838 research outputs found

    Software Defined Applications in Cellular and Optical Networks

    Get PDF
    abstract: Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies that examine the SDN paradigm in optical networks. Along with the PHY functional split improvements, the performance of Distributed Converged Cable Access Platform (DCCAP) in the cable architectures especially for the Remote-PHY and Remote-MACPHY nodes has been evaluated. In the PHY functional split, in addition to the re-use of infrastructure with a common FFT module for multiple technologies, a novel cross functional split interaction to cache the repetitive QAM symbols across time at the remote node to reduce the transmission rate requirement of the fronthaul link has been proposed.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Machine Learning-Powered Management Architectures for Edge Services in 5G Networks

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Optimizations in Heterogeneous Mobile Networks

    Get PDF

    Enhanced mobility management mechanisms for 5G networks

    Get PDF
    Many mechanisms that served the legacy networks till now, are being identified as being grossly sub-optimal for 5G networks. The reason being, the increased complexity of the 5G networks compared previous legacy systems. One such class of mechanisms, important for any wireless standard, is the Mobility Management (MM) mechanisms. MM mechanismsensure the seamless connectivity and continuity of service for a user when it moves away from the geographic location where it initially got attached to the network. In this thesis, we firstly present a detailed state of the art on MM mechanisms. Based on the 5G requirements as well as the initial discussions on Beyond 5G networks, we provision a gap analysis for the current technologies/solutions to satisfy the presented requirements. We also define the persistent challenges that exist concerning MM mechanisms for 5G and beyond networks. Based on these challenges, we define the potential solutions and a novel framework for the 5G and beyond MM mechanisms. This framework specifies a set of MM mechanisms at the access, core and the extreme edge network (users/devices) level, that will help to satisfy the requirements for the 5G and beyond MM mechanisms. Following this, we present an on demand MM service concept. Such an on-demand feature provisions the necessary reliability, scalability and flexibility to the MM mechanisms. It's objective is to ensure that appropriate resources and mobility contexts are defined for users who will have heterogeneous mobility profiles, versatile QoS requirements in a multi-RAT network. Next, in this thesis we tackle the problem of core network signaling that occurs during MM in 5G/4G networks. A novel handover signaling mechanism has been developed, which eliminates unnecessary handshakes during the handover preparation phase, while allowing the transition to future softwarized network architectures. We also provide a handover failure aware handover preparation phase signaling process. We then utilize operator data and a realistic network deployment to perform a comparative analysis of the proposed strategy and the 3GPP handover signaling strategy on a network wide deployment scenario. We show the benefits of our strategy in terms of latency of handover process, and the transmission and processing cost incurred. Lastly, a novel user association and resource allocation methodology, namely AURA-5G, has been proposed. AURA-5G addresses scenarios wherein applications with heterogeneous requirements, i.e., enhanced Mobile Broadband (eMBB) and massive Machine Type Communications (mMTC), are present simultaneously. Consequently, a joint optimization process for performing the user association and resource allocation while being cognizant of heterogeneous application requirements, has been performed. We capture the peculiarities of this important mobility management process through the various constraints, such as backhaul requirements, dual connectivity options, available access resources, minimum rate requirements, etc., that we have imposed on a Mixed Integer Linear Program (MILP). The objective function of this established MILP problem is to maximize the total network throughput of the eMBB users, while satisfying the minimum requirements of the mMTC and eMBB users defined in a given scenario. Through numerical evaluations we show that our approach outperforms the baseline user association scenario significantly. Moreover, we have presented a system fairness analysis, as well as a novel fidelity and computational complexity analysis for the same, which express the utility of our methodology given the myriad network scenarios.Muchos mecanismos que sirvieron en las redes actuales, se están identificando como extremadamente subóptimos para las redes 5G. Esto es debido a la mayor complejidad de las redes 5G. Un tipo de mecanismo importante para cualquier estándar inalámbrico, consiste en el mecanismo de gestión de la movilidad (MM). Los mecanismos MM aseguran la conectividad sin interrupciones y la continuidad del servicio para un usuario cuando éste se aleja de la ubicación geográfica donde inicialmente se conectó a la red. En esta tesis, presentamos, en primer lugar, un estado del arte detallado de los mecanismos MM. Bas ándonos en los requisitos de 5G, así como en las discusiones iniciales sobre las redes Beyond 5G, proporcionamos un análisis de las tecnologías/soluciones actuales para satisfacer los requisitos presentados. También definimos los desafíos persistentes que existen con respecto a los mecanismos MM para redes 5G y Beyond 5G. En base a estos desafíos, definimos las posibles soluciones y un marco novedoso para los mecanismos 5G y Beyond 5G de MM. Este marco especifica un conjunto de mecanismos MM a nivel de red acceso, red del núcleo y extremo de la red (usuarios/dispositivos), que ayudarán a satisfacer los requisitos para los mecanismos MM 5G y posteriores. A continuación, presentamos el concepto de servicio bajo demanda MM. Tal característica proporciona la confiabilidad, escalabilidad y flexibilidad necesarias para los mecanismos MM. Su objetivo es garantizar que se definan los recursos y contextos de movilidad adecuados para los usuarios que tendrán perfiles de movilidad heterogéneos, y requisitos de QoS versátiles en una red multi-RAT. Más adelante, abordamos el problema de la señalización de la red troncal que ocurre durante la gestión de la movilidad en redes 5G/4G. Se ha desarrollado un nuevo mecanismo de señalización de handover, que elimina los intercambios de mensajes innecesarios durante la fase de preparación del handover, al tiempo que permite la transición a futuras arquitecturas de red softwarizada. Utilizamos los datos de operadores y consideramos un despliegue de red realista para realizar un análisis comparativo de la estrategia propuesta y la estrategia de señalización de 3GPP. Mostramos los beneficios de nuestra estrategia en términos de latencia del proceso de handover y los costes de transmisión y procesado. Por último, se ha propuesto una nueva asociación de usuarios y una metodología de asignación de recursos, i.e, AURA-5G. AURA-5G aborda escenarios en los que las aplicaciones con requisitos heterogéneos, i.e., enhanced Mobile Broadband (eMBB) y massive Machine Type Communications (mMTC), están presentes simultáneamente. En consecuencia, se ha llevado a cabo un proceso de optimización conjunta para realizar la asociación de usuarios y la asignación de recursos mientras se tienen en cuenta los requisitos de aplicaciónes heterogéneas. Capturamos las peculiaridades de este importante proceso de gestión de la movilidad a través de las diversas restricciones impuestas, como son los requisitos de backhaul, las opciones de conectividad dual, los recursos de la red de acceso disponibles, los requisitos de velocidad mínima, etc., que hemos introducido en un Mixed Integer Linear Program (MILP). La función objetivo de este problema MILP es maximizar el rendimiento total de la red de los usuarios de eMBB, y a la vez satisfacer los requisitos mínimos de los usuarios de mMTC y eMBB definidos en un escenario dado. A través de evaluaciones numéricas, mostramos que nuestro enfoque supera significativamente el escenario de asociación de usuarios de referencia. Además, hemos presentado un análisis de la justicia del sistema, así como un novedoso análisis de fidelidad y complejidad computacional para el mismo, que expresa la utilidad de nuestra metodología.Postprint (published version

    Enhanced mobility management mechanisms for 5G networks

    Get PDF
    Many mechanisms that served the legacy networks till now, are being identified as being grossly sub-optimal for 5G networks. The reason being, the increased complexity of the 5G networks compared previous legacy systems. One such class of mechanisms, important for any wireless standard, is the Mobility Management (MM) mechanisms. MM mechanismsensure the seamless connectivity and continuity of service for a user when it moves away from the geographic location where it initially got attached to the network. In this thesis, we firstly present a detailed state of the art on MM mechanisms. Based on the 5G requirements as well as the initial discussions on Beyond 5G networks, we provision a gap analysis for the current technologies/solutions to satisfy the presented requirements. We also define the persistent challenges that exist concerning MM mechanisms for 5G and beyond networks. Based on these challenges, we define the potential solutions and a novel framework for the 5G and beyond MM mechanisms. This framework specifies a set of MM mechanisms at the access, core and the extreme edge network (users/devices) level, that will help to satisfy the requirements for the 5G and beyond MM mechanisms. Following this, we present an on demand MM service concept. Such an on-demand feature provisions the necessary reliability, scalability and flexibility to the MM mechanisms. It's objective is to ensure that appropriate resources and mobility contexts are defined for users who will have heterogeneous mobility profiles, versatile QoS requirements in a multi-RAT network. Next, in this thesis we tackle the problem of core network signaling that occurs during MM in 5G/4G networks. A novel handover signaling mechanism has been developed, which eliminates unnecessary handshakes during the handover preparation phase, while allowing the transition to future softwarized network architectures. We also provide a handover failure aware handover preparation phase signaling process. We then utilize operator data and a realistic network deployment to perform a comparative analysis of the proposed strategy and the 3GPP handover signaling strategy on a network wide deployment scenario. We show the benefits of our strategy in terms of latency of handover process, and the transmission and processing cost incurred. Lastly, a novel user association and resource allocation methodology, namely AURA-5G, has been proposed. AURA-5G addresses scenarios wherein applications with heterogeneous requirements, i.e., enhanced Mobile Broadband (eMBB) and massive Machine Type Communications (mMTC), are present simultaneously. Consequently, a joint optimization process for performing the user association and resource allocation while being cognizant of heterogeneous application requirements, has been performed. We capture the peculiarities of this important mobility management process through the various constraints, such as backhaul requirements, dual connectivity options, available access resources, minimum rate requirements, etc., that we have imposed on a Mixed Integer Linear Program (MILP). The objective function of this established MILP problem is to maximize the total network throughput of the eMBB users, while satisfying the minimum requirements of the mMTC and eMBB users defined in a given scenario. Through numerical evaluations we show that our approach outperforms the baseline user association scenario significantly. Moreover, we have presented a system fairness analysis, as well as a novel fidelity and computational complexity analysis for the same, which express the utility of our methodology given the myriad network scenarios.Muchos mecanismos que sirvieron en las redes actuales, se están identificando como extremadamente subóptimos para las redes 5G. Esto es debido a la mayor complejidad de las redes 5G. Un tipo de mecanismo importante para cualquier estándar inalámbrico, consiste en el mecanismo de gestión de la movilidad (MM). Los mecanismos MM aseguran la conectividad sin interrupciones y la continuidad del servicio para un usuario cuando éste se aleja de la ubicación geográfica donde inicialmente se conectó a la red. En esta tesis, presentamos, en primer lugar, un estado del arte detallado de los mecanismos MM. Bas ándonos en los requisitos de 5G, así como en las discusiones iniciales sobre las redes Beyond 5G, proporcionamos un análisis de las tecnologías/soluciones actuales para satisfacer los requisitos presentados. También definimos los desafíos persistentes que existen con respecto a los mecanismos MM para redes 5G y Beyond 5G. En base a estos desafíos, definimos las posibles soluciones y un marco novedoso para los mecanismos 5G y Beyond 5G de MM. Este marco especifica un conjunto de mecanismos MM a nivel de red acceso, red del núcleo y extremo de la red (usuarios/dispositivos), que ayudarán a satisfacer los requisitos para los mecanismos MM 5G y posteriores. A continuación, presentamos el concepto de servicio bajo demanda MM. Tal característica proporciona la confiabilidad, escalabilidad y flexibilidad necesarias para los mecanismos MM. Su objetivo es garantizar que se definan los recursos y contextos de movilidad adecuados para los usuarios que tendrán perfiles de movilidad heterogéneos, y requisitos de QoS versátiles en una red multi-RAT. Más adelante, abordamos el problema de la señalización de la red troncal que ocurre durante la gestión de la movilidad en redes 5G/4G. Se ha desarrollado un nuevo mecanismo de señalización de handover, que elimina los intercambios de mensajes innecesarios durante la fase de preparación del handover, al tiempo que permite la transición a futuras arquitecturas de red softwarizada. Utilizamos los datos de operadores y consideramos un despliegue de red realista para realizar un análisis comparativo de la estrategia propuesta y la estrategia de señalización de 3GPP. Mostramos los beneficios de nuestra estrategia en términos de latencia del proceso de handover y los costes de transmisión y procesado. Por último, se ha propuesto una nueva asociación de usuarios y una metodología de asignación de recursos, i.e, AURA-5G. AURA-5G aborda escenarios en los que las aplicaciones con requisitos heterogéneos, i.e., enhanced Mobile Broadband (eMBB) y massive Machine Type Communications (mMTC), están presentes simultáneamente. En consecuencia, se ha llevado a cabo un proceso de optimización conjunta para realizar la asociación de usuarios y la asignación de recursos mientras se tienen en cuenta los requisitos de aplicaciónes heterogéneas. Capturamos las peculiaridades de este importante proceso de gestión de la movilidad a través de las diversas restricciones impuestas, como son los requisitos de backhaul, las opciones de conectividad dual, los recursos de la red de acceso disponibles, los requisitos de velocidad mínima, etc., que hemos introducido en un Mixed Integer Linear Program (MILP). La función objetivo de este problema MILP es maximizar el rendimiento total de la red de los usuarios de eMBB, y a la vez satisfacer los requisitos mínimos de los usuarios de mMTC y eMBB definidos en un escenario dado. A través de evaluaciones numéricas, mostramos que nuestro enfoque supera significativamente el escenario de asociación de usuarios de referencia. Además, hemos presentado un análisis de la justicia del sistema, así como un novedoso análisis de fidelidad y complejidad computacional para el mismo, que expresa la utilidad de nuestra metodología

    Towards Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions

    Get PDF
    The ever-increasing number of resource-constrained Machine-Type Communication (MTC) devices is leading to the critical challenge of fulfilling diverse communication requirements in dynamic and ultra-dense wireless environments. Among different application scenarios that the upcoming 5G and beyond cellular networks are expected to support, such as eMBB, mMTC and URLLC, mMTC brings the unique technical challenge of supporting a huge number of MTC devices, which is the main focus of this paper. The related challenges include QoS provisioning, handling highly dynamic and sporadic MTC traffic, huge signalling overhead and Radio Access Network (RAN) congestion. In this regard, this paper aims to identify and analyze the involved technical issues, to review recent advances, to highlight potential solutions and to propose new research directions. First, starting with an overview of mMTC features and QoS provisioning issues, we present the key enablers for mMTC in cellular networks. Along with the highlights on the inefficiency of the legacy Random Access (RA) procedure in the mMTC scenario, we then present the key features and channel access mechanisms in the emerging cellular IoT standards, namely, LTE-M and NB-IoT. Subsequently, we present a framework for the performance analysis of transmission scheduling with the QoS support along with the issues involved in short data packet transmission. Next, we provide a detailed overview of the existing and emerging solutions towards addressing RAN congestion problem, and then identify potential advantages, challenges and use cases for the applications of emerging Machine Learning (ML) techniques in ultra-dense cellular networks. Out of several ML techniques, we focus on the application of low-complexity Q-learning approach in the mMTC scenarios. Finally, we discuss some open research challenges and promising future research directions.Comment: 37 pages, 8 figures, 7 tables, submitted for a possible future publication in IEEE Communications Surveys and Tutorial

    An Innovative RAN Architecture for Emerging Heterogeneous Networks: The Road to the 5G Era

    Full text link
    The global demand for mobile-broadband data services has experienced phenomenal growth over the last few years, driven by the rapid proliferation of smart devices such as smartphones and tablets. This growth is expected to continue unabated as mobile data traffic is predicted to grow anywhere from 20 to 50 times over the next 5 years. Exacerbating the problem is that such unprecedented surge in smartphones usage, which is characterized by frequent short on/off connections and mobility, generates heavy signaling traffic load in the network signaling storms . This consumes a disproportion amount of network resources, compromising network throughput and efficiency, and in extreme cases can cause the Third-Generation (3G) or 4G (long-term evolution (LTE) and LTE-Advanced (LTE-A)) cellular networks to crash. As the conventional approaches of improving the spectral efficiency and/or allocation additional spectrum are fast approaching their theoretical limits, there is a growing consensus that current 3G and 4G (LTE/LTE-A) cellular radio access technologies (RATs) won\u27t be able to meet the anticipated growth in mobile traffic demand. To address these challenges, the wireless industry and standardization bodies have initiated a roadmap for transition from 4G to 5G cellular technology with a key objective to increase capacity by 1000Ã? by 2020 . Even though the technology hasn\u27t been invented yet, the hype around 5G networks has begun to bubble. The emerging consensus is that 5G is not a single technology, but rather a synergistic collection of interworking technical innovations and solutions that collectively address the challenge of traffic growth. The core emerging ingredients that are widely considered the key enabling technologies to realize the envisioned 5G era, listed in the order of importance, are: 1) Heterogeneous networks (HetNets); 2) flexible backhauling; 3) efficient traffic offload techniques; and 4) Self Organizing Networks (SONs). The anticipated solutions delivered by efficient interworking/ integration of these enabling technologies are not simply about throwing more resources and /or spectrum at the challenge. The envisioned solution, however, requires radically different cellular RAN and mobile core architectures that efficiently and cost-effectively deploy and manage radio resources as well as offload mobile traffic from the overloaded core network. The main objective of this thesis is to address the key techno-economics challenges facing the transition from current Fourth-Generation (4G) cellular technology to the 5G era in the context of proposing a novel high-risk revolutionary direction to the design and implementation of the envisioned 5G cellular networks. The ultimate goal is to explore the potential and viability of cost-effectively implementing the 1000x capacity challenge while continuing to provide adequate mobile broadband experience to users. Specifically, this work proposes and devises a novel PON-based HetNet mobile backhaul RAN architecture that: 1) holistically addresses the key techno-economics hurdles facing the implementation of the envisioned 5G cellular technology, specifically, the backhauling and signaling challenges; and 2) enables, for the first time to the best of our knowledge, the support of efficient ground-breaking mobile data and signaling offload techniques, which significantly enhance the performance of both the HetNet-based RAN and LTE-A\u27s core network (Evolved Packet Core (EPC) per 3GPP standard), ensure that core network equipment is used more productively, and moderate the evolving 5G\u27s signaling growth and optimize its impact. To address the backhauling challenge, we propose a cost-effective fiber-based small cell backhaul infrastructure, which leverages existing fibered and powered facilities associated with a PON-based fiber-to-the-Node/Home (FTTN/FTTH)) residential access network. Due to the sharing of existing valuable fiber assets, the proposed PON-based backhaul architecture, in which the small cells are collocated with existing FTTN remote terminals (optical network units (ONUs)), is much more economical than conventional point-to-point (PTP) fiber backhaul designs. A fully distributed ring-based EPON architecture is utilized here as the fiber-based HetNet backhaul. The techno-economics merits of utilizing the proposed PON-based FTTx access HetNet RAN architecture versus that of traditional 4G LTE-A\u27s RAN will be thoroughly examined and quantified. Specifically, we quantify the techno-economics merits of the proposed PON-based HetNet backhaul by comparing its performance versus that of a conventional fiber-based PTP backhaul architecture as a benchmark. It is shown that the purposely selected ring-based PON architecture along with the supporting distributed control plane enable the proposed PON-based FTTx RAN architecture to support several key salient networking features that collectively significantly enhance the overall performance of both the HetNet-based RAN and 4G LTE-A\u27s core (EPC) compared to that of the typical fiber-based PTP backhaul architecture in terms of handoff capability, signaling overhead, overall network throughput and latency, and QoS support. It will also been shown that the proposed HetNet-based RAN architecture is not only capable of providing the typical macro-cell offloading gain (RAN gain) but also can provide ground-breaking EPC offloading gain. The simulation results indicate that the overall capacity of the proposed HetNet scales with the number of deployed small cells, thanks to LTE-A\u27s advanced interference management techniques. For example, if there are 10 deployed outdoor small cells for every macrocell in the network, then the overall capacity will be approximately 10-11x capacity gain over a macro-only network. To reach the 1000x capacity goal, numerous small cells including 3G, 4G, and WiFi (femtos, picos, metros, relays, remote radio heads, distributed antenna systems) need to be deployed indoors and outdoors, at all possible venues (residences and enterprises)

    Efficient radio resource management in next generation wireless networks

    Get PDF
    The current decade has witnessed a phenomenal growth in mobile wireless communication networks and subscribers. In 2015, mobile wireless devices and connections were reported to have grown to about 7.9 billion, exceeding human population. The explosive growth in mobile wireless communication network subscribers has created a huge demand for wireless network capacity, ubiquitous wireless network coverage, and enhanced Quality of Service (QoS). These demands have led to several challenging problems for wireless communication networks operators and designers. The Next Generation Wireless Networks (NGWNs) will support high mobility communications, such as communication in high-speed rails. Mobile users in such high mobility environment demand reliable QoS, however, such users are plagued with a poor signal-tonoise ratio, due to the high vehicular penetration loss, increased transmission outage and handover information overhead, leading to poor QoS provisioning for the networks' mobile users. Providing a reliable QoS for high mobility users remains one of the unique challenges for NGWNs. The increased wireless network capacity and coverage of NGWNs means that mobile communication users at the cell-edge should have enhanced network performance. However, due to path loss (path attenuation), interference, and radio background noise, mobile communication users at the cell-edge can experience relatively poor transmission channel qualities and subsequently forced to transmit at a low bit transmission rate, even when the wireless communication networks can support high bit transmission rate. Furthermore, the NGWNs are envisioned to be Heterogeneous Wireless Networks (HWNs). The NGWNs are going to be the integration platform of diverse homogeneous wireless communication networks for a convergent wireless communication network. The HWNs support single and multiple calls (group calls), simultaneously. Decision making is an integral core of radio resource management. One crucial decision making in HWNs is network selection. Network selection addresses the problem of how to select the best available access network for a given network user connection. For the integrated platform of HWNs to be truly seamless and efficient, a robust and stable wireless access network selection algorithm is needed. To meet these challenges for the different mobile wireless communication network users, the NGWNs will have to provide a great leap in wireless network capacity, coverage, QoS, and radio resource utilization. Moving wireless communication networks (mobile hotspots) have been proposed as a solution to providing reliable QoS to high mobility users. In this thesis, an Adaptive Thinning Mobility Aware (ATMA) Call Admission Control (CAC) algorithm for improving the QoS and radio resource utilization of the mobile hotspot networks, which are of critical importance for communicating nodes in moving wireless networks is proposed. The performance of proposed ATMA CAC scheme is investigated and compare it with the traditional CAC scheme. The ATMA scheme exploits the mobility events in the highspeed mobility communication environment and the calls (new and handoff calls) generation pattern to enhance the QoS (new call blocking and handoff call dropping probabilities) of the mobile users. The numbers of new and handoff calls in wireless communication networks are dynamic random processes that can be effectively modeled by the Continuous Furthermore, the NGWNs are envisioned to be Heterogeneous Wireless Networks (HWNs). The NGWNs are going to be the integration platform of diverse homogeneous wireless communication networks for a convergent wireless communication network. The HWNs support single and multiple calls (group calls), simultaneously. Decision making is an integral core of radio resource management. One crucial decision making in HWNs is network selection. Network selection addresses the problem of how to select the best available access network for a given network user connection. For the integrated platform of HWNs to be truly seamless and efficient, a robust and stable wireless access network selection algorithm is needed. To meet these challenges for the different mobile wireless communication network users, the NGWNs will have to provide a great leap in wireless network capacity, coverage, QoS, and radio resource utilization. Moving wireless communication networks (mobile hotspots) have been proposed as a solution to providing reliable QoS to high mobility users. In this thesis, an Adaptive Thinning Mobility Aware (ATMA) Call Admission Control (CAC) algorithm for improving the QoS and radio resource utilization of the mobile hotspot networks, which are of critical importance for communicating nodes in moving wireless networks is proposed
    corecore