30,566 research outputs found

    Evolutionary Multiplayer Games

    Full text link
    Evolutionary game theory has become one of the most diverse and far reaching theories in biology. Applications of this theory range from cell dynamics to social evolution. However, many applications make it clear that inherent non-linearities of natural systems need to be taken into account. One way of introducing such non-linearities into evolutionary games is by the inclusion of multiple players. An example is of social dilemmas, where group benefits could e.g.\ increase less than linear with the number of cooperators. Such multiplayer games can be introduced in all the fields where evolutionary game theory is already well established. However, the inclusion of non-linearities can help to advance the analysis of systems which are known to be complex, e.g. in the case of non-Mendelian inheritance. We review the diachronic theory and applications of multiplayer evolutionary games and present the current state of the field. Our aim is a summary of the theoretical results from well-mixed populations in infinite as well as finite populations. We also discuss examples from three fields where the theory has been successfully applied, ecology, social sciences and population genetics. In closing, we probe certain future directions which can be explored using the complexity of multiplayer games while preserving the promise of simplicity of evolutionary games.Comment: 14 pages, 2 figures, review pape

    Evolutionary Games with Affine Fitness Functions: Applications to Cancer

    Full text link
    We analyze the dynamics of evolutionary games in which fitness is defined as an affine function of the expected payoff and a constant contribution. The resulting inhomogeneous replicator equation has an homogeneous equivalent with modified payoffs. The affine terms also influence the stochastic dynamics of a two-strategy Moran model of a finite population. We then apply the affine fitness function in a model for tumor-normal cell interactions to determine which are the most successful tumor strategies. In order to analyze the dynamics of concurrent strategies within a tumor population, we extend the model to a three-strategy game involving distinct tumor cell types as well as normal cells. In this model, interaction with normal cells, in combination with an increased constant fitness, is the most effective way of establishing a population of tumor cells in normal tissue.Comment: The final publication is available at http://www.springerlink.com, http://dx.doi.org/10.1007/s13235-011-0029-

    Fixation and escape times in stochastic game learning

    Full text link
    Evolutionary dynamics in finite populations is known to fixate eventually in the absence of mutation. We here show that a similar phenomenon can be found in stochastic game dynamical batch learning, and investigate fixation in learning processes in a simple 2x2 game, for two-player games with cyclic interaction, and in the context of the best-shot network game. The analogues of finite populations in evolution are here finite batches of observations between strategy updates. We study when and how such fixation can occur, and present results on the average time-to-fixation from numerical simulations. Simple cases are also amenable to analytical approaches and we provide estimates of the behaviour of so-called escape times as a function of the batch size. The differences and similarities with escape and fixation in evolutionary dynamics are discussed.Comment: 19 pages, 9 figure

    Evolutionary game theory: Temporal and spatial effects beyond replicator dynamics

    Get PDF
    Evolutionary game dynamics is one of the most fruitful frameworks for studying evolution in different disciplines, from Biology to Economics. Within this context, the approach of choice for many researchers is the so-called replicator equation, that describes mathematically the idea that those individuals performing better have more offspring and thus their frequency in the population grows. While very many interesting results have been obtained with this equation in the three decades elapsed since it was first proposed, it is important to realize the limits of its applicability. One particularly relevant issue in this respect is that of non-mean-field effects, that may arise from temporal fluctuations or from spatial correlations, both neglected in the replicator equation. This review discusses these temporal and spatial effects focusing on the non-trivial modifications they induce when compared to the outcome of replicator dynamics. Alongside this question, the hypothesis of linearity and its relation to the choice of the rule for strategy update is also analyzed. The discussion is presented in terms of the emergence of cooperation, as one of the current key problems in Biology and in other disciplines.Comment: Review, 48 pages, 26 figure

    Evolutionary dynamics, intrinsic noise and cycles of co-operation

    Full text link
    We use analytical techniques based on an expansion in the inverse system size to study the stochastic evolutionary dynamics of finite populations of players interacting in a repeated prisoner's dilemma game. We show that a mechanism of amplification of demographic noise can give rise to coherent oscillations in parameter regimes where deterministic descriptions converge to fixed points with complex eigenvalues. These quasi-cycles between co-operation and defection have previously been observed in computer simulations; here we provide a systematic and comprehensive analytical characterization of their properties. We are able to predict their power spectra as a function of the mutation rate and other model parameters, and to compare the relative magnitude of the cycles induced by different types of underlying microscopic dynamics. We also extend our analysis to the iterated prisoner's dilemma game with a win-stay lose-shift strategy, appropriate in situations where players are subject to errors of the trembling-hand type.Comment: 14 pages, 12 figures, accepted for publication by Phys. Rev.

    Multigame Effect in Finite Populations Induces Strategy Linkage Between Two Games

    Get PDF
    Evolutionary game dynamics with two 2-strategy games in a finite population has been investigated in this study. Traditionally, frequency-dependent evolutionary dynamics are modeled by deterministic replicator dynamics under the assumption that the population size is infinite. However, in reality, population sizes are finite. Recently, stochastic processes in finite populations have been introduced into evolutionary games in order to study finite size effects in evolutionary game dynamics. However, most of these studies focus on populations playing only single games. In this study, we investigate a finite population with two games and show that a finite population playing two games tends to evolve toward a specific direction to form particular linkages between the strategies of the two games

    Evolutionary prisoner's dilemma game with dynamic preferential selection

    Full text link
    We study a modified prisoner's dilemma game taking place on two-dimensional disordered square lattices. The players are pure strategists and can either cooperate or defect with their immediate neighbors. In the generations each player update its strategy by following one of the neighboring strategies with a probability dependent on the payoff difference. The neighbor selection obeys a dynamic preferential rule, i.e., the more frequently a neighbor's strategy was adopted by the focal player in the previous rounds, the larger probability it will be chosen to refer to in the subsequent rounds. It is found that cooperation is substantially promoted due to this simple selection mechanism. Corresponding analysis is provided by the investigations of the distribution of players' impact weights, persistence, and as well as correlation function.Comment: 7 pages, 5 figure
    • …
    corecore