14 research outputs found

    Development and Human Factors Evaluation of a Portable Auditory Localization Acclimation Training System

    Get PDF
    Auditory situation awareness (ASA) is essential for safety and survivability in military operations where many of the hazards are not immediately visible. Unfortunately, the Hearing Protection Devices (HPDs) required to operate in these environments can impede auditory localization performance. Promisingly, recent studies have exhibited the plasticity of the human auditory system by demonstrating that training can improve auditory localization ability while wearing HPDs, including military Tactical Communications and Protective Systems (TCAPS). As a result, the U.S. military identified the need for a portable system capable of imparting auditory localization acquisition skills at similar levels to those demonstrated in laboratory environments. The purpose of this investigation was to develop and validate a Portable Auditory Localization Acclimation Training (PALAT) system equipped with an improved training protocol against a proven laboratory grade system referred to as the DRILCOM system and subsequently evaluate the transfer-of-training benefit in a field environment. In Phase I, a systems decision process was used to develop a prototype PALAT system consisting of an expandable frame housing 32-loudspeakers operated by a user-controlled tablet computer capable of reproducing acoustically accurate localization cues similar to the DRILCOM system. Phase II used a within-subjects human factors experiment to validate whether the PALAT system could impart similar auditory localization training benefits as the DRILCOM system. Results showed no significant difference between the two localization training systems at each stage of training or in training rates for the open ear and with two TCAPS devices. The PALAT system also demonstrated the ability to detect differences in localization accuracy between listening conditions in the same manner as the DRILCOM system. Participant ratings indicated no perceived difference in localization training benefit but significantly preferred the PALAT system user interface which was specifically designed to improve usability features to meet requirements of a user operable system. The Phase III investigation evaluated the transfer-of-training benefit imparted by the PALAT system using a broadband stimulus to a field environment using gunshot stimulus. Training under the open ear and in-the-ear TCAPS resulted in significant differences between the trained and untrained groups from in-office pretest to in-field posttest

    Development and Human Factors Evaluation of a Portable Auditory Localization Acclimation Training System

    Get PDF
    Auditory situation awareness (ASA) is essential for safety and survivability in military operations where many of the hazards are not immediately visible. Unfortunately, the Hearing Protection Devices (HPDs) required to operate in these environments can impede auditory localization performance. Promisingly, recent studies have exhibited the plasticity of the human auditory system by demonstrating that training can improve auditory localization ability while wearing HPDs, including military Tactical Communications and Protective Systems (TCAPS). As a result, the U.S. military identified the need for a portable system capable of imparting auditory localization acquisition skills at similar levels to those demonstrated in laboratory environments. The purpose of this investigation was to develop and validate a Portable Auditory Localization Acclimation Training (PALAT) system equipped with an improved training protocol against a proven laboratory grade system referred to as the DRILCOM system and subsequently evaluate the transfer-of-training benefit in a field environment. In Phase I, a systems decision process was used to develop a prototype PALAT system consisting of an expandable frame housing 32-loudspeakers operated by a user-controlled tablet computer capable of reproducing acoustically accurate localization cues similar to the DRILCOM system. Phase II used a within-subjects human factors experiment to validate whether the PALAT system could impart similar auditory localization training benefits as the DRILCOM system. Results showed no significant difference between the two localization training systems at each stage of training or in training rates for the open ear and with two TCAPS devices. The PALAT system also demonstrated the ability to detect differences in localization accuracy between listening conditions in the same manner as the DRILCOM system. Participant ratings indicated no perceived difference in localization training benefit but significantly preferred the PALAT system user interface which was specifically designed to improve usability features to meet requirements of a user operable system. The Phase III investigation evaluated the transfer-of-training benefit imparted by the PALAT system using a broadband stimulus to a field environment using gunshot stimulus. Training under the open ear and in-the-ear TCAPS resulted in significant differences between the trained and untrained groups from in-office pretest to in-field posttest

    Development and Human Factors Evaluation of a Portable Auditory Localization Acclimation Training System

    Get PDF
    Auditory situation awareness (ASA) is essential for safety and survivability in military operations where many of the hazards are not immediately visible. Unfortunately, the Hearing Protection Devices (HPDs) required to operate in these environments can impede auditory localization performance. Promisingly, recent studies have exhibited the plasticity of the human auditory system by demonstrating that training can improve auditory localization ability while wearing HPDs, including military Tactical Communications and Protective Systems (TCAPS). As a result, the U.S. military identified the need for a portable system capable of imparting auditory localization acquisition skills at similar levels to those demonstrated in laboratory environments. The purpose of this investigation was to develop and validate a Portable Auditory Localization Acclimation Training (PALAT) system equipped with an improved training protocol against a proven laboratory grade system referred to as the DRILCOM system and subsequently evaluate the transfer-of-training benefit in a field environment. In Phase I, a systems decision process was used to develop a prototype PALAT system consisting of an expandable frame housing 32-loudspeakers operated by a user-controlled tablet computer capable of reproducing acoustically accurate localization cues similar to the DRILCOM system. Phase II used a within-subjects human factors experiment to validate whether the PALAT system could impart similar auditory localization training benefits as the DRILCOM system. Results showed no significant difference between the two localization training systems at each stage of training or in training rates for the open ear and with two TCAPS devices. The PALAT system also demonstrated the ability to detect differences in localization accuracy between listening conditions in the same manner as the DRILCOM system. Participant ratings indicated no perceived difference in localization training benefit but significantly preferred the PALAT system user interface which was specifically designed to improve usability features to meet requirements of a user operable system. The Phase III investigation evaluated the transfer-of-training benefit imparted by the PALAT system using a broadband stimulus to a field environment using gunshot stimulus. Training under the open ear and in-the-ear TCAPS resulted in significant differences between the trained and untrained groups from in-office pretest to in-field posttest

    A influência da protecção individual auditiva na percepção de estímulos acústicos de alarme

    Get PDF
    Dissertação de Mestrado em Engenharia HumanaA tese aqui apresentada visa o estudo da influência do uso de protecção individual auditiva na percepção de estímulos acústicos, nomeadamente dos sinais sonoros de alarme. Para o efeito, foi desenvolvida uma metodologia que tem como objectivo simular, em laboratório, a situação real existente em meio industrial e assim, analisar a percepção da distância e localização espacial de estímulos acústicos na utilização de protecção auditiva. Relativamente ao tipo de protectores auditivos ensaiados optou-se por testar um dispositivo de cada tipo, optando-se por dar preferência aos modelos mais frequentemente utilizados em meio industrial. Deste modo, foi seleccionado um modelo de tampão auditivo e, entre os protectores auriculares, ou do tipo abafador, optou-se por seleccionar um modelo de protector de funcionamento passivo e um modelo de protector de funcionamento activo. Como estímulo acústico foi utilizado uma fonte tipicamente encontrada na indústria, a sirene identificadora de marcha-atrás existente nos empilhadores e outros veículos motorizados. Os testes foram realizados em local amplo, efectuando-se uma deslocação rápida da fonte do estímulo acústico (sirene) e avaliou-se a capacidade de resposta, em termos de identificação da distância e da localização da fonte, dos utilizadores com os vários tipos de protectores auditivos seleccionados. Os resultados obtidos e a análise estatística destes permitiram verificar que os protectores, quer do tipo passivo, quer do tipo activo, dificultam a localização auditiva da fonte sonora (sirene) e, como tal, dever-seá equacionar a utilização deste tipo de protectores em locais de trabalho em que existam dispositivos de alarme semelhantes ao utilizado nos testes, como por exemplo, em empilhadores. Da mesma forma, foi possível verificar que os tampões auditivos foram aqueles protectores que revelaram uma menor interferência com a correcta percepção da origem dos estímulos acústicos. Com este estudo, também se verificou que a principal dificuldade surgida em todas as situações (com e sem protectores auditivos) foi a identificação da distância da fonte sonora. Por outras palavras, a dificuldade de identificação da distância do estímulo sonoro não parece ser afectada pela utilização da protecção auditiva

    The results of a unique Nordic HAKK interlaboratory REAT comparison

    Get PDF

    A cumulative index to the 1977 issues of a continuing bibliography on aerospace medicine and biology

    Get PDF
    This publication is a cumulative index to the abstracts contained in the Supplements 164 through 175 of Aerospace Medicine and Biology: A Continuing Bibliography. It includes three indexes-- subject, personal author, and corporate source

    Engineering data compendium. Human perception and performance, volume 3

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design of military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by system designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is Volume 3, containing sections on Human Language Processing, Operator Motion Control, Effects of Environmental Stressors, Display Interfaces, and Control Interfaces (Real/Virtual)

    Aerospace Medicine and Biology: Cumulative index, 1979

    Get PDF
    This publication is a cumulative index to the abstracts contained in the Supplements 190 through 201 of 'Aerospace Medicine and Biology: A Continuing Bibliography.' It includes three indexes-subject, personal author, and corporate source
    corecore