a few sample problems. This formulation is based on iterative perturbation that uses the factorized stiffness on the unperturbed system as the iteration preconditioner for obtaining the solution to the perturbed problem. This approach eliminates the need to compute, store and manipulate explicit partial derivatives of the element matrices and force vector, which not only reduces memory usage considerably, but also greatly simplifies the coding and validation tasks. All aspects for the proposed formulation were combined in a demonstration problem using a simplified model of a curved turbine blade discretized with 48 shell elements, and having random pressure and temperature fields with partial correlation, random uniform thickness, and random stiffness at the root
    corecore