12,720 research outputs found

    A quick search method for audio signals based on a piecewise linear representation of feature trajectories

    Full text link
    This paper presents a new method for a quick similarity-based search through long unlabeled audio streams to detect and locate audio clips provided by users. The method involves feature-dimension reduction based on a piecewise linear representation of a sequential feature trajectory extracted from a long audio stream. Two techniques enable us to obtain a piecewise linear representation: the dynamic segmentation of feature trajectories and the segment-based Karhunen-L\'{o}eve (KL) transform. The proposed search method guarantees the same search results as the search method without the proposed feature-dimension reduction method in principle. Experiment results indicate significant improvements in search speed. For example the proposed method reduced the total search time to approximately 1/12 that of previous methods and detected queries in approximately 0.3 seconds from a 200-hour audio database.Comment: 20 pages, to appear in IEEE Transactions on Audio, Speech and Language Processin

    Dance-the-music : an educational platform for the modeling, recognition and audiovisual monitoring of dance steps using spatiotemporal motion templates

    Get PDF
    In this article, a computational platform is presented, entitled “Dance-the-Music”, that can be used in a dance educational context to explore and learn the basics of dance steps. By introducing a method based on spatiotemporal motion templates, the platform facilitates to train basic step models from sequentially repeated dance figures performed by a dance teacher. Movements are captured with an optical motion capture system. The teachers’ models can be visualized from a first-person perspective to instruct students how to perform the specific dance steps in the correct manner. Moreover, recognition algorithms-based on a template matching method can determine the quality of a student’s performance in real time by means of multimodal monitoring techniques. The results of an evaluation study suggest that the Dance-the-Music is effective in helping dance students to master the basics of dance figures

    The Skipping Behavior of Users of Music Streaming Services and its Relation to Musical Structure

    Full text link
    The behavior of users of music streaming services is investigated from the point of view of the temporal dimension of individual songs; specifically, the main object of the analysis is the point in time within a song at which users stop listening and start streaming another song ("skip"). The main contribution of this study is the ascertainment of a correlation between the distribution in time of skipping events and the musical structure of songs. It is also shown that such distribution is not only specific to the individual songs, but also independent of the cohort of users and, under stationary conditions, date of observation. Finally, user behavioral data is used to train a predictor of the musical structure of a song solely from its acoustic content; it is shown that the use of such data, available in large quantities to music streaming services, yields significant improvements in accuracy over the customary fashion of training this class of algorithms, in which only smaller amounts of hand-labeled data are available

    Using term clouds to represent segment-level semantic content of podcasts

    Get PDF
    Spoken audio, like any time-continuous medium, is notoriously difficult to browse or skim without support of an interface providing semantically annotated jump points to signal the user where to listen in. Creation of time-aligned metadata by human annotators is prohibitively expensive, motivating the investigation of representations of segment-level semantic content based on transcripts generated by automatic speech recognition (ASR). This paper examines the feasibility of using term clouds to provide users with a structured representation of the semantic content of podcast episodes. Podcast episodes are visualized as a series of sub-episode segments, each represented by a term cloud derived from a transcript generated by automatic speech recognition (ASR). Quality of segment-level term clouds is measured quantitatively and their utility is investigated using a small-scale user study based on human labeled segment boundaries. Since the segment-level clouds generated from ASR-transcripts prove useful, we examine an adaptation of text tiling techniques to speech in order to be able to generate segments as part of a completely automated indexing and structuring system for browsing of spoken audio. Results demonstrate that the segments generated are comparable with human selected segment boundaries

    Learning sound representations using trainable COPE feature extractors

    Get PDF
    Sound analysis research has mainly been focused on speech and music processing. The deployed methodologies are not suitable for analysis of sounds with varying background noise, in many cases with very low signal-to-noise ratio (SNR). In this paper, we present a method for the detection of patterns of interest in audio signals. We propose novel trainable feature extractors, which we call COPE (Combination of Peaks of Energy). The structure of a COPE feature extractor is determined using a single prototype sound pattern in an automatic configuration process, which is a type of representation learning. We construct a set of COPE feature extractors, configured on a number of training patterns. Then we take their responses to build feature vectors that we use in combination with a classifier to detect and classify patterns of interest in audio signals. We carried out experiments on four public data sets: MIVIA audio events, MIVIA road events, ESC-10 and TU Dortmund data sets. The results that we achieved (recognition rate equal to 91.71% on the MIVIA audio events, 94% on the MIVIA road events, 81.25% on the ESC-10 and 94.27% on the TU Dortmund) demonstrate the effectiveness of the proposed method and are higher than the ones obtained by other existing approaches. The COPE feature extractors have high robustness to variations of SNR. Real-time performance is achieved even when the value of a large number of features is computed.Comment: Accepted for publication in Pattern Recognitio

    Towards an All-Purpose Content-Based Multimedia Information Retrieval System

    Full text link
    The growth of multimedia collections - in terms of size, heterogeneity, and variety of media types - necessitates systems that are able to conjointly deal with several forms of media, especially when it comes to searching for particular objects. However, existing retrieval systems are organized in silos and treat different media types separately. As a consequence, retrieval across media types is either not supported at all or subject to major limitations. In this paper, we present vitrivr, a content-based multimedia information retrieval stack. As opposed to the keyword search approach implemented by most media management systems, vitrivr makes direct use of the object's content to facilitate different types of similarity search, such as Query-by-Example or Query-by-Sketch, for and, most importantly, across different media types - namely, images, audio, videos, and 3D models. Furthermore, we introduce a new web-based user interface that enables easy-to-use, multimodal retrieval from and browsing in mixed media collections. The effectiveness of vitrivr is shown on the basis of a user study that involves different query and media types. To the best of our knowledge, the full vitrivr stack is unique in that it is the first multimedia retrieval system that seamlessly integrates support for four different types of media. As such, it paves the way towards an all-purpose, content-based multimedia information retrieval system
    • 

    corecore