3,921 research outputs found

    Astrophysics with High Energy Gamma Rays

    Get PDF
    Recent results, the present status and the perspectives of high energy gamma-ray astronomy are described. Since the satellite observations by the Compton Gamma Ray Observatory and its precursor missions have been reviewed extensively, emphasis is on the results from the ground-based gamma-ray telescopes. They concern the physics of Pulsar Nebulae, Supernova Remnants in their assumed role as the Galactic sources of Cosmic Rays, Jets from Active Galactic Nuclei, and the Extragalactic Background radiation field due to stars and dust in galaxies. Since the gamma-ray emission is nonthermal, this kind of astronomy deals with the pervasive high-energy nonequilibrium states in the Universe. The present build-up of larger and more sensitive instruments, both on the ground and in space, gives fascinating prospects also for observational cosmology and astroparticle physics. Through realistically possible further observational developments at high mountain altitudes a rapid extension of the field is to be expected.Comment: 23 pages, 11 figures. To appear in "Astronomy, Cosmology and Fundamental Physics", ed. P. A. Shaver, L. Di Lella, and A. Gimenez, Proc. ESA-CERN-ESO Symposium, Garching, March 2002. Springer-Verlag, Berlin, Heidelberg, series "ESO Astrophysics Symposia

    TeV Gamma-ray Astronomy: A Summary

    Full text link
    The field of TeV gamma-ray astronomy has produced many exciting results over the last decade. Both the source catalogue, and the range of astrophysical questions which can be addressed, continue to expand. This article presents a topical review of the field, with a focus on the observational results of the imaging atmospheric Cherenkov telescope arrays. The results encompass pulsars and their nebulae, supernova remnants, gamma-ray binary systems, star forming regions and starburst and active galaxies.Comment: 19 pages. Astroparticle Physics, in press. See published article for higher resolution figures. Cite as: J. Holder, TeV gamma-ray astronomy: A summary, Astropart. Phys. (2012), http://dx.doi.org/10.1016/j.astropartphys.2012.02.01

    NELIOTA: The wide-field, high-cadence lunar monitoring system at the prime focus of the Kryoneri telescope

    Full text link
    We present the technical specifications and first results of the ESA-funded, lunar monitoring project "NELIOTA" (NEO Lunar Impacts and Optical TrAnsients) at the National Observatory of Athens, which aims to determine the size-frequency distribution of small Near-Earth Objects (NEOs) via detection of impact flashes on the surface of the Moon. For the purposes of this project a twin camera instrument was specially designed and installed at the 1.2 m Kryoneri telescope utilizing the fast-frame capabilities of scientific Complementary Metal-Oxide Semiconductor detectors (sCMOS). The system provides a wide field-of-view (17.0' ×\times 14.4') and simultaneous observations in two photometric bands (R and I), reaching limiting magnitudes of 18.7 mag in 10 sec in both bands at a 2.5 signal-to-noise level. This makes it a unique instrument that can be used for the detection of NEO impacts on the Moon, as well as for any astronomy projects that demand high-cadence multicolor observations. The wide field-of-view ensures that a large portion of the Moon is observed, while the simultaneous, high-cadence, monitoring in two photometric bands makes possible, for the first time, the determination of the temperatures of the impacts on the Moon's surface and the validation of the impact flashes from a single site. Considering the varying background level on the Moon's surface we demonstrate that the NELIOTA system can detect NEO impact flashes at a 2.5 signal-to-noise level of ~12.4 mag in the I-band and R-band for observations made at low lunar phases ~0.1. We report 31 NEO impact flashes detected during the first year of the NELIOTA campaign. The faintest flash was at 11.24 mag in the R-band (about two magnitudes fainter than ever observed before) at lunar phase 0.32. Our observations suggest a detection rate of 1.96×1071.96 \times 10^{-7} events km2h1km^{-2} h^{-1}.Comment: Accepted for publication in A&

    The ASTRO-H X-ray Observatory

    Full text link
    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-2 keV with high spectral resolution of Delta E < 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes.Comment: 22 pages, 17 figures, Proceedings of the SPIE Astronomical Instrumentation "Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray
    corecore