45,516 research outputs found

    Holographic particle localization under multiple scattering

    Full text link
    We introduce a novel framework that incorporates multiple scattering for large-scale 3D particle-localization using single-shot in-line holography. Traditional holographic techniques rely on single-scattering models which become inaccurate under high particle-density. We demonstrate that by exploiting multiple-scattering, localization is significantly improved. Both forward and back-scattering are computed by our method under a tractable recursive framework, in which each recursion estimates the next higher-order field within the volume. The inverse scattering is presented as a nonlinear optimization that promotes sparsity, and can be implemented efficiently. We experimentally reconstruct 100 million object voxels from a single 1-megapixel hologram. Our work promises utilization of multiple scattering for versatile large-scale applications

    3D differential phase contrast microscopy

    Full text link
    We demonstrate 3D phase and absorption recovery from partially coherent intensity images captured with a programmable LED array source. Images are captured through-focus with four different illumination patterns. Using first Born and weak object approximations (WOA), a linear 3D differential phase contrast (DPC) model is derived. The partially coherent transfer functions relate the sample's complex refractive index distribution to intensity measurements at varying defocus. Volumetric reconstruction is achieved by a global FFT-based method, without an intermediate 2D phase retrieval step. Because the illumination is spatially partially coherent, the transverse resolution of the reconstructed field achieves twice the NA of coherent systems and improved axial resolution

    Reconstruction and Particle Identification for a DIRC System

    Get PDF
    We study the reconstruction and particle identification (PID) problem for Ring Imaging devices providing a good knowledge of the direction of the Cerenkov photons, as the DIRC system, on which we specialize. We advocate first the use of the stereographic projection as a tool allowing a suitable representation of the photon data, as it allows to represent the Cerenkov cone always as a circle. We set up an algorithm able to perform reliably a fit of circle arcs of small angular opening, by minimising a true Chi2 expression. The system we develop for PID relies on this algorithm and on a procedure able to remove background photons with a high efficiency. We thus show that, even when the background is large, it is possible to perform an efficient PID by means of a fit algorithm which finally provides all the circle parameters; these are connected with the charged track direction and its Cerenkov angle. It is shown that background effects can be dealt without spoiling significantly the reconstruction probability distributions.Comment: 67 pages, 23 figure

    Observation of the Far-ultraviolet Continuum Background with SPEAR/FIMS

    Full text link
    We present the general properties of the far-ultraviolet (FUV; 1370-1720A) continuum background over most of the sky, obtained with the Spectroscopy of Plasma Evolution from Astrophysical Radiation instrument (SPEAR, also known as FIMS), flown aboard the STSAT-1 satellite mission. We find that the diffuse FUV continuum intensity is well correlated with N_{HI}, 100 μ\mum, and H-alpha intensities but anti-correlated with soft X-ray. The correlation of the diffuse background with the direct stellar flux is weaker than the correlation with other parameters. The continuum spectra are relatively flat. However, a weak softening of the FUV spectra toward some sight lines, mostly at high Galactic latitudes, is found not only in direct-stellar but also in diffuse background spectra. The diffuse background is relatively softer that the direct stellar spectrum. We also find that the diffuse FUV background averaged over the sky has about the same level as the direct-stellar radiation field in the statistical sense and a bit softer spectrum compared to direct stellar radiation. A map of the ratio of 1400-1510A to 1560-1660A shows that the sky is divided into roughly two parts. However, this map shows a lot of patchy structures on small scales. The spatial variation of the hardness ratio seems to be largely determined by the longitudinal distribution of spectral types of stars in the Galactic plane. A correlation of the hardness ratio with the FUV intensity at high intensities is found but an anti-correlation at low intensities. We also find evidence that the FUV intensity distribution is log-normal in nature.Comment: 39 pages, 26 figures, accepted for publication in ApJ

    Metal-loaded organic scintillators for neutrino physics

    Full text link
    Organic liquid scintillators are used in many neutrino physics experiments of the past and present. In particular for low energy neutrinos when realtime and energy information are required, liquid scintillators have several advantages compared to other technologies. In many cases the organic liquid needs to be loaded with metal to enhance the neutrino signal over background events. Several metal loaded scintillators of the past suffered from chemical and optical instabilities, limiting the performance of these neutrino detectors. Different ways of metal loading are described in the article with a focus on recent techniques providing metal loaded scintillators that can be used under stable conditions for many years even in ton scale experiments. Applications of metal loaded scintillators in neutrino experiments are reviewed and the performance as well as the prospects of different scintillator types are compared.Comment: 46 pages, 5 figure

    Temporal Correlation of Hard X-rays and Meter/Decimeter Radio Structures in Solar Flares

    Full text link
    We investigate the relative timing between hard X-ray (HXR) peaks and structures in metric and decimetric radio emissions of solar flares using data from the RHESSI and Phoenix-2 instruments. The radio events under consideration are predominantly classified as type III bursts, decimetric pulsations and patches. The RHESSI data are demodulated using special techniques appropriate for a Phoenix-2 temporal resolution of 0.1s. The absolute timing accuracy of the two instruments is found to be about 170 ms, and much better on the average. It is found that type III radio groups often coincide with enhanced HXR emission, but only a relatively small fraction (\sim 20%) of the groups show close correlation on time scales << 1s. If structures correlate, the HXRs precede the type III emissions in a majority of cases, and by 0.69±\pm0.19 s on the average. Reversed drift type III bursts are also delayed, but high-frequency and harmonic emission is retarded less. The decimetric pulsations and patches (DCIM) have a larger scatter of delays, but do not have a statistically significant sign or an average different from zero. The time delay does not show a center-to-limb variation excluding simple propagation effects. The delay by scattering near the source region is suggested to be the most efficient process on the average for delaying type III radio emission
    corecore