
29 March 2023

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Machine Learning-Powered Management Architectures for Edge Services in 5G Networks / Puligheddu, Corrado. - (2022
Dec 06), pp. 1-179.

Original

Machine Learning-Powered Management Architectures for Edge Services in 5G Networks

Publisher:

Published
DOI:

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2973797 since: 2022-12-21T12:18:35Z

Politecnico di Torino

Doctoral Dissertation
Doctoral Program in Electrical, Electronics and Communications Engineering (35thcycle)

Machine Learning-Powered
Management Architectures for Edge

Services in 5G Networks

By

Corrado Puligheddu

Supervisor(s):
Prof. Carla Fabiana Chiasserini

Doctoral Examination Committee:
Dr. Raffaele Bruno, CNR
Prof. Paolo Giaccone, Politecnico di Torino
Prof. Isabelle Guérin Lassous, Université Claude Bernard Lyon 1
Prof. Tamer Khattab, Qatar University
Prof. Renato Lo Cigno, Università di Brescia

Politecnico di Torino
2022

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my own
original work and does not compromise in any way the rights of third parties, including
those relating to the security of personal data.

Corrado Puligheddu
2022

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

Acknowledgements

I would like to express my gratitude to all the people that shared with me even a small
part of this 3 years journey. I want to explicitly extend my appreciation to the people
without whom this work would not have been the same.

First of all, I have to thank my advisor Prof. Carla Fabiana Chiasserini for her
invaluable continuous support in guiding me toward this result. I sincerely appreciate
all the assistance, insights and advice she shared with me during these years. Her
outstanding dedication and professionalism have truly been an inspiration. I would like
to extend my gratitude also to Prof. Claudio Casetti for his guidance and support.

I want to thank all the colleagues and friends that I met at Politecnico. Among them,
a big thank you to Giuseppe, who first showed me that work can be fun, to Francesco,
who shared with me this journey not only in Italy but also in the USA, and Federico, for
the coffees and headaches we had together. Thanks also to the whole research group,
past and present members.

Next, I want to thank my closest friends. K and Andrea, who have been there since
my first day at Politecnico, Matte and Cami, thanks to whom Turin feels more like home.
Thanks also to Robee, Giuli, Jaci, Eli and all of my close friends in Cagliari.

Finally, I want to thank my parents and family for their long-distance encouragement
and support. I can not express how much I appreciate you always being there for me.

PhD Activity

Journal publications

• Li, X.; Chiasserini, C. F.; Mangues-Bafalluy, J.; Baranda, J.; Landi, G.; Martini, B.;
Costa-Perez, X.; Puligheddu, C.; Valcarenghi, L., Automated Service Provisioning
and Hierarchical SLA Management in 5G Systems, in: IEEE Transactions on
Network and Service Management, 2021

• Casetti, C.; Chiasserini, C. F.; Marcato, S.; Puligheddu, C.; Mangues-Bafalluy, J.;
Baranda, J.; Brenes, J.; Bocchi, F.; Landi, G.; Bakhshi, B., ML-driven Provisioning
and Management of Vertical Services in Automated Cellular Networks, in: IEEE
Transactions on Network and Service Management, 2022

• Tripathi, S.; Puligheddu, C.; Chiasserini, C. F.; Mungari, F.; A Context-aware Ra-
dio Resource Management in Heterogeneous Virtual RANs, in: IEEE Transactions
on Cognitive Communications and Networking, 2022

• Tripathi, S.; Puligheddu, C.; Pramanik, S.; Garcia-Saavedra, A.; Chiasserini, C.
F.; Fair and Scalable Orchestration of Network and Compute Resources for Virtual
Edge Services, submitted to: IEEE Transactions on Mobile Computing (major
revision received), 2022

Book chapters

• Martin-Perez, J.; Magoula, L.; Antevski, K.; Guimaraes, C.; Baranda, J.; Chi-
asserini, C. F.; Sgambelluri, A.; Papagianni, C.; Garcia-Saavedra, A.; Martínez,
R.; Paolucci, F.; Barmpounakis, S.; Valcarenghi, L.; Casetti, C.; Li, X.; Bernardos,
C. J.; De Vleeschauwe, D.; De Schepper, K.; Kontopoulos, P.; Koursioumpas, N.;
Puligheddu, C.; Mangues-Bafalluy, J.; Zeydan, E.; Self Managed 5G Networks

v

in Communication Networks and Service Management in the Era of Artificial
Intelligence and Machine Learning, 2021, John Wiley & Sons

Conference publications

• Baranda, J.; Mangues-Bafalluy, J.; Vettori, L.; Martinez, R.; Avino, G.; Chiasserini,
C. F.; Puligheddu, C.; Casetti, C.; Brenes, J.; Landi, G.; Kondepu, K.; Paolucci,
F.; Fichera, S.; Valcarenghi, L., Arbitrating Network Services in 5G Networks for
Automotive Vertical Industry, in: IEEE INFOCOM 2020 - Demo Session, 2020

• Baranda, J.; Mangues-Bafalluy, J.; Zeydan, E.; Casetti, C.; Chiasserini, C. F.;
Malinverno, M.; Puligheddu, C.; Groshev, M.; Guimaraes, C.; Tomakh, K.;
Kucherenko, D.; Kolodiazhnyi, O., Demo: AIML-as-a-Service for SLA management
of a Digital Twin Virtual Network Service, in: IEEE INFOCOM 2021 - Demo
Session, 2021

• De Vleeschauwer, D.; Baranda, J.; Mangues-Bafalluy, J.; Chiasserini, C. F.; Ma-
linverno, M.; Puligheddu, C.; Magoula, L.; Martin-Perez, J.; Barmpounakis,
S.; Kondepu, K.; Valcarenghi, L.; Li, X.; Papagianni, C.; 5Growth Data-Driven
AI-Based Scaling, in: 2021 EuCNC & 6G Summit, 2021

• Tripathi, S.; Puligheddu, C.; Chiasserini, C. F.; An RL Approach to Radio
Resource Management in Heterogeneous Virtual RANs, in: IEEE/IFIP WONS
2021, 2021

• Tripathi, S.; Puligheddu, C.; Pramanik, S.; Garcia-Saavedra, A.; Chiasserini, C.
F.; VERA: Resource Orchestration for Virtualized Services at the Edge, in: IEEE
International Conference on Communications (IEEE ICC 2022), 2022

• Sgambelluri, A.; Baranda, J.; Groshev, M.; Tomakh, K.; Kucherenko, D.; Paolini,
E.; Zanzi, L.; Xavier Salvat, J.; Puligheddu, C.; Malandrino, F.; Kolodiazhnyi,
O.; Bernardos, C. J.; De la Oliva, A.; Mangues-Bafalluy, J.; Chiasserini, C. F.;
Li, X.; Valcarenghi, L.; Exploiting Forecasting for Automatic Network Service
Operations in Digital Twin Applications, in: IEEE International Conference on
Sensing, Communication, and Networking (IEEE SECON 2022), 2022

vi

Attended classes and passed tests

Name Hours
Advanced deep Learning 30

Big data processing and programming 20
Communication 5

Connected vehicles 20
Data mining concepts and algorithms 20

Data science for networks 20
Entrepreneurial finance 5

Parallel and distributed computing 25
Advanced scientific programming in matlab 28

Project management 5
Public speaking 5

Research integrity 5
Thinking out of the box 1

Time management 2
Writing scientific papers in english 15

External training activity

Name Location Hours
Computing@Polito - HPC/Big Data/Cloud for Research Politecnico di Torino 4

Lipari School on Advanced Networking Systems Lipari Island, Italy 30

Abstract

Next-generation mobile networks are designed to allow vertical industries to offer a broad
range of virtualized services to their users. However, increasingly evolved mobile services
force more and more demanding performance requirements, which are particularly hard
to guarantee, without expensive overprovisioning, in case of time-varying service and
traffic demands. This work addresses the issue by taking two complementary approaches.

First, we propose a centralized automation solution for the provisioning of edge
services and management of edge resources. Using service scaling (i.e., allocating more
resources to a service, only when needed, to manage more traffic) the proposed solution
can ensure the satisfaction of performance requirements of an automotive vertical service.
We then improve our solution by integrating the concept of ML-as-a-Service (MLaaS)
through a MLaaS Platform able to train and serve ML models to the elements of a 5G
system, thus giving them the possibility of making smarter decisions. We demonstrate
the new capabilities of our proposal by developing two ML-driven algorithms for network
slice subnet sharing and run-time service scaling. Results show that service performance
can be always satisfied while saving 30% on OPEX.

The second approach investigates distributed RAN orchestration and edge resource
management using reinforcement learning. In this case, the decision-making logic is
colocated with the services and applications it controls, allowing local fine-grained and
low-latency actions. We propose two reinforcement learning frameworks for edge resource
management: CAREM and VERA. CAREM operates in heterogeneous vRANs; it is
able to select the best available radio link and the transmission parameters, enabling
efficient radio resource allocation in time-varying scenarios. CAREM exhibits excellent
performance when compared both to the closest existing scheme based on neural networks,
and to a contextual bandit approach. Instead, VERA addresses the concurrent execution
of two kinds of services at the edge, namely user applications and network functions.
We show that often the computing resources required by these services are entangled
since the data processed by the former has to be transferred by the latter and vice versa.

viii

Acknowledging this complex dynamic, we propose a scalable reinforcement learning-based
framework to orchestrate resources at the edge. Considering as services an LTE vRAN
and a video transcoder, we demonstrate that VERA is able to meet services KPIs over
96% of the observation periods.

Contents

1 Introduction 1

1.1 Research questions and main contributions 3

1.1.1 Centralized management of edge services in 5G networks 4

1.1.2 Distributed orchestration of network and compute resources for
edge services . 6

1.2 Outline . 7

2 Automated Service Provisioning and Hierarchical SLA Management in
5G Systems 9

2.1 Introduction and motivation . 10

2.2 The 5G-TRANSFORMER Platform . 12

2.3 Hierarchical SLA Management and Service Scaling: Concept & Implemen-
tation . 16

2.3.1 Application-level scaling . 18

2.3.2 Service-level scaling . 19

2.3.3 Resource-level scaling . 23

2.4 Proof-of-concept: Testbed and Scenarios 24

2.4.1 Testbed and supported services 25

2.4.2 Evaluation setup and experiments 27

2.5 Field Trial Performance Results . 29

2.5.1 Services performance – All phases 29

x Contents

2.5.2 Service creation – Phase 1 . 32

2.5.3 Service-level scaling – Phase 2 . 35

2.5.4 Resource-level scaling – Phase 3 36

2.6 Related Work . 39

2.7 Conclusions . 42

3 ML-driven Provisioning and Management in Automated Cellular Net-
works 44

3.1 Introduction . 45

3.2 Network Platform Architecture . 47

3.2.1 3GPP management system and data analytics 47

3.2.2 The 5Growth architecture: a custom implementation of the 3GPP
management system . 48

3.2.3 MLaaS for automated network management 53

3.3 MLaaS for Automated Network Management in the 5Growth MANO Stack 55

3.4 ML-driven Slice-subnet Sharing for Efficient Service Provisioning 57

3.4.1 Slice-subnet sharing at the 5Gr-VS: An overview 57

3.4.2 The slice-subnet sharing algorithm (SSA) 58

3.4.3 ML-driven SSA parameter setting 60

3.5 ML-driven Service Scaling for SLA Management and OPEX Minimization 60

3.5.1 Service scaling at the 5Gr-SO: An overview 61

3.5.2 NFV-NS resource scaling algorithm 62

3.5.3 ML-driven 5Gr-SO design . 64

3.6 Automotive Services . 66

3.7 Validation and Performance Evaluation 68

3.7.1 Large-scale reference scenario, datasets, and ML model 68

3.7.2 In-testbed validation . 71

3.7.3 Numerical results in a large-scale scenario 76

Contents xi

3.8 Related Work . 79

3.9 Conclusions . 82

4 A Context-aware Radio Resource Management in Heterogeneous Vir-
tual RANs 83

4.1 Introduction . 84

4.2 Related Work . 87

4.3 System Architecture . 89

4.4 The CAREM Framework . 91

4.4.1 Radio policy . 92

4.4.2 Pareto block . 97

4.4.3 Learning algorithm . 99

4.4.4 Computational complexity analysis 101

4.5 Testbed Design and Implementation . 102

4.6 Performance Evaluation . 105

4.6.1 Experimental settings . 106

4.6.2 Convergence analysis . 106

4.6.3 2-link scenario: KPIs, throughput, and action selection 107

4.6.4 3-link scenario: KPIs and action selection 110

4.6.5 Comparative performance analysis 112

4.7 Conclusions . 114

5 Fair and Scalable Orchestration of Edge Services Resources 116

5.1 Introduction . 117

5.2 Reference Scenario and System Architecture 120

5.3 Experimental analysis . 121

5.4 The VERA Framework . 127

5.4.1 Notation . 127

xii Contents

5.4.2 Greedy analysis . 128

5.4.3 Pareto analysis . 134

5.4.4 Learning algorithm . 137

5.5 Proof-of-concept Implementation . 137

5.5.1 VERA implementation . 137

5.5.2 Testbed configuration . 140

5.6 Evaluation and experimental validation 141

5.6.1 Numerical results . 141

5.6.2 Proof-of-concept results . 146

5.7 Related Work . 147

5.8 Conclusions . 149

6 Conclusions 150

6.1 Future Work and Open Challenges . 151

References 154

Chapter 1

Introduction

In the last couple of decades, mobile networks have become a fundamental pillar of
modern society and are going to acquire a progressively more pervasive and ubiquitous
role moving into the future. Not only the number of active subscribers is going to increase,
mostly as a consequence of the growing penetration rate in developing countries, but
the evolution of demanding use cases leveraging mobile networks is going to cause a
surge in worldwide mobile data traffic. Many of these use cases will have a profound
positive impact on our society. However, video streaming, online gaming, augmented
reality, industry 4.0, connected vehicles, and many more such novel applications, which
are going to be requested by the most disparate vertical companies, are going to require
performance that is just not attainable with the current generation of mobile network
technology. According to the recent Ericsson Mobility Report, in 2021 more than 8
billion worldwide mobile subscriptions were exchanging 84 EB/month of data traffic. In
2027, 9 billion subscribers are forecast to exchange as much as 368 EB/month of data
traffic[1]. To accommodate the exponential growth of data traffic and the more and more
demanding application performance requirements, it’s imperative that the 5G mobile
network technology is set to offer better throughput, delays and reliability while being
more energy and spectrum efficient.

To achieve this performance improvement, two key concepts have been selected to
build the foundations of 5G and beyond networks: Network Function Virtualization
(NFV) and Edge Computing.

NFV is a network architecture concept that envisions the split of network node functions
in virtualized elementary blocks called Virtual Network Functions (VNFs) that can
be interconnected to build advanced network services. This way, an unprecedented

2 Introduction

level of flexibility is allowed in managing network services, which allows for advanced
optimizations of the network operations. The interested reader can find more details
in [2].

Edge Computing enables cloud computing capabilities at the edge of the mobile
network, to run applications and process data closer to the end user so as to
minimize the propagation delays. In fact, cloud data center locations are not chosen
to minimize the latency to the user, rather they are built considering more pressing
factors such as: high bandwidth internet connection availability, energy, land and
building cost, and low risk of natural disasters. Instead, mobile operators have the
possibility of using existing widespread RAN sites to host computing capabilities
at the very edge of the network, thus avoiding the costs of new dedicated sites. A
more complete discourse on the topic can be found in [3].

In addition to the aforementioned concepts, Machine Learning (ML) has also
become more and more prominent in mobile networks. It has been proven to be a
powerful technique for network automation, with particularly promising results in the
management of Radio Access Networks (RAN). Indeed, the research community agrees
on the pivotal role of ML-based techniques in the future of mobile networks.

As it will be better detailed in the next sections, this work exploits these three concepts
to advance the state of the art in the management and orchestration of edge services in
5G networks. More specifically, this thesis will investigate which techniques based on the
aforementioned concepts can be utilized in the management of 5G networks to guarantee
Service Level Agreements (SLAs), and what performance can be obtained when these
techniques are applied to mission-critical edge services with a time-varying load. Many
mission-critical services, in many fields such as e-health and automotive, will require
low-latency connectivity and extreme reliability for an immediate and deterministic
response time, that, if not always obtained, could cost human lives.

We will take advantage of edge computing to design, develop and evaluate mission-
critical automotive applications that require low latency and reliable connectivity to
properly operate. The NFV paradigm will be of paramount importance to orchestrate
edge services, especially when considering load fluctuations due to the occasional peaks in
the number of mobile users requesting the service, to guarantee the steady performance
of mission-critical services. Indeed, if necessary, low-priority services will be suspended
to free resources and improve the responsiveness of higher-priority load-stressed services.
Finally, we will investigate how Machine Learning can be integrated to provide the
intelligence needed to treat unexpected events that conventional algorithms fail to

1.1 Research questions and main contributions 3

properly manage, and attest whether they can provide added value when integrated into
5G management platforms.

The rest of the chapter will first present the research questions that have driven the
research activity and the main contributions of the present work, then it will detail the
outline of the thesis.

1.1 Research questions and main contributions

The main contribution of this thesis is the design, development and evaluation of
automation architectures and management solutions for virtualized 5G mobile networks
with a focus on ML-based decision-making. This work runs along two parallel tracks:
the centralized management of edge services and the distributed orchestration
of network and compute resources for edge services. These share the need for
careful management of edge services in dynamic conditions mindful of the Service Level
Agreements (SLAs) between network operators and the services developers. In fact, a
static configuration of the network can’t be adequate in every possible network condition
and for every edge service, unless network resources are expensively overprovisioned.
Instead, a swift adaptation of the network configuration to the data traffic, radio
conditions and resource availability can better tailor the services’ needs without requiring
overprovisioning of network resources. The difference between these two parallel tracks
stands in the placement of the orchestration intelligence, which also affects the time scales
over which decisions are provided. In the first case, network management is performed
from the centralized standpoint of the network operator, thus having complete knowledge
and control of the network architecture. This possibly leads to high-level global optimal
decisions, although inevitably coarse and non-real-time. Conversely, in the second case,
network automation can be performed directly at the edge in a distributed manner,
with the advantage of real-time and fine-grained local decisions. Notice that these two
approaches are not in contrast with each other, rather they can be deployed concurrently
to achieve the best results.

In the rest of the section, a more in-depth description of these two topics will be
provided, specifying the research questions that have driven the research activity and our
contribution to addressing them. We also provide details of our dissemination activity.

4 Introduction

1.1.1 Centralized management of edge services in 5G networks

Network management is considered from the centralized standpoint of their core network,
where, through a multi-layer and multi-domain platform, Network Operators are able
to deploy vertical network services starting from high-level descriptors provided by the
verticals. The descriptors are ultimately mapped to configurations of VNFs, PNFs and
links that implement the edge services according to the vertical needs. However, a static
network configuration may not be well suited for every possible scenario, so it is the
responsibility of the management platform to dynamically adapt the service configuration
to avoid SLA violations. In this context, we have addressed the following main research
questions (RQ).

RQ1: How to provide automated service provisioning and hierarchical SLA
management in 5G systems?

Specifically, how can network and compute resources, spanning multiple geographical
sites, be automatically provisioned to a mission-critical automotive edge service? Which
techniques can be utilized to orchestrate edge services of different priorities to ensure
the respect of vertical SLAs when resources are limited and the services are subject to
time-varying traffic load? What performance can be expected from such a system?

To answer RQ1, we design, develop and evaluate architectures and procedures for
the SLA-aware management of network edge services. Collaborating within the 5G-
TRANSFORMER EU projects, first, we develop an SLA management solution based on
the service scaling mechanism and then we evaluate it in an automotive safety application,
with tests on the field using real cars.

This part is covered in detail in Chapter 2. To foster further research activities,
the code base has been released as open source1. Our contributions to international
conferences and journals can be found in:

1. Baranda, J.; Mangues-Bafalluy, J.; Vettori, L.; Martinez, R.; Avino, G.; Chiasserini,
C. F.; Puligheddu, C.; Casetti, C.; Brenes, J.; Landi, G.; Kondepu, K.; Paolucci,
F.; Fichera, S.; Valcarenghi, L., Arbitrating Network Services in 5G Networks for
Automotive Vertical Industry, in: IEEE INFOCOM 2020 - Demo Session, 2020

1https://github.com/5g-transformer

https://github.com/5g-transformer

1.1 Research questions and main contributions 5

2. Baranda, J.; Mangues-Bafalluy, J.; Zeydan, E.; Casetti, C.; Chiasserini, C. F.;
Malinverno, M.; Puligheddu, C.; Groshev, M.; Guimaraes, C.; Tomakh, K.;
Kucherenko, D.; Kolodiazhnyi, O., Demo: AIML-as-a-Service for SLA management
of a Digital Twin Virtual Network Service, in: IEEE INFOCOM 2021 - Demo
Session, 2021

3. Li, X.; Chiasserini, C. F.; Mangues-Bafalluy, J.; Baranda, J.; Landi, G.; Martini, B.;
Costa-Perez, X.; Puligheddu, C.; Valcarenghi, L., Automated Service Provisioning
and Hierarchical SLA Management in 5G Systems, in: IEEE Transactions on
Network and Service Management, 2021

RQ2: How to provide ML-driven provisioning and management in automated
cellular networks?

In particular, acknowledging the promising capabilities of Machine Learning applied to
network management, how can ML capabilities be integrated into a state-of-the-art 5G
platform to improve the decision-making? What advantages can be expected by leveraging
ML algorithms to control mission-critical edge services?

To answer RQ2, we leverage the 5G-TRANSFORMER architecture used to address
R1 and, within the 5Growth EU project, evolve it in the 5Growth platform. Aware of
the promising capabilities of Machine Learning (ML) applied to network management,
we develop a ML-as-a-Service (MLaaS) Platform and integrate it into the 5Growth
system to assist the different entities of the Management and Orchestration (MANO)
architecture with ML-powered decision-making. The MLaaS Platform takes care of the
centralized training and serving of the ML models required by the entities of MANO
platform. Leveraging the MLaaS Platform, two ML-driven algorithms for network slice
subnet sharing and run-time service scaling have been developed. We show that network
reconfigurations commanded by these two algorithms take place in just a matter of
seconds. Results show considerable savings in operational costs while still respecting
SLAs. The code base is entirely open source2 and can be used to reproduce the obtained
results, as well as a basis for a commercial product. This part is covered in detail in
Chapter 3.

Our contributions to international conferences and journals addressing this topic can
be found in:

2https://github.com/5growth

https://github.com/5growth

6 Introduction

1. De Vleeschauwer, D., Baranda, J., Mangues-Bafalluy, J., Chiasserini, C. F., Ma-
linverno, M., Puligheddu, C., Magoula, L., Martin-Perez, J., Barmpounakis,
S., Kondepu, K., Valcarenghi, L., Li, X., Papagianni, C., 5Growth Data-Driven
AI-Based Scaling, in: 2021 EuCNC & 6G Summit, 2021

2. Casetti, C.; Chiasserini, C. F.; Marcato, S.; Puligheddu, C.; Mangues-Bafalluy, J.;
Baranda, J.; Brenes, J.; Bocchi, F.; Landi, G.; Bakhshi, B., ML-driven Provisioning
and Management of Vertical Services in Automated Cellular Networks, in: IEEE
Transactions on Network and Service Management, 2022

1.1.2 Distributed orchestration of network and compute re-
sources for edge services

The second part of the work sees the design and application of resources management
policies specifically for vRANs and edge user applications. In this case, instead of
managing the entire network from a centralized standpoint, the focus of the contribution
is the real-time management of edge resources and services to meet the selected KPIs
for network and user services running at the edge, therefore closer to the user. The
developed frameworks, named CAREM and VERA, are both based on reinforcement
learning techniques. In this context, we have addressed the following main research
questions.

RQ3: How to provide a context-aware radio resource management in hetero-
geneous virtual RANs?

Specifically, can ML techniques be used to operate multiple radio technologies at the same
time? Which learning framework would be able to orchestrate heterogeneous radio links,
and what kind of performance gains can be expected from it?

Our answer to this question is CAREM, a reinforcement learning framework designed
to operate on heterogeneous virtual RANs. CAREM leverages the low latency of edge
computing to control in real-time which radio link to use and adjust the transmission
parameters over this link, according to the radio link quality and buffer state. We show
that CAREM outperforms both the reference software-defined LTE implementation
provided by srsRAN and a close competitor based on contextual bandit. This is going to
be presented in detail in Chapter 4.

Our contributions can be found in:

1.2 Outline 7

1. Tripathi, S., Puligheddu, C., Chiasserini, C. F., An RL Approach to Radio
Resource Management in Heterogeneous Virtual RANs, in: IEEE/IFIP WONS
2021, 2021

2. Tripathi, S., Puligheddu, C., Chiasserini, C. F., Mungari, F., A Context-aware Ra-
dio Resource Management in Heterogeneous Virtual RANs, in: IEEE Transactions
on Cognitive Communications and Networking, 2022

RQ4: How to provide fair and scalable orchestration of network and compute
Resources for edge services?

In particular, how can edge resources be allocated to edge user applications and network
services co-located in the same edge node, considering that they may have entangled
resource needs? Can ML techniques be used to learn the relationship and the consequent
behavior of service operating parameters? Can further optimization be obtained when
considering jointly the resource management of multiple services?

In a similar reinforcement learning approach as that of CAREM, we design VERA to
operate over an LTE vRAN and a user application whose traffic is transmitted through
the vRAN to the mobile user, and to provide scalable and fair resource allocation decisions.
Indeed, in this case, it is clear that the resource requests of network functions (i.e., vRAN)
and user applications are often entangled, thus a joint allocation decision is required
to obtain the optimal performance. VERA is validated on a proof-of-concept testbed
implementation, then its performance is evaluated numerically. Besides, we also compare
its scaling cost to those of a centralized framework based on deep-Q networks. A detailed
analysis and evaluation of the VERA framework can be found in Chapter 5.

Our contribution on this topic has been disseminated in:

1. Tripathi, S., Puligheddu, C., Pramanik, S., Garcia-Saavedra, A., Chiasserini, C.
F., VERA: Resource Orchestration for Virtualized Services at the Edge, in: IEEE
International Conference on Communications (IEEE ICC 2022), 2022

1.2 Outline

This thesis is organized as follows.

8 Introduction

Chapter 2 presents a practical demonstration of an innovative management system
for 5G networks, able to automatize vertical services provisioning on constrained
network and compute resources while being aware of vertical Service Level Agree-
ments (SLA). First, it presents an open and flexible 5G transport and computing
platform developed within the European project 5G-TRANSFORMER, then it
shows how, through service scaling at different layers, namely application-level,
service-level, and resource-level, the platform is able to reconfigure the virtualized
resource to guarantee SLAs. The 5G-TRANSFORMER platform capabilities are
demonstrated with field tests, where two automotive vertical services are deployed
on three geographically-distributed sites.

Chapter 3 focuses on the concept of Machine Learning as a service (MLaaS). Softwarized
5G network architectures really benefit from the adoption of Machine Learning
techniques to drive decision-making in autonomous orchestration. To this end, first
the 5Growth MANO stack, which evolved from the 5G-TRANFORMER platform
and now integrates the MLaaS Platform (5Gr-MLaaSP), is presented; then it is
demonstrated how the MLaaS can drive two ML-driven algorithms to perform
network management tasks, namely network slice subnet sharing and run-time
service scaling.

Chapter 4 proposes CAREM, a reinforcement learning framework designed to work in
heterogeneous 5G Radio Access Networks. CAREM selects the best available radio
link and transmission parameters to meet specified Key Performance Indicator
(KPI) requirements according to the dynamic radio context. CAREM performance
is evaluated through a testbed implementation that leverages LTE and IEEE
802.11p radio technologies, showing encouraging results, even compared to the
closest existing scheme.

Chapter 5 introduces VERA, a reinforcement learning framework for resource orches-
tration of user applications and network functions at the edge. First, it is shown
how the concurrent request of resources by user applications and network functions
is often entangled, then the advanced features of VERA are described, highlighting
the key role of the Pareto analysis in providing fair decisions for different applica-
tions. Finally, VERA’s performance is assessed through numerical analysis, proving
VERA’s capabilities in meeting the target KPIs.

Chapter 6 summarizes the presented work, highlights the obtained results and offers
conclusive remarks and considerations.

Chapter 2

Automated Service Provisioning and
Hierarchical SLA Management in 5G
Systems

Empowered by network softwarization, 5G systems have become the key enabler to foster
the digital transformation of the vertical industries by expanding the scope of traditional
mobile networks and enriching the network service offerings. To make this a reality,
we propose an automation solution for vertical services provisioning and hierarchical
Service Level Agreement (SLA) management. Service scaling is one of the most essential
operations to adapt the service deployments and resource allocations to ensure SLA
fulfillment. Three different scaling levels are addressed in this work: application-,
service- and resource-level. We have implemented our solution in a proof-of-concept of a
virtualized mobile network platform, spanning over three geographically-distributed sites.
To evaluate our solution, we leverage field tests, focusing on automotive vertical services
comprising a mission-critical application (collision-avoidance) and an entertainment one
(video streaming). The results demonstrate the excellent performance of our solution,
and its ability to automatically deploy vertical services and ensure their SLAs through
different levels of service scaling.

Part of the work described in this chapter has been already published in X. Li et al.,
"Automated Service Provisioning and Hierarchical SLA Management in 5G Systems," in
IEEE Transactions on Network and Service Management, vol. 18, no. 4, pp. 4669-4684,
Dec. 2021, doi: 10.1109/TNSM.2021.3102890, ©2021 IEEE.

10 Automated Service Provisioning and Hierarchical SLA Management in 5G Systems

2.1 Introduction and motivation

5G systems are envisioned to expand the scope of traditional mobile networks to support
various vertical services, such as eHealth, automotive, media, and cloud robotics, hence
greatly enriching the telecom network ecosystem. In this new scenario, the imperative for
telco service providers is to promptly support vertical industries to deploy their services
over the 5G systems, fulfill their diverse requirements, and adjust the service deployments
to the dynamic users and traffic demands. To this aim, network softwarization becomes
a revolutionary technological shift, thanks to Software-Defined Networking (SDN) and
Network Function Virtualization (NFV) enabling the dynamic creation of Network Slices,
i.e., logically independent network partitions over a shared infrastructure. Network
slices are provisioned as end-to-end network services composed of a set of interconnected
Virtualized Network Functions (VNFs). Importantly, they are created by properly
configuring virtual resources (network, compute, and storage), and tailoring them to
address the specific requirements of the vertical services (e.g., bandwidth and end-to-end
latency). Such a 5G system is beyond providing mobile radio access network (RAN)
and core network functions as defined by 3GPP, but more about providing end-to-end
network slicing solutions able to support heterogeneous network and RAN technologies
for providing communications suitable for individual vertical services.

Despite the advanced development of network slicing solutions leveraging SDN/NFV,
how to automatically deploy a vertical service on a reliable network slice in telco’s
operational networks is still a real challenge in practice. In particular, what is labored is
for network slices to fulfill at any point in time the required service quality, as per the
Service Level Agreement (SLA) established between the vertical and the telco provider.
Indeed, SLAs specify a set of service business aspects and quality parameters that
telco providers have to guarantee to verticals not to incur in penalties, e.g., required
bandwidth, end-to-end latency between service endpoints, mean time to service recovery.
Since vertical services are deployed and operated over network slices sharing a common
infrastructure, some degradation or violation of the slice service parameters may occur
that could impact the performance of the vertical service offered to final users, and,
hence, could affect the reputation or business leadership of the vertical itself. For this
reason, legal aspects are also regulated in SLAs between telco providers and verticals,
identifying which party is responsible for reporting service failures or paying fees.

To meet the vertical SLAs, telco service providers need to map and translate high-level
SLA business requirements into network slice- and infrastructure-related requirements,
which can be actually handled and addressed at the network level. It follows that

2.1 Introduction and motivation 11

other agreements at the network operational level have to be generated in cascade
between the telco provider and other parties (e.g., network engineering departments, or
cloud infrastructure providers). In an open NFV ecosystem, the SLA management is
therefore a multi-dimensional provisioning and management problem, where multiple and
interdependent aspects need to be addressed. This calls for a coordinated SLA framework
accounting for different levels of performance inter-dependency and obligations, namely,
at the application, service, and resource level.

Towards these challenges, the EU H2020 5G-PPP 5G-TRANSFORMER (5GT)
project [4] has developed an open and flexible 5G transport and computing platform, able
to automatically onboard and deploy vertical services. Importantly, this platform can also
manage the service life-cycle and the SLAs, so as to fulfill diverse service requirements.
It includes:

• a vertical portal to translate vertical service requirements into network slice-related
requirements. This portal also maps vertical services onto network slices, realizing
the latter through Network Services, as defined in NFV (NFV-NS);

• a service orchestration layer to manage the NFV-NSs and construct their logical
networks. This is achieved by placing and connecting the service components in
the virtual infrastructure, and by allocating the required virtual resources;

• an infrastructure layer that not only manages the underlying infrastructure resources
but also handles the actual mapping of a logical network onto the shared physical
network. It thus realizes the deployment of the vertical services into slices.

The above three layers may be owned and managed by different providers and entities
in the real network scenarios, thus a hierarchical SLA management is essential to provide
an automated and coordinated vertical service management throughout the whole stack
of the system. As part of the SLA management, service scaling is one of the important
operations to automatically adapt the service deployments according to (i) mutable needs
of the vertical service and application components deployed on a slice (e.g., varying
demand of service instances or of total resources required by the vertical services), (ii)
the priorities of different vertical services running into the network slice instances, or
(iii) real-time availability of (virtual) resources in the infrastructure underpinning the
deployed network slices. Along this line, different levels of service scaling are provided at
the different layers of the 5GT platform for such hierarchical SLA management.

In this chapter, we present the hierarchical SLA management framework that we
have designed and developed on top of the 5GT platform (Sec. 2.2), and we introduce

12 Automated Service Provisioning and Hierarchical SLA Management in 5G Systems

the service scaling mechanisms that we have defined at the different levels, namely,
application, service, and resource level (Sec. 2.3). We then describe the proof-of-concept
test-bed where we implemented the scaling mechanisms (Sec. 2.4), which, importantly,
have been released as open-source software1. Finally, we provide a thorough experimental
evaluation in the relevant, practical case of automotive vertical services, as an example
to demonstrate the ability of our framework to enable automatic service provisioning
and ensure a successful SLA management (Sec. 2.5), and as well as a summary of related
work (Sec. 2.6).

2.2 The 5G-TRANSFORMER Platform

The 5GT platform consists of three main building blocks [5], as shown in Fig. 2.1 and
described in the following.

The Vertical Slicer (5GT-VS) is the aforementioned vertical portal and acts as
one-stop shop entry point for the verticals to request a custom network slice, tailored to
their needs. A vertical service is a composition of vertical applications as well as network
functions, defined by its functional and behavioural specification, as detailed in the
Vertical Service Blueprint (VSB). In particular, the vertical requests a service by selecting
a VSB from the catalogue offered by the 5GT-VS and customizes it with additional
details at the service-level (e.g., expected number of users, coverage area, required SLAs,
etc.) thereby defining a Vertical Service Descriptor (VSD). In turn, the 5GT-VS, through
its Translator module, maps these service requirements into a potential set including
Network Service Descriptor (NSD), Deployment Flavour (DF), and Instantiation Level
(IL). This triple defines the characteristics of the target network slice (deployed through
an NFV-NS) in terms of:

• the functional elements and the structure of an NFV-NS underpinning the network
slice able to host the requested vertical service. This is defined through the NSD
and the related VNF descriptors;

• the number and capacity of the VNFs, and the virtual links needed to meet the
performance requirements of the vertical service. Specifically, the DFs define the
different options to instantiate the service, including a min-max range for the
number of VNFs to be instantiated, while each IL indicates the specific number of
VNF instances and their required computing resources.

1https://github.com/5g-transformer

2.2 The 5G-TRANSFORMER Platform 13

Fig. 2.1 The 5G-TRANSFORMER (5GT) system architecture

In the 5GT system, the definition of network slices is aligned with the latest networking
slicing model from 3GPP [6] and has been extended to consider not only the mobile
communication segments of the end-to-end service (as in the standard), but also the
involved vertical applications. Furthermore, the 5GT network slice model is rather
generic and can support any RAN and wireless technologies (although the latter aspects
are beyond the scope of 3GPP). Network slices are deployed through NFV-NSs, which
are instantiated according to a specific [NSD, DF, IL] set, selected on the basis of
the service characteristics. The network slice components can be instantiated through
a dedicated NFV-NS, to guarantee the maximum level of isolation, or exploit VNFs
already instantiated for other services to optimize resource allocation. Some works in the
literature analyze the challenges of RAN and core network slicing and resource sharing
(e.g., [7] [8] [9]). In 5GT, the decisions on the sharing strategy applied to each network
slice depend on the particular service and slice profile (such as coverage area, resource
sharing/isolation policy, and performance requirements), and are determined through
arbitration at the level of vertical services using those slices.

Specifically, according to the network slice model defined by 3GPP, a network slice
can include multiple slice subnets, where each subnet can be shared among multiple
end-to-end network slices, thus improving the infrastructure utilization efficiency. The
number of network slices sharing a slice subnet and, consequently, the number of vertical
services running over a slice subnet has an impact on its resource requirements (e.g., in

14 Automated Service Provisioning and Hierarchical SLA Management in 5G Systems

terms of traffic load to be supported). Also, any decision about re-using a slice subnet
instance should be compliant with the isolation requirements of the services using it. As
depicted in Fig. 2.1, the 5GT-VS includes an Arbitrator module that, starting from the
candidate [NSD, DF, IL] set generated by the Translator and taking into account the
network slices currently instantiated in the system, decides how to deploy the network
slice for the requested vertical service. In particular, the 5GT-VS Arbitrator determines:
(i) the [NSD, DF, IL] of the new network slice to be instantiated and the existing slice
subnets that can be re-used to build the new slice, and (ii) for each slice subnet to be
re-used, if and how it needs to be scaled to meet the requirements of the additional
vertical service. The actions defined as output of the Arbitrator involve the instantiation
and scaling of NFV-NSs, which are requested to the Service Orchestrator.

It is worth to point out that the 5GT-VS actions cover the entire lifecycle of a network
slice, as defined by the 3GPP TR28.530 specification [10], from the preparation to the
decommissioning phase. In particular, the definition and the on-boarding of VSBs and
related NSDs correspond to the design and the on-boarding steps of the network slice
preparation, respectively. The definition of the VSD and the instantiation of the service
with the related network slice correspond to the creation step of the slice commissioning
phase and its activation in the operation phase. Any action related to the scaling of
network slice subnets and associated NFV-NSs can be mapped to the modification step
during the slice operation, while the service termination actions include the de-activation
and termination of the network slice, in the decommissioning phase.

The Service Orchestrator (5GT-SO) [11] provides both network service and
resource orchestration capabilities in order to instantiate and manage network slices
(deployed as NFV-NS instances) over shared resources, across single or multiple adminis-
trative domains [12]. This requires an interaction with (i) the 5GT-VS to receive NFV-NS
service requests, (ii) the Monitoring Platform to configure metrics and respond to alerts,
(iii) the Mobile Transport and Computing Platform to allocate resources, and (iv) other
5GT-SOs in case of multi-administrative domain service orchestration. As such, it is a
central point for the coordination of all the architectural entities required to fulfill the
SLA requirements of the requested service.

Therefore, the 5GT-SO implements the workflows for the (i) NFV-NS service lifecycle
management (including on-boarding, instantiation, scaling, query, termination), (ii) intra-
domain and multi-administrative domain orchestration, (iii) selection of VNF placement
and inter-VNF links, and (iv) allocation of virtual networking, computing and storage
resources through the 5GT-MTP based on service requirements and availability of the

2.2 The 5G-TRANSFORMER Platform 15

resources offered by each administrative domain. The 5GT-SO also integrates core
MAN and Orchestration (MANO) platforms, such as Open Source MAMO (OSM) or
Cloudify, through wrappers, hence enabling the interworking between different core
MANO platforms used by different administrative domains.

The Mobile Transport and Computing Platform (5GT-MTP) is responsible
for managing the compute, storage, and networking resources (both physical and virtual)
in the infrastructure where network slices and services from the above layers are eventually
executed. The resources are generally spread in different technological domains (e.g.,
computing Point of Presence (PoP), Wide Area Network (WAN), RAN) and, hence, the
5GT-MTP provides a coordinated management and orchestration of all these resources
toward the fulfilment of 5GT-SO requests. On the one hand, the 5GT-MTP aggregates
the underlying resource pool in the infrastructure to be abstracted and exposed as a
single coherent whole to the 5GT-SO at Single Logical Point of Contact. On the other
hand, the 5GT-MTP translates the 5GT-SO requests from abstract to low-level resource
requests to be allocated in each domain. For the 5GT-MTP to interwork with underlying
resources, each technology domain exposes the API of its controller (e.g., Openstack,
SDN controller, RAN controller) to the 5GT-MTP. The 5GT-MTP commands each
controller through a corresponding plug-in acting as client of such API. This includes
the transport WAN Infrastructure Manager (WIM), the Virtual Infrastructure Manager
(VIM), the Multi-access Edge Computing (MEC), and the RAN plug-ins.

Transversal to the three aforementioned building blocks, the 5GT architecture includes
a cross-layer Monitoring Platform (5GT-MON) that collects monitoring data from
the 5GT-VS, 5GT-SO, and 5GT-MTP, and generates notifications (alerts) as input for
SLA management decisions at the different layers. It is based on the Prometheus and
the Grafana software, for the collection/storage/elaboration and the visualization of
monitoring data, respectively. The 5GT-MON aggregates metrics and KPIs generated
at the different layers, e.g., physical infrastructure and virtual resources load, the
performance of network services, and metrics associated with vertical applications.
Starting from the elaboration of these data, the 5GT-MON recognizes any performance
degradation or anomalous conditions on the basis of thresholds defined in the descriptors
(e.g., in the NSD) and notifies the 5GT components through asynchronous alerts. These
notifications trigger the reaction of the 5GT platform (e.g., scaling or recovery actions)
to guarantee the continuous fulfillment of the SLAs established at the different layers.

16 Automated Service Provisioning and Hierarchical SLA Management in 5G Systems

Fig. 2.2 Hierarchical SLA Management framework

2.3 Hierarchical SLA Management and Service Scal-
ing: Concept & Implementation

To automatically manage vertical services through the 5GT system and fulfill the service
requirements specified by the vertical, we propose a hierarchical SLA management
framework, as illustrated in Fig. 2.2. From the top down, we define per-layer SLAs, along
with the associated management mechanisms, as detailed below.

Vertical SLAs. They are business-level SLAs, which are negotiated between the 5GT
telco provider’s OSS/BSS (Operations Support System and Business Support System)
and the vertical, and are managed by the 5GT-VS. On the one hand, the vertical provides
the vertical service requirements in the service request, specifying business-level and
service-level parameters (i.e., required service KPIs like maximum service provisioning
time, required device density, and maximum service latency). On the other hand, the
telco provider’s OSS/BSS can offer different business service level classes. The matching
between the vertical service requirements and the service level classes offered by the 5GT
telco provider defines a Vertical SLA. In the 5GT-VS, the Vertical SLA management
functions include: (i) mapping the Vertical SLAs to Network Service SLAs (NS SLAs)
that will be requested to the 5GT-SO, including network service related policies such
as rules for the automatic scaling of a NFV-NS instance; (ii) mapping a vertical service
on network slice(s), either instantiating a new network slice or re-using existing slice
subnet(s); and (iii) handling service arbitration and service scaling actions to deal with

2.3 Hierarchical SLA Management and Service Scaling: Concept & Implementation 17

the dynamic changes on the service itself and according to the service Vertical SLAs, the
total available resource budget, and the services priority.

NS SLAs. They are defined at the NFV-NS level and are managed by the 5GT-SO.
NS SLAs define distinct guarantees on resource availability and KPIs, such as guaranteed
data rate, geographical availability, and end-to-end latency. Their management is
provided by end-to-end service and resource orchestration, including (i) deciding the
optimum placement of the VNFs in certain PoPs/servers and the inter-PoP/inter-server
connectivity, and (ii) handling the NFV-NS auto-scaling operation to adapt to the
dynamic network conditions following the aforementioned NFV-NS auto-scaling rules
defined in the NSD.

Infrastructure SLAs. They are managed by the 5GT-MTP, which is in charge of
the actual resource allocation for a specific service, as requested by the 5GT-SO. The
Infrastructure SLAs are specified based on the NS SLAs and define different guarantees on
infrastructure-level QoS (such as CPU load, network delay, packet losses, link throughput).
At the infrastructure level, the resource management function is in charge of the placement
of virtual machines (VM) (or containers) in physical servers, and managing their required
networking connectivity such as routing and path provisioning.

In summary, each layer is fully responsible for: (i) translating its SLAs to lower-level
SLAs and requesting them to the lower layer, and (ii) guaranteeing the corresponding
SLAs through its internal SLA management functions. To this end, each layer interacts
also with the monitoring platform, which provides monitoring data about SLA-related
metrics and triggers alerts whenever a degradation or violation of the SLAs is detected.
Finally, each layer may notify the higher layer about the results of the SLAs it is
managing.

As highlighted above, one of the crucial SLA management functions is scaling.
Depending on the layer at which it is performed, we can define:

1. Application-level scaling, which is triggered by the vertical and implies the scaling
of a vertical service deployment based on the operational context information
[13]. This typically results in a renovated slice service demand to the telco service
provider (i.e., the to 5GT-VS), with different service parameters;

2. Service-level scaling, which is triggered by the 5GT-VS as a result of an arbitration
procedure among service instances and yields the scaling of one or more of them;

18 Automated Service Provisioning and Hierarchical SLA Management in 5G Systems

3. Resource-level scaling, which is triggered by the 5GT-SO after detecting lack of
sufficient resources to meet certain NS SLAs. It leads to the scaling of the virtual
resources underpinning the network slice deployment.

2.3.1 Application-level scaling

Application-level scaling consists in adjusting vertical service deployments into the
network slices during their runtime, according to evolving vertical’s business targets
(e.g., enlarging the geographical area that is served) or following the dynamics of the
application operational context (e.g., average and peak number of user requests). In
both cases, the scaling decision results in a renovated slice service request to the 5GT-VS
but with different service parameters. Examples of such service parameters could be the
number of mobile users or content items for a Content Delivery Network in the case of a
multimedia service. For an automotive safety service, a relevant parameter could be the
maximum number of cars to be served in a given area. To support the application-level
scaling, the 5GT-VS provides a vertical north bound interface (NBI) that allows the
verticals to issue slice service requests with revised service parameters specified in the
VSD.

The verticals and their applications have thus a fundamental role in the application-
based scaling model. They are not only responsible for detecting the need to scale a
service and deciding its target size (expressed in terms of service-level parameters within
the target VSD), but also for triggering the entire scaling procedure by interacting with
the 5GT-VS. In particular, the need for a new VSD with updated service parameters
can be stated by the vertical service administrator through a manual configuration
(1a in Fig. 2.2), or can be detected automatically by a service control logic internal
to the application (1b in Fig. 2.2). In the former case, the system administrator uses
the 5GT-VS web GUI to manually request the modification. In the latter case, the
application itself interacts directly with the NBI of the 5GT-VS, through the REST
APIs. The mechanisms for making decisions about application-based scaling are service-
dependent and they rely on business considerations or application-level performance
metrics. The applications implement their own monitoring procedures to gather and
elaborate the required application-level metrics. Their internal logic makes decisions
about the required scaling actions, e.g., based on the thresholds defined in compliance
with the SLAs established between the verticals and their customers.

2.3 Hierarchical SLA Management and Service Scaling: Concept & Implementation 19

At the 5GT-VS level, the enforcement of the vertical service scaling is managed in
two phases. In the first phase, the 5GT-VS uses the Translator module to map the new
VSD into the definition of a network slice able to meet its requirements. This mapping
follows the same procedure performed during the instantiation phase and it identifies
the characteristics of the target network slice. In particular, the output identifies the
kind, size, and capacity of NFV-NS(s) corresponding to the end-to-end network slice,
including its slice subnets. If the target network slice differs from the current one (e.g.,
in terms of DF and/or IL of the correspondent NFV-NS(s)), the current network slice(s)
must be updated (i.e., scaled in or out); thus, the 5GT-VS starts a second phase that
involves the Arbitrator module. Therein the system verifies the compatibility between
the new network slice with its new target size/capacity and the SLAs established with
the vertical, taking into account the whole set of network slices already active for the
given vertical. In this phase, the arbitration algorithm (see Sec. 2.3.2) computes the
modifications required for all of the different services owned by the vertical, based on
their relative priorities. As output, the Arbitrator decides the feasibility of the scaling
action and its impact on the existing network slice and slice subnet instances. It thus
identifies the NFV-NSs of those services with lower priority and belonging to the same
vertical that may need to be scaled down to make some resources available to services
with higher priority. The overall resulting set of changes are then applied to the NFV-NSs
(realizing the network slices) scaling actions and then requested in an ordered manner to
the 5GT-SO, which will modify the NFV-NSs as requested.

2.3.2 Service-level scaling

Service-level scaling consists in adjusting the size (i.e., number of VNF instances) and/or
the capacity (i.e., total resource demand) of network slice instances hosting the vertical
services, as a result of a decision made by the 5GT-VS Arbitrator. As mentioned before,
the Arbitrator is the entity responsible for making any decision about network slice
sharing and scaling. In particular, upon receiving a vertical’s request to deploy a new
service instance, the Arbitrator looks up the corresponding Vertical SLA, namely: (1)
the priority level of the new, as well as the existing, service instances requested by that
vertical, (2) the set of VNFs composing the service and how they are inter-connected,
(3) the relative virtual CPU (vCPU) and memory/storage requirements of the involved
VNFs as well as the networking requirements for their inter-connectivity, and (4) the
vertical’s KPI requirements (e.g., end-to-end latency, service availability, or reliability

20 Automated Service Provisioning and Hierarchical SLA Management in 5G Systems

level). Note that such information is described in the NSD created by the Translator for
the received VSD.

Given such an input information, the Arbitrator makes the following decisions:

1. it determines whether the newly requested service must be created from scratch,
thus instantiating all its elements ex-novo, or, instead, one or more already existing
slice subnets can be reused;

2. if the service has to be deployed entirely (or partially) ex-novo, it determines (a)
the amount of resources that may be needed for the service (or part of it) to be
instantiated and to handle the expected traffic load, and (b) whether or not such
an amount is compatible with the resource budget available to the vertical, as per
the Vertical SLA;

3. when existing slice subnets can be re-used, it decides which (if any) scaling action
for any of them is necessary to fit the service requirements, and also feasible as per
the Vertical SLA.

Thus, for every new or to-be-reused slice subnet, the Arbitrator provides as output the
associated pair [DF, IL], so as to ensure that the vertical KPI requirements are met, while
accounting for the services priority level and the remaining resource budget available to
the vertical, as per the Vertical SLA.

Let us first consider that no existing sub-slices can be reused for the deployment
of a newly requested service, and let us denote with C, B, and S the total amount of,
respectively, vCPU, bandwidth, and storage that can be allocated for the services of that
vertical as per the Vertical SLA. As the first step, the Arbitrator orders the list of all
service instances S, both the one to be deployed and the existing ones, from the highest
priority level to the lowest. It then considers the highest-priority service instance, say, s,
and allocates storage resources based on the needs exhibited by the VNFs composing s.

A more complicated procedure, however, is required for the vCPU and bandwidth
allocation. In particular, let us focus on the service latency as the main performance
metric, and denote with Ds the target latency for service s. Two factors contribute to
the service latency: (i) the processing time, due to the execution of the VNFs composing
the service, and (ii) the network time, i.e., the time it takes to transfer data from a VNF
to the next one[14]. While the former depends on the vCPU allocated to the VM or
containers running the VNFs, the latter depends on the deployment decisions made by

2.3 Hierarchical SLA Management and Service Scaling: Concept & Implementation 21

the 5GT-SO, and on the bandwidth associated with the virtual links connecting the
servers hosting the VNFs.

In the best case, the whole set of VNFs composing service s, denoted by V, can be
deployed within the same server. In this scenario, the network time is negligible [15],
hence the bandwidth required for data transfers over virtual links for s, βb, can be set to
zero. Additionally, the latency budget, Ds, can be entirely used as processing time, thus
reducing the required amount of vCPU, µb. To determine such value, we follow a widely
adopted approach (see, e.g., [16, 17]) and model each VNF instance as an M/M/1-PS
queue. Note that the choice of the processor sharing (PS) policy for the queue model
closely emulates the behavior of a multi-threaded application running on a VM. Then µb

can be computed so as to satisfy the below inequalities:

Ø
v∈V

1
fvµb − λv

≤ Ds; µb ≤ C . (2.1)

The first inequality imposes that the total latency due to the processing at the service
VNFs does not exceed the maximum target value. In particular, the left hand side term
represents the total latency due to the processing at every VNF v ∈ V [18], with fvµb

being the output rate of the VNF queue v and λv being the service request rate input
to v. Also, fv is the relative computational requirement of VNF v, with q

v∈V fv = 1.
The second inequality, instead, imposes that the vCPU allocation does not exceed the
vertical vCPU budget, C.

Assuming that all VNFs run within the same server, however, might be overly
restrictive. Thus, the Arbitrator also considers a worst-case scenario, accounting for the
network latency component as well. As a smaller portion of the latency budget would be
available for processing, the amount of processing resources required in this case increases.
Specifically, in the worst case, each VNF in V is deployed in a different server, hence the
allocated vCPU, µw, and bandwidth, βw, have to satisfy the following constraints:

Ø
v∈V

1
fvµw − λv

+
Ø

(u,v)∈E

du,v

fu,vβw
≤ Ds (2.2)

µw ≤ C and βw ≤ B (2.3)

where fu,v is the relative bandwidth requirement for the virtual link connecting the
servers where VNFs u and v are deployed, and dv,v is the amount of data that needs to
be transferred from VNF u to VNF v. In (2.2), the two left hand side terms represent
the latency due to, respectively, the VNF execution and the travel time over the virtual

22 Automated Service Provisioning and Hierarchical SLA Management in 5G Systems

links connecting any two adjacent functions in the VNF set (E denotes the set of edges
interconnecting the VNFs composing the service). The constraints in (2.3), instead,
impose that the total vCPU and bandwidth allocations do not exceed the corresponding
budgets available to the vertical, as per the Vertical SLA.

Next, given the pairs (µb, 0) and (µw, βw) for service s, the Arbitrator can compute
the corresponding per-VNF and per-virtual link values, by leveraging the fv and fu,v

values expressing the relative computation and bandwidth requirements of each VNF
and virtual link (resp.). The Arbitrator then selects an ordered list of [DF, IL] pairs, as
encoded in the NSD, with the first pair corresponding to the best-case allocation and the
last one to the worst-case allocation; a practical example is provided in Sec. 2.4.

Once the 5GT-SO receives from the 5GT-VS the instantiation request, it deploys
the service selecting the most efficient [DF, IL] pair among the viable ones suggested
by the 5GT-VS. The quota of resources used by the vertical is updated at the 5GT-VS,
based on the 5GT-SO’s choice. Given such a value, the Arbitrator proceeds with the
second service in the list, following the same steps as above but replacing C and B (in
(2.1)–(2.3)) with the amounts of vCPU and bandwidth still available to the vertical. The
procedure is repeated for all (newly requested or already deployed) service instances;
it is clear that, in case of resource shortage, some lower-priority service instances may
not be accommodated, or may be terminated due to the need to reallocate resources to
higher-priority services.

As a relevant case in terms of scaling, let us consider now that a service instance
requested by the vertical can be deployed by reusing one or more of the existing slice
subnets. As mentioned, sharing a slice subnet across multiple end-to-end slices may
impact its performance and, consequently, the performance of the vertical services using
it. Thus, to guarantee the required performance, the size and/or the capacity of a slice
subnet instance may need to be adjusted according to the number and characteristics
of the end-to-end slice instances that are sharing it. In this case, the Arbitrator adds
the traffic load due to the newly requested vertical service to the load of the existing
VNFs (λv) and virtual links (du,v), and re-computes the necessary vCPU and bandwidth
allocation, as described above. Again, the Arbitrator uses the vCPU and bandwidth
values obtained in the best and worst cases, to update the [DF, IL] pairs associated with
the involved VNFs and virtual links.

Finally, we remark that the same procedure is performed when a service instance
is terminated: the 5GT-VS updates the amount of resources available to the vertical

2.3 Hierarchical SLA Management and Service Scaling: Concept & Implementation 23

and recomputes the [DF, IL] pairs for the remaining services, upgrading some of them if
needed.

2.3.3 Resource-level scaling

Resource-level scaling involves monitoring and reconfiguration of virtual resources orches-
trated by the 5GT-SO (in coordination with the 5GT-MTP), to prevent the performance
degradation of VNFs/NFV-NSs. More specifically, it regards the auto-scaling of NFV-
NSs according to the scaling rules given in the NSD, by configuring related monitoring
jobs and alerts in the monitoring platform, and by properly reacting to such alerts.
Scaling rules are defined by the vertical, based on business-related considerations or
the application-related operational context, and are part of the VSB definition when
on-boarded in the system. These scaling rules are encoded in the NSD and then forwarded
from the 5GT-VS to the 5GT-SO.

Each auto-scaling rule contains (a) the conditions to be met by certain metrics, to
trigger alerts based on the service monitored data, and (b) a corresponding reaction
(i.e., a scaling out/in action). During the NFV-NS instantiation phase, the 5GT-SO
configures the 5GT-MON monitoring platform according to the conditions encoded
in the NSD auto-scaling rules, in order to receive the required alerts at the NFV-NS
runtime. Whenever the 5GT-SO is notified by the 5GT-MON that one of the conditions
is met (e.g., exceeded vCPU usage), it triggers the NFV-NS scaling according to the
corresponding reaction specified in the auto-scaling rule. To this end, it also coordinates
the operation of the core MANO and 5GT-MTP. In particular, in case of scaling out, the
5GT-SO issues a new resource allocation request to the 5GT-MTP for scaling the VNF
instances and, hence, to reconfigure the virtual resources towards the new instantiation
level specified in the auto-scaling rules. The 5GT-MTP applies all needed settings for
the required resource re-allocations, while the 5GT-SO notifies the 5GT-VS about the
scaling operation outcome. In case of scaling-out failure, due to, e.g., resource shortage,
the 5GT-SO undoes or rolls-back the scaling operation and also informs the 5GT-VS
about the failure.

In terms of implementation, the 5GT-SO provides resource-based scaling thanks to two
internal submodules, namely the Monitoring Manager and the SLA Manager [11]. The
former configures the monitoring jobs required to measure the resource metrics involved in
scaling decisions. The latter requests the configuration of the alerts associated with these
metrics in the 5GT-MON and also processes the received alerts to trigger scaling actions

24 Automated Service Provisioning and Hierarchical SLA Management in 5G Systems

Fig. 2.3 Testbed architecture and a possible deployment of the considered NFV-NS across the
available PoPs

according to the auto-scaling rules. The 5GT-MON configuration is then coordinated
through a Configuration Manager component, which offers REST APIs and wraps
the logic of the configuration for the different Prometheus components involved in the
monitoring task. Specifically, 5G-MON leverages the following Prometheus components:
(i) Monitoring jobs, used to retrieve monitoring data from different sources through the
mediation of Prometheus exporters specialized for infrastructure or application metrics,
(ii) Thresholds, used to trigger alerts towards the SLA manager, and (iii) Dashboards,
used to visualize the monitoring data through Grafana.

2.4 Proof-of-concept: Testbed and Scenarios

In this section, we present the proof-of-concept testbed we deployed to evaluate our
framework. The testbed implements the whole 5GT platform introduced in Sec. 2.2, and
the applications required by an automotive vertical to be provided to mobile users and
vehicles. It is worth noting that here we focus on the scaling of NFV-based vertical
services rather than on the network functions related to the mobile infrastructure. More
importantly, our solution is generic to support any network functions (including RAN or
core network functions) and vertical applications, and hence, as also underlined below,
our solution can work well with any radio access technology.

2.4 Proof-of-concept: Testbed and Scenarios 25

Below, we start by introducing the testbed architecture and the vertical targeted
services (Sec. 2.4.1), then we describe the scenario and the experiments that we performed
in our field tests (Sec. 2.4.2). The performed field tests aim to demonstrate the effectiveness
of the developed 5GT platform and our proposed solutions, able to: (i) automatically
deploy vertical services upon receiving the service requests, and (ii) perform automated
management of the vertical services across different layers of the architecture. In particular,
SLA assurance is achieved through service-level scaling to handle the arbitration among
different services of the same vertical according to their priorities, and by resource-level
scaling to handle the scaling of resources (i.e., in terms of the number of VNF instances),
according to resource dynamics and load variations.

2.4.1 Testbed and supported services

The testbed, depicted in Fig. 2.3, spans over three geographical sites, which are connected
through VPN tunnels encapsulating both control traffic and data traffic. The Barcelona
site, in Spain, hosts all layers of the 5GT platform, including the 5GT-VS, 5GT-SO,
5GT-MTP and 5GT-MON, an instance of an Openstack-based VIM, and an instance of
a WIM controlling the core transport network. The 5GT platform uses OSM Release
6 as MANO platform. The WIM, as described in [19], follows an IETF Application-
Based Network Operation (ABNO) architecture using the Control Orchestration Protocol
(COP) to communicate with the 5GT-MTP and interacts with the forwarding elements
of the underlying transport networks by means of open source SDN controllers like Ryu
and OpenDaylight. Then, two instances of an Openstack-based VIM are deployed at,
respectively, the Pisa and the Torino site, in Italy, with the latter acting as MEC host.
The Torino site also hosts an IEEE 802.11p Roadside Unit (RSU) physical network
function to provide radio access to vehicles equipped with On-Board Units (OBU), and a
Radio Network Information Service (RNIS) providing channel state information to the
applications requiring it. An equivalent testbed was deployed in Torino [20], using the
open-source Open Air Interface (OAI) 2 implementation of the LTE E-UTRAN and EPC,
which is compliant with 3GPP LTE Releases 8/10. Laboratory tests [21] showed that
the proposed system architecture and scaling solution work effectively also under these
settings. However, during field tests an IEEE 802.11p-based radio access was preferred,
so as to deal with vehicular communications and ensure a sufficiently large outdoor
coverage.

2https://openairinterface.org

https://openairinterface.org

26 Automated Service Provisioning and Hierarchical SLA Management in 5G Systems

The testbed supports two services requested by an automotive vertical, namely, (i)
vehicle collision avoidance at intersections, and (ii) video content delivery, which are
relevant examples of, respectively, safety and entertainment services for vehicular users.

The vehicle collision avoidance service will be referred to as Extended Virtual Sensing
(EVS), since it leverages vehicular communications as a virtual sensor collecting data
related to vehicle mobility [22, 23, 20]. Specifically, it exploits the Cooperative Awareness
Messages (CAMs), defined by ETSI, which are periodically transmitted by vehicles and
carry the position, speed, acceleration, and heading of the sender. By processing such
data, the EVS service can detect dangerous situations and generate warnings accordingly.
These warnings are encoded in the ETSI Decentralized Environmental Notification
Messages (DENMs) and delivered to human drivers, or to an emergency braking system
aboard vehicles. The VNFs composing the EVS service are as follows:

• the CIM (Cooperative Infrastructure Manager), which receives, decodes, and stores
CAMs sent by the vehicles within the area covered by the EVS service;

• the Collision Detector (CD), which queries the CIMs for new CAMs and runs a
trajectory-based algorithm (e.g., the one presented in [22, 23]), to detect pairs of
vehicles on collision course;

• the DENM Decider, which timely encodes the warning messages and sends them
to the vehicles deemed to be on collision course.

The video content delivery service refers to a Video Streaming (VS) service that may
be provided in full-fledged or reduced configuration. The full-fledged version consists of
the following two VNFs:

• the Video Streaming controller (VSC), which exploits a Radio Network Information
Service (RNIS) and a radio link manager, recording information on the quality
of the user radio channel. This information is given as input to an optimization
algorithm [24] that selects the most suitable bit rate for streaming the video to the
user;

• the Video Streaming Server (VSS), featuring a Python-based front-end, which
applies the selected video bit rate to the video segments to be transmitted. It
is based on HTTP streaming and contains a video catalogue, a front-end, the
Media Presentation Description (MPD) files, and the media chunks. The front-end
receives the selected video bit rate and edits the MPD files with such a rate.

2.4 Proof-of-concept: Testbed and Scenarios 27

The reduced VS service differs from the full-fledged version in the fact that it includes
the VSS only, i.e., it is unable to adapt video encoding to the user channel conditions.
Finally, we remark that both the EVS and the VS services require a mobile transport
function that realizes the communication between the network infrastructure and the
vehicular users.

2.4.2 Evaluation setup and experiments

The evaluation setup consists of (i) a vertical service deployment in the form of NFV-NSs,
and (ii) a vertical service operation once the NFV-NSs are deployed.

As for the vertical service deployment, upon receiving the automotive vertical request
for services, the corresponding VSD is compiled at the 5GT-VS. Importantly, at this
stage, the vertical specifies (i) the services’ priority (with EVS having higher priority
than VS), (ii) the services’ configuration, (iii) the storage requirements for the VS and
EVS VNFs, (iv) the geographical area that has to be covered by each service, and (v)
the estimated number of users to serve. Also, since the EVS should be combined with
other collision avoidance mechanisms based on physical sensors aboard the vehicles, the
maximum target latency specified by the vertical in the VSD is set to 20 ms. The VSD
is then translated into the NFV NSD, and the [DF, IL] pairs are set for each VNF
instance according to the output of the arbitration algorithm running at the 5GT-VS. In
particular, for all VNFs composing the VS and the EVS service, except for the CD, only
one instance using up to 1 vCPU is foreseen as both minimum and maximum allocation,
since the processing latency of such VNFs is limited and does not significantly increase
with the traffic load. For the EVS CD, instead, the [DF, IL] indicates the possibility to
have from 1 up to 2 instances, each using 1 vCPU. The 5GT-SO, which is aware of the
computing and network resources available as exposed by the 5GT-MTP (which, in turn,
interacts with underlying VIMs and WIMs), computes the most appropriate placement
for the VNFs, and instantiates them as Openstack VMs, following the NSD requirements.
Service monitoring is performed by the 5GT-MON, which pulls and stores metrics from
the VMs hosting the aforementioned VNFs.

With regard to the vertical service operation, the test field used for our experimental
evaluation consists (unless otherwise specified) of a urban intersection with two vehicles,
one of which is an automated car equipped with an Automatic Emergency Braking (AEB)
system. Both vehicles are equipped with an IEEE 802.11p OBU, thus they transmit
CAMs every 100 ms and can receive DENMs. The vehicle equipped with the AEB can

28 Automated Service Provisioning and Hierarchical SLA Management in 5G Systems

Fig. 2.4 Map of the geographical area served by the EVS service, featuring two intersections
and including an IEEE802.11p RSU: one EVS instance and corresponding covered intersections
highlighted in yellow (left), two EVS instances and corresponding covered intersections high-
lighted in pink (right)

also process DENMs and has the necessary on-board logic to translate the DENM content
into a command for the AEB. The vehicles travel on perpendicular roads and approach
the intersection at full urban speed (namely, 50 km/h).

The field trial includes three phases, as detailed below.

• Phase 1: The vertical asks for the deployment of two VS instances, one full-fledged
and the other in reduced configuration. This first part of the trial shows how
an automotive vertical can use the 5GT platform to instantiate two different VS
services, just by providing high-level service parameters and without any detailed
knowledge of the underlying infrastructure.

• Phase 2: The vertical asks for the deployment of an EVS instance, which, being a
safety service, has higher priority than VS. Due to limited resource budget available
as per the vertical SLA, the instantiation of the EVS requires that service priority
is properly handled by the Arbitrator at the 5G-VS (service-level scaling).

• Phase 3: The vehicle density on the area served by the EVS increases, which
impacts significantly on the computing load and in turn the application latency.
Thus, whenever load changes, scaling at the resource level is needed to keep up
with the SLA latency requirements (resource-level scaling).

To emulate a high vehicle density, in Phase 3 we consider a urban section of the city
of Torino, depicted in Fig. 2.4(left), including two urban intersections, and we leverage
a mobility trace obtained with the SUMO simulator [25]. This trace is processed so as
to generate the CAMs corresponding to the simulated vehicles; such CAMs are then
injected through the same data plane connections used for real cars in the field trial.

2.5 Field Trial Performance Results 29

This allows us to handle such CAMs in exactly the same way as those generated by real
vehicles, i.e., they are transmitted on air and, upon being received, the information they
carry is stored in the CIM.

2.5 Field Trial Performance Results

In this section, we report the actions taken by the 5GT platform during the Phase
1 to 3 of the field trial, as well as the performance of the services that are deployed.
We first report the decisions made by the 5GT-VS upon receiving the VS and EVS
set-up requests, and the decisions made by the 5GT-SO as the vehicle density increases
(Sec. 2.5.1). Then we present some results obtained by profiling the service creation
time components, for both VS and EVS (Sec. 2.5.2). Finally, we show results related to
service-level and resource-level scaling, which take place during, respectively, Phase 2
(Sec. 2.5.3) and Phase 3 (Sec. 2.5.4) of the trial.

2.5.1 Services performance – All phases

In Phase 1, upon receiving the request of the two VS services, the 5GT-VS goes through
all the steps described in the previous sections and ultimately generates two NFV-NSs.
One NFV-NS is for the full-fledged VS service with an IL corresponding to a large amount
of allocated resources and enforcing that the VSC is placed in the MEC. The other
NFV-NS is for the reduced VS version, with an IL for low resource footprint. We recall
that the VSC must be deployed in the MEC, since it includes a radio manager requiring
the RNIS (MEC) service for the tracking of the user channel quality. The 5GT-SO then
deploys the VSS instances of the two VS NFV-NSs as VMs in the Pisa site, and one
VSC instance in the Torino (MEC) site, and sets up the links to interconnect the VSC
with its associated VSS in the Pisa site through the Barcelona transport infrastructure
by interacting with the 5GT-MTP.

Fig. 2.5 (Phase 1: from 0 to 273 s) shows the bit rate of the two VSs (i.e., with and
without VSC). The full-fledged VS (purple line) increases the video segment bit rate
when the quality of the radio channel (reflected by the Channel Quality Indicator (CQI),
blue line) is high, while the reduced VS (green line) maintains the same video segment
bit rate.

30 Automated Service Provisioning and Hierarchical SLA Management in 5G Systems

Fig. 2.5 Video service segment bit rate and received CQI before (0–273 s) and after arbitration
(273–585 s)

In Phase 2, the 5GT-VS receives the request for an instance of EVS, characterized by
a target maximum end-to-end latency of 20 ms, which implies that the corresponding
NFV-NS constraints the service deployment in the MEC (Torino site). However, following
the Arbitrator algorithm in Sec. 2.3.2, the 5GT-VS detects that the amount of resources
necessary to deploy the EVS exceeds the total resource budget specified in the vertical
SLA, and that the resources previously allocated for the VS services must be revised. In
particular, the algorithm indicates that the full-fledged VS service must be terminated so
that the resources allocated to the VM implementing the VSC VNF in the MEC host
are made available to the EVS service.

Fig. 2.5 (Phase 2: from 273 to 585 s) reports the bit rate of the video segment after
arbitration, when only the reduced video service (the one without VSC) remains in place.
Thanks to the availability of real cars, this part of the trial not only demonstrates the
correct behavior of the Arbitrator, but also that the EVS is successfully deployed and
meets the automotive safety requirements and the maximum target latency of 20 ms.
In particular, the value of end-to-end latency, from the transmission of the CAM to
the reception of the corresponding DENM, averaged over 10 different tests, is equal to
8.870 ms, with a standard deviation of 1.447 ms, and a maximum and a minimum value
equal to 11.637 ms and 5.050 ms, respectively.

In Phase 3, the reduced VS service and the EVS service run simultaneously, one in
the Pisa site and the other in the Torino (MEC) site. With regard to the EVS, as the
vehicle density in the area highlighted in yellow in Fig. 2.4(left) increases, the CAM

2.5 Field Trial Performance Results 31

12 14 16 18 20 22 24

Density [vehicles/km]

3.5

4

4.5

5

5.5

P
ro

c
e
s
s
in

g
 T

im
e
 [
m

s
]

99.9th percentile

Max processing time allowed

12 14 16 18 20 22 24

Density [vehicles/km]

10

15

20

25

C
P

U
 L

o
a
d
 [
ti
c
k
s
/s

]

99.9th percentile

Critical CPU load

Fig. 2.6 VNF implementing the CD algorithm: processing time (left) and CPU load (right), as
functions of the vehicular density

and processing load grows as well. Such an increased load of the VMs implementing
the VNFs yields an increased processing time, hence an increased end-to-end latency
for the EVS. In particular, we observed that the major contribution to the processing
time is due to the VM implementing the CD algorithm, while the contribution of the
other VNFs is negligible (e.g., 10 times smaller) and does not significantly scale up as
the vehicle density grows. As a consequence, we focused on the CD VNF and measured
its processing time (Fig. 2.6(left)) and the corresponding CPU load (Fig. 2.6(right)), for
different values of vehicular density.

Given the latency contributions of the other VNFs and the latency of the data
radio transfer, we computed a threshold for the processing time of the CD algorithm
(namely, 5 ms) that cannot be exceeded. Then, leveraging the results in Fig. 2.6(left),
we identified the critical vehicle density (e.g., 22.5 vehicles/km in the plot) below which
a CD processing time of less than 5 ms is recorded for the 99.9% of the time. Finally,
we used this density value in Fig. 2.6(right) and derived the critical CPU load (namely,
23%) as the threshold for resource scaling.

Once we determined the critical CPU load threshold, we configured the monitoring
jobs and alerts in the 5GT-MON platform to generate an alert whenever the CPU
consumption of the CD VM reaches such a value. The alert is handled by the SLA
Manager module of the 5GT-SO, which generates a scale-out request, i.e., the deployment
of a second CD instance, and makes the EVS service self-reconfigure to split the load
between the two CD VNFs. In this way, half of the cars in the area covered by the service

32 Automated Service Provisioning and Hierarchical SLA Management in 5G Systems

Table 2.1 Description of main service creation time components

Service configuration Composition Observation
reduced VS 1 VSS VNF Low resource footprint IL
full-fledged VS 1 VSS VNF, 1 VSC VNF High resource footprint IL
EVS (IL with 1 CD) 1 CIM VNF, 1 DENM VNF, 1 CD VNF Initial IL
EVS (IL with 2 CD) 1 CIM VNF, 1 DENM VNF, 2 CD VNFs IL for high density scenarios

can be handled by the initial CD VNF and the rest by the new CD VNF. Specifically,
with reference to Fig. 2.4(right), each CD instance processes only the CAMs generated
by the vehicles crossing one of the intersections highlighted in pink. As a consequence,
the CPU load is halved, and the target latency required by the EVS service can be
fulfilled. An initial functional prototype was demonstrated in [21]. Importantly, the
above discussion applies to scale-in operations as well. Hence, when the density decreases
and some resources can be freed, a scale-in operation is performed exploiting the same
mechanism as described above.

2.5.2 Service creation – Phase 1

We analyzed Phase 1 from the viewpoint of the 5GT platform. The focus is on profiling of
the service creation and instantiation process for the requested VS and the EVS services,
considering the different ILs available for each considered NFV-NS (see Table 2.1). We
remark that, in all plots presented here and in the following sections, boxplots represent
the experienced maximum, minimum, average, median, 20th- and 80th-percentile of the
ten repetitions performed for each experiment.

Fig. 2.7 shows the various components of the service creation time, when deploying
the EVS service consisting of 2 CD VMs The phase taking longer is the Allocate VNFs one,
whose duration is roughly 6 times higher than the longest of the remaining components.
This phase accounts for the time it takes to the OSM wrapper to interact with OSM,
which, in turn, deploys the VMs that implement the EVS service by interacting with
the 5GT-MTP and Openstack. In this case, there are four VMs to deploy, i.e., 1 CIM
VM, 1 DENM Decider VM, and 2 CD VMs. The following components in order of
importance are the creation of the intra-PoP networks (6.986 s on average) and the
5GT-VS processing (6.385 s on average). The former accounts for the time it takes to
the OSM wrapper to interact with the MTP, which, in turn, interacts with Openstack to
create all the required intra-PoP networks of the 2 CD-EVS service. The latter one has a
much larger dispersion due to the polling that the 5GT-VS does to the 5GT-SO to know

2.5 Field Trial Performance Results 33

Fig. 2.7 Service creation time for the scaled-out EVS service (2 CD VMs)

if the instantiation process has finished (in addition to the internal processing, which
is much lower). The configured polling period is of 20 s. Next, the 5GT-SO Resource
Orchestrator Engine (ROE) processing accounts for the interaction with the 5GT-MTP to
retrieve the topology and available resources (with the largest component equal to 1.964 s
on average), the interaction and placement calculation in the Placement Algorithms (PA)
server (522.3 ms), and other much smaller components. Finally, the processing in the
5GT-SO Service Orchestrator Engine (SOE) lasts 292.6 ms on average. This operation
accounts for the time it takes to the SOE to interact and coordinate the operations at
the different entities in the 5GT-SO module.

Fig. 2.8 presents the service creation time for the full-fledged VS service featuring same
pattern of EVS service creation time in terms of relative importance of the components.
The only remarkable differences compared to the above EVS service are the larger time
for intra-PoP network creation (12.862 s on average) and the smaller time for VNF
allocation (29.732 s on average). As for the former, this happens even if the service to
deploy is simpler (i.e., 2 VNFs instead of 4), because in the previous case all 4 VNFs were
deployed within the same host (the MEC in Torino) and the same intra-PoP networks
were used by all of them. Conversely, in this case each VNF is deployed in a different PoP.
Therefore, two sets of intra-PoP networks must be created and the 5GT-SO must interact

34 Automated Service Provisioning and Hierarchical SLA Management in 5G Systems

Fig. 2.8 Service creation time for the full-fledged VS service

twice with the 5GT-MTP, which, in turn, interacts with different Openstack instances
to create them. Furthermore, since these two intra-PoP networks must be stitched to
allow both VNFs to interact as part of the vertical service logic, the deployment time of
inter-PoP logical links is not zero (293.2 ms on average), which also makes the processing
time at the ROE larger (3.271 s vs. 2.501 s on average), despite being a simpler service.
This time also includes the interaction with the 5GT-MTP, which, in turn, interacts
with the WAN controller to configure the required transport network connection [19].
Finally, the shorter VNF allocation time in this case is due to the fact that only two
VNFs, instead of 4, have to be deployed by the respective Openstack intances at each
PoP.

Fig. 2.9 presents the experienced service creation time for the different NFV-NSs and
ILs presented in Table 2.1, ordered by the total amount of VNFs in the NFV-NS. We
can observe that similar considerations can be made for the other services involved (i.e.,
1-CD EVS and reduced VS). The main components are the time for allocating VNFs and
the time for creating intra-PoP networks, with the latter being of the same order as that
obtained for the EVS service with two CD VNF instances, since there is only a single
PoP involved.

2.5 Field Trial Performance Results 35

Fig. 2.9 Service creation time for the different considered NFV-NSs and ILs

2.5.3 Service-level scaling – Phase 2

As mentioned, in Phase 2 an EVS service creation request arrives at the 5GT-VS, but this
vertical is already running two VSs (i.e., full-fledged and reduced VS) that consume most
of the available resource budget. As a consequence, the Arbitrator decides to terminate
the full-fledged VS service to make resources available for the (higher priority) EVS
service.

Fig. 2.10 shows the three components of the service-level scaling time. First, the
Rx-to-decision time accounts for the time it takes to the Arbitrator to realize that the
new service request does not fit in the vertical’s budget and to decide to terminate the
full-fledged VS service. This is the smallest component, since it only involves internal
processing inside the 5GT-VS (165 ms on average). Out of this time, 45% (on average) is
spent inside the Arbitrator module. Second, VS service termination accounts for all the
operations (including interactions) carried out into the 5GT platform stack to remove the
inter-PoP logical links, to terminate the VMs, and to terminate the intra-PoP networks
created in the PoPs. These interactions are triggered by a message from the 5GT-VS
to the 5GT-SO once the decision has been made at the Arbitrator, and it involves the
SOE, the wrapper, the core MANO platform, the ROE inside the 5GT-SO and its
interaction with the 5GT-MTP. The latter, in turn, interacts with the underlying network

36 Automated Service Provisioning and Hierarchical SLA Management in 5G Systems

Fig. 2.10 Service-level scaling time

infrastructure (WAN controllers) and Openstack instances of the involved PoPs (acting
as VIMs). Finally, the databases at all layers are also updated. The whole process takes
on average 52.020 s. Third, once enough resources are freed for the new service, the EVS
instantiation phase accounts for the deployment of the EVS service (80.009 s on average).
In this case, the deployed EVS NFV-NS counts a single instance of the CD VNF. As
shown in Fig. 2.10, the addition of these three components (Rx-to-instantiation) results
in a total average of 132.194 s, from the reception of the high priority service request to
its instantiation after having terminated other low priority service.

2.5.4 Resource-level scaling – Phase 3

We also evaluated the resource-level scaling process by the 5GT-SO, according to the
auto-scaling rules that are generated as a consequence of the evaluation presented in
Sec. 2.5.1.

Fig. 2.11 shows the components of the scale-out operation for the EVS service. Out of
the total scale-out time (30.862 s on average), the largest time component corresponds to
the deployment of a new instance of the CD VNF in a VM (see Wrapper apply component
of Fig. 2.11). In this case, this step (30.481 s on average) accounts for the time from
requesting scaling to the wrapper (sent by other building blocks of the 5GT-SO), the
interaction with OSM and the 5GT-MTP, and the interaction with Openstack to deploy

2.5 Field Trial Performance Results 37

Fig. 2.11 Scale-out breakdown time analysis for the EVS service

the new VM and to attach it to the corresponding intra-PoP network. The remaining
components are much smaller (tens or hundreds of ms), as depicted in Fig. 2.11 (notice
the applied logaritmic scale). First, the SOE processing (33.8 ms on average) measures
the time the SOE takes to handle the scaling request coming from the SLA Manager as a
consequence of an alert being triggered at the 5GT-MON. This alert (and the associated
monitoring job) was previously configured at instantiation time based on the scaling
rules (and monitoring jobs) in the NSD of the EVS service. Database update operations
are also included in the SOE processing time. Second, the ROE processing (161.8 ms on
average) accounts for the time it takes to prepare all the information to be sent to the
wrapper to switch from the initial EVS (the running service) to the scaled-out EVS (with
an additional CD VNF instance to balance the vertical service load). Furthermore, the
ROE is also in charge of creating the new logical links between the new CD VNF and
the rest of VNFs of the service (in the same way it was done at the instantiation time for
the original one) to maintain the service logic for the vehicles that are going to be served
by the new VNF. Third, Wrap decision (163.9 ms on average) accounts for the time to
prepare/translate the scaling request received by the wrapper to trigger the associated
procedure at the core MANO platform (i.e., OSM). Finally, update monitoring (16.3 ms
on average) measures the time to update the monitoring jobs to also monitor the new

38 Automated Service Provisioning and Hierarchical SLA Management in 5G Systems

Fig. 2.12 Scale-in breakdown time analysis for the EVS service

created CD VNF instance and to make this data accessible through the corresponding
interface.

Fig. 2.12 shows the components of the scale-in operation for the EVS service. in
Fig. 2.12. This is the process through which the 5GT-SO autonomously decides to
downscale the resources assigned to the service by changing the scaled-out EVS to the
initial EVS IL with only one CD VNF. The scale-in process is triggered by the 5GT-MON
by noticing that the CPU consumption is below a certain threshold. The process is
equivalent to the above one but for freeing resources (logical links and VMs) instead
of creating them. Terminating services and freeing resources (scale in) takes less time
(21.051 s on average) than allocating resources (30.862 s on average for scale out), as
can be observed in Fig. 2.12. More specifically, all components described above other
than those related with the core MANO platform (i.e., OSM) are very similar: (i) SOE
processing (33.5 ms), (ii) ROE processing (163.7 ms), (iii) Wrap decision (157.9 ms), and
(iv) Monitoring update (15.0 ms). However, the main component (Wrap apply), related
to releasing the resources by interacting with the 5GT-MTP (and Openstack), is 10 s
smaller (20.676 s vs. 30.481 s on average).

2.6 Related Work 39

2.6 Related Work

Several resource and service orchestration solutions have been investigated (both within
and outside NFV scope) to effectively improve user experience and SLAs [26, 27]. SLA
management is also a quite well-investigated topic within network and service management
in different areas, e.g., cloud computing [28], enterprise networks [29], web services [30],
and considering multi-domain scenarios [31]. Nonetheless, an important challenge still
needs to be addressed: how to automate SLA management operations to avoid, or
promptly respond, to possible agreement violations. Existing solutions to this issue often
differ in the level of dynamicity of the considered context, i.e., how quickly the resource
usage changes. Most of them, however, focus on making monitoring and enforcement
tasks as flexible as possible [32].

In the context of network slicing and of the NFV ecosystem, SLA management
has mainly focused on the automated scaling of network services, performed by NFV
orchestrators to meet the target KPIs despite load surges [33]. In particular, most works
have dealt with mechanisms based on virtual resource usage prediction [34], or strategies
for virtual resource reallocation [35]. In these cases, policy-based rules and input data
used for triggering scaling are provided manually for each network service. In [36], scaling
rules are specified in the network service descriptors, which is indeed a preferable option
toward more agile and less error-prone scaling solutions in automated slice management
operations. In [37], an autonomic policy-based network service deployment with SLA is
presented where high-level parameters (performance, availability, security) specified in
the SLA are linked to low-level requirements encapsulated in the respective policies. The
policy associated with a network service-level SLA is included in a specific descriptor that
is created, validated, and uploaded to a catalogue and then applied when the network
service is instantiated. Other scaling solutions rely on Artificial Intelligence (AI)-assisted
operations to adapt slice or VNF capacity under varying user demand [38] or while
minimizing the waste of resources [39].

Recently, consensus has emerged on the need for a network slicing-aware NFV
orchestration where management and orchestration functionalities are extended to the
slice level (i.e., managed at the telco OSS/BSS), so as to handle end-to-end operations and
efficiently address SLAs negotiated with verticals [40]. The study in [41] addresses the
modeling, deployment, and orchestration of an end-to-end network slice, which includes
the RAN, core, and transport network. Slice management functions are performed

40 Automated Service Provisioning and Hierarchical SLA Management in 5G Systems

through the Open Network Automation Platform (ONAP) 3, and the authors propose an
architecture to enforce negotiated SLAs. This solution exploits monitoring information
and the policy enforcement component from ONAP to realize automated closed-loop
management, while scaling operations are presented at the conceptual level. A data-
driven approach for intelligent slice management is presented in [42]. Therein the
authors propose a framework for data-driven slicing resource provisioning, including the
development of slice traffic predictors, resource allocation models, and constrained SLA
enforcement. Both the above works, however, address SLA during slice deployment (i.e.,
SLA enforcement), while they do not focus on scaling operations. Additionally, some
recent works have envisioned SLA solutions in the context of network slicing for 5G
services, also leveraging AI-based solutions. Most of them, however, address SLA from a
theoretical point of view [43–46], or, even if they present operational solutions to NFV
orchestration, they focus on the service deployment phase without specifically addressing
scaling operations [47, 48].

To the best of our knowledge, there exist only few works on the application and
benchmarking of SLA management in combination of scaling operations, triggered by
management and orchestration platforms (MANO) in experimental setups. In addition
to the system evaluation we present, and demonstrated in [21], our framework is designed
to integrate a hierarchical SLA management in NFV orchestration, involving multiple
levels at which service scaling can be handled.

In this context, relevant works to ours are [49][50]. The study in [49] presents a
benchmarking analysis with respect to scaling, between the SONATA MANO platform
and other open-source MANO solutions like OSM and Cloudify. In [49], however, the
SLA management is performed at the NFV-NS level only, unlike in our work where
this is just one of the possible levels at which we can act. [50], instead, presents an
integrated SLA management framework within the SONATA MANO platform for real 5G
environments, aiming at binding business requirements between network operators and
verticals, with measurable attributes. The framework proposed therein is demonstrated
as a web and multi-platform application that allows the management of the whole SLA
lifecycle for a network service. After the network service instantiation into a network
slice, the SLA framework is populated with infrastructure monitoring information, in
order to assess the agreement with real-time usage data, and efficiently avoid or manage
possible violations. However, the scaling needs of the verticals or shared slice subnets are
not considered in the scaling process.

3https://www.onap.org/

2.6 Related Work 41

Ultimately, most of the above previous works on SLA management focus on the
network service and the resource level, with the aim to let them adapt to the time-varying
resource demand as well as resource availability from the underlying infrastructure. To
our knowledge, none of them accounts for the vertical services and the application level,
or takes into account dynamic changes in the service demand and/or in the application
needs.

As far as service arbitration is concerned, a large body of work has addressed call and
service admission control in the context of wireless networks, focusing on radio resource
allocation (see, e.g., [51], or [52] for a survey on this topic). Relevant examples of works
on resource allocation include [53, 54]. In particular, [53] leverages reinforcement learning
to proportionally allocate budget-constrained radio resources to competing services whose
properties are partially unknown at the time of decision making. [54], instead, introduces
methods for computational resource arbitration among virtual networks within a node,
and for migrating network functions among nodes within a virtual network. Note however
that, unlike resource arbitration in 5G, to the best of our knowledge the problem of
service arbitration aimed at guaranteeing the SLAs between verticals and the 5G provider
has not been previously tackled. Indeed, none of the existing studies have considered
the support of vertical services in a 5G network, accounting for SLAs in place between
verticals and network provider. This scenario implies not only a finite resource budget
for a set of services, but also that resources are properly allocated (i) using a coarse
knowledge of the resource status such as that available from a business perspective, and
(ii) in a way that the allocation itself can be varied over time so as to adapt to the
network and services dynamics as well as to the target KPIs specified by the verticals.
An initial study on such aspects was presented in our conference paper [55].

In summary, though previous works dealt with various aspects of SLA management,
this has been done in a quite focused way for the specific problem at hand. When moving
to complex and heterogeneous virtualized networks, the number of network components,
and most importantly, of architectural objects to manage (e.g., vertical service, network
slice, network service, virtual function, virtual link) substantially increases. This also
has implications in the layers and entities included in the MANO stack (see Fig. 2.1).
Therefore, when deploying a given service, typically there exist SLA constraints involving
different architectural objects associated to different architecture layers and stakeholders
(e.g., verticals, service providers, operators, infrastructure providers). Unlike previous
studies, our work presents a global hierarchical framework for SLA management that
is capable of handling SLA at various layers, it is hence concerned with various key
architectural objects related with the vertical service, network slice, and network service

42 Automated Service Provisioning and Hierarchical SLA Management in 5G Systems

(including associated resources). Furthermore, the understanding of the dynamics of
SLA management and scaling procedures in operational deployments and the availability
of representative datasets allow for an efficient integration in our proposed approach of
functional AI-based solutions, as presented in [56].

2.7 Conclusions

5G networks have expanded the scope of traditional mobile networks to support the
digital transformation of vertical industries such as automotive, factories, media, e-Health,
and robotics. It follows that nowadays telco providers need to simultaneously deploy and
manage multiple vertical services over a shared mobile network infrastructure. In this
chapter, we presented a hierarchical service and SLA management framework, which
leverages service scaling mechanisms at different levels, namely, application-, service- and
resource-level, and we have implemented the proposed framework and different scaling
functions over the 5GT platform. We demonstrated the performance of our solution
using a proof-of-concept testbed. Our results, obtained through the real field tests with
relevant automotive vertical services, show the feasibility of the proposed solution and
its ability to automatically deploy and update service instances, while fully meeting the
established SLAs. Importantly, the hierarchical service and SLA management framework
presented here has been adopted as a baseline solution for future 5G vertical industry
technology developments, as the ones considered in the 5Growth project [57][58].

It is important to mention that the 5G-TRANSFORMER project has been participated
by many academic institutions, research centers and industrial companies in Europe, each
with their contribution to the project. The work presented in this chapter, specifically
the SLA management framework and the Proof-of-Concept development and testing,
focuses on the author’s original contribution but it would not have been possible without
the contribution of the various partners.

In the next chapter, we will use the 5Growth platform, derived from the 5G-
TRANSFORMER project, to develop the ML-as-a-Service (MLaaS) concept. Indeed,
Machine Learning is envisioned as the technology needed to make networks predictive
and proactive, essential features for truly autonomous networks. We will propose the
MLaaS Platform, a new component of the 5Growth architecture able to train and serve
ML models to other elements of the architectures to enhance their decision-making
capabilities. We will propose two ML-driven algorithms as examples of the policies that
can be enabled by the MLaaS Platform, namely the network slice subnet sharing, and,

2.7 Conclusions 43

once again, the service scaling. The main difference with the service scaling as proposed
in this chapter is that now the scaling command will not be directly generated by the
5GT-SO when a predefined CPU load threshold is reached, but will be provided by an
ML model specifically trained to prevent SLAs violations.

Chapter 3

ML-driven Provisioning and
Management in Automated Cellular
Networks

One of the main tasks of new-generation cellular networks is the support of the wide
range of virtual services that may be requested by vertical industries, while fulfilling their
diverse performance requirements. Such a task is made even more challenging by the
time-varying service and traffic demands, and the need for a fully-automated network
orchestration and management to reduce the service operational costs incurred by the
network provider. In the previous chapter, we tackled these problems by proposing
a framework able to meet Service Level Agreements (SLAs) by leveraging the service
scaling mechanism. Instead, in this chapter, we address these issues by proposing a
softwarized 5G network architecture, based on the 5G-TRANFORMER architecture from
the previous chapter, that realizes the concept of ML-as-a-Service (MLaaS) in a flexible
and efficient manner. The designed MLaaS platform can provide the different entities of
a MANO architecture with already-trained ML models, ready to be used for decision
making. In particular, we show how our MLaaS platform enables the development of
two ML-driven algorithms for, respectively, network slice subnet sharing and run-time
service scaling. The proposed approach and solutions are implemented and validated
through an experimental testbed in the case of three different services in the automotive
domain, while their performance is assessed through simulation in a large-scale, real-world
scenario. In-testbed validation shows that the use of the MLaaS platform within the
designed architecture and the ML-driven decision-making processes entail a very limited

3.1 Introduction 45

time overhead, while simulation results highlight remarkable savings in operational costs,
e.g., up to 40% reduction in CPU consumption and up to 30% reduction in the OPEX.

Part of the work described in this chapter has been already published in C. Casetti
et al., "ML-driven Provisioning and Management of Vertical Services in Automated
Cellular Networks," in IEEE Transactions on Network and Service Management, doi:
10.1109/TNSM.2022.3153087, ©2022 IEEE.

3.1 Introduction

5G systems have been touted as capable of delivering an advanced platform primed
to cater for vertical services, creating an ecosystem ripe for technical and business
innovation. This crucial selling point for 5G has been addressed, in the years leading
up to its commercial deployment, by several research projects attempting to identify
challenges, problems and requirements of vertical industries that could be targeted by
5G capabilities. The ‘5G Promise’ hinges, first and foremost, upon the ability to create
an interface that effectively matches offer and demand between a network provider and a
vertical, its customer. In other words, high-level Service Level Agreement (SLA) business
requirements for the service instances that a vertical requests, must be mapped onto
slice- and infrastructure-related requirements, which are reflected by the underlying
network-level setup.

Among the projects [59, 58] that have addressed Machine Learning (ML) in the
context of 5G networks, 5Growth [58] has sought to take this mapping one step forward,
by applying ML capabilities to both the characterisation of the network context where
traffic slices are deployed, and to the scaling of instantiated virtual services vis-a-vis
unexpected surges in resource demand. To this end, we enhance the 5Growth architecture
with an ML-as-a-Service (MLaaS) platform.

Leveraging a modular design, the MLaaS platform is equipped with a computing
cluster that supports a large variety of ML models, which are uploaded to be trained
and whose lifecycle is seamlessly managed. An interface with a monitoring platform
collecting real-time data through Kafka feeds data to the model. Such ML models are
then used for fully-automated service provisioning and management within the 5Growth
architecture, a paradigm that is widely recognized as highly needed for 5G-and-beyond
networks [60, 61]. In particular, looking at the virtual services requested by a vertical, we
leverage the ML models to address two important challenges: (i) when and how to share

46 ML-driven Provisioning and Management in Automated Cellular Networks

network slice subnets among concurrent service instances, and (ii) when and how to scale
such services, while accounting for both key performance requirements and OPEX.

We do so by providing the following main contributions:

• Architectural design: we define the internal architecture of the MLaaS platform,
as well as enhancements to the 5Growth Vertical Slicer and Service Orchestrator
entities, and the corresponding workflows, enabling the use of trained ML models
for fully-automated service provisioning and management;

• Algorithm design: we introduce two ML-driven algorithms solving the problem
of, respectively, network slice-subnet sharing [62] at the Vertical Slicer and run-
time service scaling [63] at the Service Orchestrator. Both algorithms can swiftly
adapt to time-varying load conditions, by leveraging the output of ML models to
dynamically set their driving input parameters;

• Experimental testbed validation and performance results: we demonstrate the feasi-
bility of our approach through a testbed implementing the whole 5Growth network
architecture and the workflows between the aforementioned entities. Experimental
results show the reduced impact of the ML-driven approach in terms of overall
service instantiation and scaling time. Further, we assess the performance of the
proposed ML-driven algorithmic solutions through simulations in a large-scale,
real-world scenario, achieving up to 40% reduction of resource consumption in the
case of slice-subnet sharing, and about 30% reduction of the OPEX in the case of
service scaling.

As better discussed in Sec. 3.8, the scope of our work and the solutions we present differ
substantially from existing research on network slicing and resource allocation. Unlike
previous work, we address network slice-subnet sharing among different services, rather
than resource allocation sharing among different network slices. Moreover, while designing
our service scaling scheme, we account for both SLA violation costs and operational costs,
beside time-varying traffic load demands. In both cases, we design a novel architecture of
the 5G network platform that can effectively leverage MLaaS for fully-automated service
provisioning and management. Finally, as already mentioned, we provide a complete
evaluation of the proposed framework that not only shows the performance of our solution,
but also validates the interaction and functional synergy between the 5G architectural
entities.

The rest of the chapter is organized as follows. Sec. 3.2 introduces the recent 3GPP
standards for slice management and describes how the 5Growth network architecture,

3.2 Network Platform Architecture 47

including our MLaaS platform, provides a custom implementation of such standard
specifications. Sec. 3.3 provides an overview of the proposed solutions for (i) network
slice-subnet sharing and (ii) runtime slice adaptation to dynamic traffic conditions. The
two solutions are then detailed in Sec. 3.4 and Sec. 3.5, respectively. Both experimental
results obtained through the testbed we developed and simulation results in a large-scale
scenario are shown in Sec. 3.7, for the automotive services described in Sec. 3.6. Finally,
Sec. 3.8 discusses previous work, while Sec. 3.9 draws some conclusions.

3.2 Network Platform Architecture

This section presents some preliminaries on the 3GPP architecture for network slice
management and orchestration, as well as for data analytics functions supporting closed-
loop, cross-layer network control automation (Sec. 3.2.1). This allows us to highlight
how the design of the proposed MLaaS platform, and its interactions with other 5G
network entities, is fully compliant with 3GPP standards. We then present the 5Growth
architecture [58, 64], mapping its components into the relevant ones of the standard 5G
Management System (Sec. 3.2.2). Finally, we detail the architecture of our proposed
MLaaS platform and how this addresses the need for ML models for fully automated
service management, network orchestration, and resource control within the 5G network
architecture (Sec. 3.2.3).

3.2.1 3GPP management system and data analytics

Network slicing is one of the key features of 5G networks that allows creating multiple and
concurrent logical networks, called network slices, over a shared physical infrastructure,
each of them with its own key performance indicators (KPI) requirements, and security
and isolation guarantees. An end-to-end 5G network slice spans both the radio access
network and the 5G core network, and it includes a number of Network Functions
(NF) which can be virtualized, deployed, orchestrated, and managed through the 5G
Management System. As per 3GPP standards, a network slice subnet is a representation
of the management aspects of a set of NFs managed through the 5G Management System
and their required resources (e.g., compute, storage, and networking resources). These
NFs, when virtualized, can be modelled as Virtual Network Functions (VNFs) and they
can be combined together in an NFV Network Service (NFV-NS). In this sense, the

48 ML-driven Provisioning and Management in Automated Cellular Networks

NSMF

…MnS MnS

NSSMF

…MnS MnS

MDAF

…MnS MnS

CSMF EGMFGM

… MnSMnS

NFMFNFM

… MnSMnS

NFNF

… MnSMnS

MnS: Management Service

CSMF: Communication Service Management Function

EGMF: Exposure Governance Management Function

NFMF: Network Function Management Function

NF: Network Function

Fig. 3.1 3GPP Service Based Management Architecture [65], including the MDAF block for
fully-automated service management and resource orchestration.

NFV-NS provides the real implementation and deployment of a network slice subnet, i.e.,
a network slice subnet instance (NSSI), in the virtual infrastructure.

The latest 3GPP standards [65] propose a Service Based Management Architecture
(SBMA) for the 5G Management System (see Fig. 3.1), which includes Management
Functions to deliver a variety of Management Services (MnS) to handle the management
of single functions (NFMF), slices and communication services, as well as the exposure of
the various services towards external entities (EGMF). In particular, the SBMA includes
a Management Data Analytics Function (MDAF) to provide analytics services in support
to automated network management and orchestration decisions. These decisions drive
the logic of the Network Slice and Network Slice Subnet Management Functions (NSMF
and NSSMF), which are in charge of handling the lifecycle of the 5G network slices and
the orchestration of their resources across the various NSSI realizing an end-to-end slice.

At last, notice that the MDAF consumes monitoring data or records retrieved from
the network and its management system, e.g., related to existing network slices and
network service requests, or VNF performance, and yields analytics results to drive
decisions related to the lifecycle management of network slices or the orchestration of
network services.

3.2.2 The 5Growth architecture: a custom implementation of
the 3GPP management system

The 5Growth architecture, depicted in Fig. 3.2, is based on a hierarchy of functional
elements operating at the different layers of a 5G network management system, from

3.2 Network Platform Architecture 49

vertical service and network slice management, down to the orchestration of NFV services
and infrastructure resources. They offer the management and orchestration (MANO)
functionality [66] required to handle the lifecycle management of all architectural objects
involved (i.e., vertical services, network slices, network slice subnets, NFV composite and
nested network services, VNFs, and virtual links).

These management elements are assisted in their decisions and automated actions
by an MLaaS platform (5Gr-MLaaSP), which is used to build ML models trained with
multisource data collected through a cross-layer monitoring system. Thus, the 5Gr-
MLaaSP prepares the models that drive the closed-loop actions taken at the different
architectural layers on the basis of a multi-variable real-time context derived from the
records maintained at each layer (e.g., for service demands, network slice instances,
and their subnets) as well as from real-time monitoring data (e.g., on virtual resource
consumption). In more details, the 5Growth architecture includes three functional
elements: the Vertical Slicer (5Gr-VS), the Service Orchestrator (5Gr-SO), and the
Resource Layer (5Gr-RL).

ML as a Service Platform (MLaaSP)

Vertical-

oriented

Monitoring

System

(VoMS)

Vs-Mo

So-Mo

Rl-Mo

Mo-AI/ML

Data Plane (5Growth Infra.)

(RAN/Edge, Transport, Cloud, Core)

Fig. 3.2 The 5Growth architecture.

The 5Gr-VS handles the lifecycle of vertical services, their mapping into end-to-
end network slices, and the provisioning and management of the slice subnets. The
Vertical Service Management Function (VSMF) of the 5Gr-VS processes requests for
Vertical Service Instances (VSI), defined through vertical service descriptors specifying

50 ML-driven Provisioning and Management in Automated Cellular Networks

the desired characteristics in terms of application-level parameters. On the basis of
such characteristics, the VSMF identifies the Network Slice Instance (NSI) required
to properly host the service, implementing the functionalities of an extended, vertical
service-aware Communication Service Management Function (CSMF) within the 3GPP
Management System. The provisioning of a network slice is handled by an enhanced
NSMF embedded in the 5Gr-VS. This procedure involves the creation of the NFV-NSs
implementing the NSSIs composing the end-to-end NSI associated with the VSI. These
5Gr-VS functionalities provide a concrete, custom and data-driven implementation of
the 3GPP NSMF and NSSMF components, which coordinate the instantiation and
deployment of the NFV-NS corresponding to NSSIs over an NFV MANO-like system
represented by the 5Gr-SO. Each NFV-NS is deployed with the deployment flavour and
instantiation level (IL) able to guarantee the vertical service requirements specified in the
original request. Network slice subnets can be shared among multiple slice instances and,
thus, among multiple service instances. Where needed, the 5Gr-VS may also trigger their
scaling (i.e., modifying the IL of the corresponding NFV network services) to properly
host additional vertical service instances. Sec. 3.4 describes the ML-driven solution
implemented to decide how to efficiently share network slice subnets among concurrent
vertical services with different latency requirements.

The 5Gr-SO handles the lifecycle management of NFV-NSs that build the slice
subnets. For this purpose, it can handle both regular and composite NFV-NSs. It
receives the NFV-NS requests from the 5Gr-VS and the available resources in the
infrastructure from the 5Gr-RL (see below), and maps such requests over the infrastructure
to fulfill their requirements, including sending requests for configuring virtual function
inter-connectivity through the transport network. In this direction, it coordinates the
automated provisioning, monitoring, AIML model set up, and scaling of the virtual
functions that compose the NFV-NS, according to model outputs.

The 5Gr-RL implements resource allocation operations in the underlying NFV infras-
tructure, abstracting the capabilities of the access, transport, and edge/cloud computing
resources exposed to the 5Gr-SO. A Vertical-oriented Monitoring System (5Gr-VoMS)
collects metrics and logs from these three functional elements, implementing a centralized
and multi-layer monitoring platform. 5Gr-VoMS stores data related to the usage of
physical and virtual infrastructure resources, to measure the performance of NSSIs or
end-to-end network services, or service-level metrics collected from vertical applications.
Monitoring data is used to feed the decision engines at each layer and, in particular, is
used as input for the 5Gr-MLaaSP to build training datasets. The 5Gr-MLaaSP consti-
tutes the 5Growth concrete implementation of the MDAF within the 3GPP Management

3.2 Network Platform Architecture 51

System. More specifically, in this work, the 5Gr-MLaaSP is used to build trained ML
models to support decisions about two orchestration actions performed at different levels
of the 5Gr architecture, namely, network slice-subnet sharing and NFV-NS scaling at the
5Gr-VS and 5Gr-SO levels, respectively.

The multi-layer nature of the 5Growth architecture is fully compliant with the
principles of the control loop applied at different layers of the 3GPP Management System
[67], as represented in Fig. 3.3, with the mapping to the 5Growth components. In the
5Growth architecture, the 5Gr-VS and 5Gr-SO make decisions and enforce actions at
the level of network slices and NFV network services, respectively, thus operating at the
network slice level and at the network slice subnet level. In fact, in 5Growth the NSSIs
are built and operated as NFV network services, where their internal lifecycle is managed
directly by the 5Gr-SO, while their composition and sharing in end-to-end network
slices is handled at the 5Gr-VS. Following this model, on one hand the 5Gr-VS makes
higher-level decisions that map the vertical service demand into network slices which can
be decomposed in cross-service subnets shared among multiple slice instances. On the
other hand, the lifecycle of the NFV network services building the single NSSIs is handled
at the 5Gr-SO level, which makes decisions and enforces actions for their automated
scaling. Both components are supported by the 5Gr-MLaaSP, which provides the data
analytics functionalities. The 5Gr-MLaaSP builds datasets for training ML models
using the multi-layer data collected by the 5Gr-VoMS. Such entity records statistics,
metrics and KPIs at different layers, from single VNFs, e.g., in terms of consumed virtual
resources or application indicators, up to NFV Network Services, Network Slices, and
Vertical Services.

In summary, our architecture (i) translates vertical service requirements into network
service requirements, and (ii) integrates ML in the management and orchestration
workflows. In this sense, our approach is in accordance with the ETSI NFV guidelines,
in which a generic architecture is devised to handle virtual services and virtual functions.
In other words, the internal logic of the service should be handled by the service itself,
while the architectural framework should deal only with services requirements that are
expressed through generic parameters (e.g., virtual link bandwidth, number of CPUs,
geographic location), and not through parameters that have to do with the specificity of
each service. This makes the proposed architecture able to cope with any type of service.

At the same time, however, the architecture also enables decisions to be made
depending upon the specific service. This is realized by downloading through the 5Gr-
MLaaSP open API, and then by running, a trained ML model that is suitable for the

52 ML-driven Provisioning and Management in Automated Cellular Networks

service at hand. Indeed, the 5Gr-MLaaSP features a library of ML models that are fully
aligned with the service offer of a given operator. Thus, by combining the generality of
the architecture with a rich set of ML models, our framework can handle any kind of
service, whilst also adapting to its specific operational goals.

Fig. 3.3 Closed-loop control applied to different management system layers [67] and mapping
onto the 5Growth architecture.

It is also worth noting that the 5Gr-MLaaSP design matches the most recent updates
in the internal architectures of the 3GPP data analytics functions (NWDAF - the
5G Core Network function for data analytics - and MDAF). In particular, the old
monolithic structure of the NWDAF is evolving in the latest versions of the 3GPP Rel. 17
specifications [68] to better fit the adoption of AI/ML techniques. Based on this model,
the NWDAF is split into two different logic functions: the former is devoted to the
training of ML models, with the capability of providing trained models towards external
functions, while the latter implements the analytics service, e.g., performing inference
and computing statistics or predictions. The NWDAF Analytics logical (AnLF) function
acts as consumer of the NWDAF Model Training logical function (MTLF), exploiting
its APIs for the discovery and exchange of trained models. A similar concept is applied
in the design of the 5Gr-MLaaSP that implements the MTLF functionalities, while the
decisions are delegated to other components of the 5Growth architecture that act as
consumers of the 5Gr-MLaaSP services. In detail, the 5Gr-VS and 5Gr-SO are both
in charge of retrieving the most suitable trained model from the 5Gr-MLaaSP (e.g.,
periodically or on-demand, based on the configured policies), which is then used to feed
the analytics algorithms responsible for decision making. This approach fully decouples
the training from the real-time analytics phase, allowing for autonomous updates of the
trained models.

3.2 Network Platform Architecture 53

Importantly, there are various timescales at which models may be updated. And
what is also relevant is when and how often models are actually used. As mentioned,
the framework allows gathering data for training/updating the models that are already
stored in the MLaaSP, and offering them to model consumers through open APIs. This
allows, for instance, that every time a new service is instantiated, the updated version of
the model is downloaded and run. Since dynamicity is also reflected in virtual services
being continuously deployed and terminated, the operator benefits from such updates as
new services are deployed.

3.2.3 MLaaS for automated network management

The architecture and the fundamental workflow of the 5Gr-MLaaSP we designed and
developed are depicted in Fig. 3.4, along with the other architectural entities with which
the main interactions take place. The main components of the 5Gr-MLaaSP are as set
forth below.

External Interface, through which an authorized external user can upload a model.
The model may be already trained and onboarded, or it may still need to be trained, in
which case, the user can provide a suitable dataset to be exploited for the training phase.
In both cases, the user can specify (i) the scope of the model, i.e., the type of decision-
making process to be used for (e.g., slice sharing, or service scaling), and (ii) the type
of service the model/dataset should be used for (e.g., vehicle collision detection, digital
twin). When the external user uploads a yet-to-be-trained model, it is the 5Gr-MLaaSP
that takes care of the training and records the corresponding timestamp and, potentially,
a validity time lapse. If no dataset is uploaded along with the model, the 5Gr-MLaaSP
exploits the data collected through the 5Gr-VoMS platform about, e.g., the NSSIs or the
network services performance. The configuration of the monitoring platform to gather
the monitored data, aggregate it (e.g., through Apache Kafka), and feed it as input for
real-time model execution can be properly set up. Models stored in the 5Gr-MLaaSP can
be accessed by a 5Growth architecture entity through an open Representational State
Transfer (REST) application programming interface (API).

Model Register, which records the models uploaded to the platform, their metadata,
and pointers to the stored models and associated files.

Lifecycle Manager, which is in charge of the models lifecycle. Upon the uploading
of a new model, it adds the corresponding entry to the Model Register and, if it is a
yet-to-be-trained model, it triggers the training process using the appropriate AI/ML

54 ML-driven Provisioning and Management in Automated Cellular Networks

framework. After a model is trained, the Lifecycle Manager monitors its status: it can
trigger a new training job either periodically, or whenever new data is available from the
monitoring platform.

Interface Manager, which processes the requests for ML models coming from the
architectural stack and forwards them to the proper block inside the computing cluster.

Computing Cluster, which is based on Apache Hadoop – one of the few enterprise-
grade frameworks guaranteeing high efficiency, concurrency, reliability, and availability.
It leverages Yet-Another-Resource-Negotiator (YARN) for the computing resources
management, and the HadoopDistributed File System (HDFS) for the storage of datasets
and models. The YARN cluster nodes have access to different ML frameworks, according
to the requested model type. Apache Spark is used to train classic supervised and
unsupervised models, while BigDL is used for Deep Neural Networks1.

5Gr entity

5
G

r-
V

o
M

S

5Gr MLaaS Platform

External interface for model onboarding

Apache Hadoop Cluster
Hadoop

Distributed
File System

Dataset
Storage

Model
Storage

BigDL

Spark MLlib

ML Lifecycle Manager

Interface Manager

ML Model Register

Return trained
model

Select the model,
dataset, requirements

(accuracy, training
time, training

periodicity

Collect
training data

Train and
store model

Submit
training job

Retreive
trained model

2

3

1

5

4

5

Fig. 3.4 5Gr-MLaaSP architecture and its interaction with other architectural entities.

The envisioned workflow is as follows:

1. Monitoring data from the 5Gr-VoMS can be continuously collected, reformatted,
and consolidated to build or update a training dataset. Training datasets are then
saved in the HDFS Dataset Storage;

1Note that the MLaaSP could be extended to leverage also Ray (https://ray.io/), which can be
used to pre-train reinforcement learning models.

https://ray.io/

3.3 MLaaS for Automated Network Management in the 5Growth MANO Stack 55

2. 5Gr-entities such as 5Gr-VS and 5Gr-SO trigger decision-making processes (e.g.,
slice-subnet sharing, service scaling) to support service lifecycle management oper-
ations (e.g., deployment, scaling) of a vertical service and its underlying network
service. To enact such decision-making processes, the 5Gr-entity requests to the
5Gr-MLaaSP the available model catalogue that suits each of the problems at
hand. The 5Gr-MLaaSP offers a set of available models, including already trained
models as well as models that can be trained on-demand, as indexed by the Model
Register. The 5Gr-entity selects the model, and may specify some requirements,
e.g., accuracy, training time, or training periodicity so that the Lifecycle Manager
can automatically keep the model fit;

3. In case the selected model requires to be trained, either because it has never
been trained, its validity has expired, or it needs to be updated, a training job
is submitted to YARN. If the requested model is ready to be used, it is directly
fetched from the Model Storage;

4. Using the proper dataset from the Dataset Storage, the model is trained using
either Spark MLlib, BigDL or Ray, depending upon the model type. The trained
model is then saved in the HDFS Model Storage, while the ML Lifecycle Manager
tracks the new trained model state and updates the Model Register accordingly;

5. The trained model is finally retrieved from the HDFS and returned to the requesting
5Gr-entity, which is responsible for its online execution.

We underline that, thanks to the ability to continuously collect data through the moni-
toring platform, the MLaaSP can update an ML model whenever necessary, or deemed
useful.

3.3 MLaaS for Automated Network Management in
the 5Growth MANO Stack

To highlight how management and orchestration procedures in 5G networks can benefit
from the MLaaS approach, we show how MLaaS is exploited at two different layers of the
5Growth stack, namely, the 5Gr-VS and the 5Gr-SO, to solve two different automated
network management problems. This is enabled by the available 5Gr-MLaaSP open
REST API, which allows consuming ML models from any external entity.

56 ML-driven Provisioning and Management in Automated Cellular Networks

With regard to the first management problem, the 5Gr-VS is in charge of handling
the vertical requirements, and in this sense, it deals with business relationships between
the 5Growth provider and its customer (the vertical). This vertical service requirements
are eventually translated into slice requirements by the 5Gr-VS, which is also in charge
of generating the most efficient NFV-NS requests towards the 5Gr-SO based on the slice
requirements. As detailed in Sec. 3.4, efficiency at this layer comes from NSSI sharing
[62]. That is, if two slices have similar requirements and have part of the slice/service
structure in common, instead of fully instantiating a new end-to-end slice, a slice subnet
may be reused, with consequent resource savings.

In particular, we focus on latency requirements, hence NSSI sharing requires careful
evaluation so that the target latency of both pre-existing and newly requested service
instances can be met. This is the reason why the 5Gr-VS embeds an algorithm for
classifying slice requests into latency classes as a function of the network context. However,
dynamically adapting to such a context (e.g., to the traffic handled by the service entities)
requires a careful definition of the latency classes, into which the requested services fall,
that are eventually used by the aforementioned algorithm. This is the problem that the
5Gr-VS solves with the help of the ML model provided by the 5Gr-MLaaSP. In fact,
at instantiation time, the 5Gr-VS requests, through the open API explained above, the
previously-trained model, stored in the 5Gr-MLaaSP database. That is, the 5Gr-VS
requests the model to solve the latency class definition problem. Once downloaded
(together with the auxiliary code needed to run the model), the 5Gr-VS continuously runs
the model to decide on the latency classes used depending upon the scenario conditions.

The second management problem that illustrates the flexibility of the MLaaS approach
is still related to fulfilling the vertical SLA requirements, but at the 5Gr-SO, the entity
that receives the requirements from the 5Gr-VS and matches them with the resources
made available by the underlying infrastructure. As discussed in Sec. 3.5, in this case the
focus is on online scaling of nested NFV-NSs [63] based on actual operational data (not
on requirements). As we go down the MANO stack, NSIs are requested in the form of
composite NFV-NSs to the 5Gr-SO, and NSSIs hence become nested NFV-NSs.

Despite all the care taken when instantiating the service, there may be unexpected
situations that create a sudden demand (e.g., entailing a sudden virtual CPU consumption
increase) that could place SLA compliance at risk. Scaling is the solution we adopt
to react to such operational events. In a general scenario, there are multiple factors
affecting the scaling needs of virtual services. It depends upon the type of service and
the instantiation level under execution, their latency and CPU requirements, as well

3.4 ML-driven Slice-subnet Sharing for Efficient Service Provisioning 57

as the available resources from the underlying infrastructure. An ML-driven approach
helps leveraging all the relevant monitored data to make real-time automated decisions
based on the best instantiation level (IL) that should be running at each instant to fulfill
the service requirements based on the context in which the service is running. In this
direction, at instantiation time the 5Gr-SO, in coordination with the 5Gr-VoMS, deploys
the required probes to monitor the critical metrics. After that, the corresponding Kafka
topics are created to gather such metrics and feed them to the ML model. Such an ML
model follows exactly the same process as explained above, i.e., the 5Gr-SO requests to
the 5Gr-MLaaSP the model for solving the scaling problem for the services that are being
instantiated. Once it is downloaded, together with the auxiliary code, metrics are fed to
the model, which is continuously run by the SLA manager module inside the 5Gr-SO
to decide what is the correct IL for the running service. If such IL does not match the
current one, a scaling operation of the nested NFV-NS is triggered if convenient, when
both SLA violation costs and operating costs are accounted for.

3.4 ML-driven Slice-subnet Sharing for Efficient Ser-
vice Provisioning

We now present an algorithmic solution for NSSI sharing, named slice-subnet sharing
algorithm (SSA), which leverages an ML-driven parameter setting and is executed at the
5Gr-VS upon a new request made by a vertical for service instance deployment. After
providing an overview of slice-subnet sharing at the 5Gr-VS (Sec. 3.4.1), we detail the
SSA in Sec. 3.4.2, and describe how the SSA and the ML-driven configuration of the
latency classes are integrated in the 5Gr-VS in Sec. 3.4.3.

3.4.1 Slice-subnet sharing at the 5Gr-VS: An overview

To improve the efficiency of service deployment, it is of paramount importance to
avoid the deployment of new, unnecessary NSSIs, when verticals request to the 5Gr-VS
the deployment of service instances. Rather, already existing NSSIs should be reused
whenever possible and allowed by isolation and KPI constraints, so that fewer virtual
machines (VMs) are activated. On the other hand, sharing the same NSSI among services
with different target latency may result in wasted computational capacity, and, thus, in
higher operational costs. Indeed, when services with different latency constraints use
the same NSSI, the most stringent constraint will have to be met also for the traffic

58 ML-driven Provisioning and Management in Automated Cellular Networks

associated with the least demanding service. This entails a waste of computing resources,
which decreases with the increase in similarity among the values of the services target
latency. Intuitively, under a low computing load, it is more beneficial to share NSSIs,
even among services with quite different target latency, so as to fully utilize the already
operating computing resources. On the contrary, as the computing load increases, only
services with very similar target latency should share an NSSI, to avoid the waste of
resources highlighted above. However, understanding the level of slice-subnet sharing
that the 5Growth provider should allow under dynamic traffic and network conditions is
a hard task.

We address this challenging issue by developing a slice-subnet sharing algorithm at
the 5Gr-VS, which, as detailed in the next section, allows sharing an NSSI only if possible
and convenient. In particular, it determines whether reusing an NSSI is beneficial based
on whether services belong to the same latency class. Given an interval of possible target
latency values, we define as latency classes the set of non-overlapping latency ranges,
covering such interval. Clearly, the higher the number of latency classes, the smaller the
latency range covered by each class.

It is easy to see that the set of latency classes to be used is the critical factor that
drives the sharing algorithm: the narrower the latency classes, the more similar the target
latency of services that can share an NSSI; instead, the broader the classes, the wider
the difference in target latency of the services that can reuse the same NSSI. As detailed
in Sec. 3.4.3, given the complexity of the problem, the time-varying system load, and the
diverse types of services that the system has to deal with, we envision an ML-approach
to determine the best set of latency classes and feed them as input to the SSA. As a
result, the SSA is an ML-driven algorithm that leverages the output of a classification
model as input to make slice-subnet sharing decisions.

3.4.2 The slice-subnet sharing algorithm (SSA)

The SSA, presented in Algorithm 1, is executed at the 5Gr-VS every time a new service
s has to be instantiated. Beside the latency classes configuration, the algorithm takes as
input: (i) the newly requested service instance r, along with the set Vs of slice subnets v

composing the service, and the expected service traffic load λr; (ii) the target latency,
Dv

r , associated with each slice subnet v, its complexity factor θv indicating the amount
of virtual CPU (vCPU) required by v to process a traffic unit; and (iii) the maximum
computing capability, µ̄ρ, that can be allocated to an existing NSSI, ρ ∈ R. Then

3.4 ML-driven Slice-subnet Sharing for Efficient Service Provisioning 59

Algorithm 1 Slice-subnet Sharing Algorithm (SSA)
Input: Latency classes, request r = ⟨Vs, Dv

r , λr⟩, R, θv

1: Vr ← Vs ▷ Given service request r, initialize Vr to the set of slice subnets composing
the service

2: O ← ∅ ▷ Initialize the output set O to empty set
3: for all v ∈ Vr do
4: jv ← assign_latency_class(Dv

r) ▷ Determine the slice-subnet latency class
5: for all ρ ∈ N do ▷ For each running NSSI ρ in R
6: if (ρ implements v ∈ Vr) ∧ jv = jρ then ▷ Check if the NSSI implements a slice

subnet in Vr and its latency class
7: if θv[Λ(ρ) + λr] + 1

minr̂ Dρ
r̂
≤ µ̄ρ then

8: µρ ← θv[Λ(ρ) + λr] + 1
minr̂ Dρ

r̂
▷ Adjust capability of the NSSI

9: O ← O ∪ (ρ, µρ)
10: Vr ← Vr \ v

11: if Vr = ∅ then ▷ Check if all the slice subnets are instantiated
12: break
13: if Vr ̸= ∅ then ▷ If still slice subnets to instantiate
14: for all v ∈ Vr do
15: ρ← create_NSSI(v)
16: µρ ← θvλr + 1

Dr
v

17: O ← O ∪ {⟨ρ, µρ⟩}
18: return O

the algorithm initializes two sets: Vr to set Vs and the SSA output, O, to the empty
set (Lines 1– 2). O will eventually include tuples composed of two elements: the NSSI
identifier and the amount of computing resources assigned to the NSSI. Once identified
the latency class of each slice subnet v in Vr (Line 4), the algorithm looks for NSSIs
already instantiated that can be reused for the deployment of service request r. In
particular, the SSA determines whether any of the current NSSIs, ρ ∈ R, can be shared
with the new service, i.e., whether it implements a slice subnet that is included in Vr

and falls in the same latency class as the slice subnet in Vr (Lines 5–6).

For each shareable NSSI, ρ, identified by the SSA, the computing capability, µρ,
may need to be adjusted based on the current load of the NSSI (i.e., Λ(ρ)) and the
additional load associated with the newly requested service instance (i.e., λr), till the
maximum value µ̄ρ. This is done by modeling the processing time of a VM through an
M/M/1 queue, as done in [69–73] (Line 8). The tuple ⟨NSSI id, computing allocation⟩,
i.e., < ρ, µρ >, is then added to the output set (Line 9) and v is removed from the set Vr

of slice subnets to instantiate. The sharing process ends when either all existing NSSIs

60 ML-driven Provisioning and Management in Automated Cellular Networks

have been processed or all slice subnets have been instantiated, i.e., Vr becomes empty
(Line 11). Finally, if some slice subnets cannot share any existing NSSI, new NSSIs are
created, and the necessary computing resources are allocated (Lines 13–16).

3.4.3 ML-driven SSA parameter setting

To determine the best set of latency classes to be fed to the SSA, the 5Gr-VS interacts
with the 5Gr-MLaaSP, performing the steps depicted in Fig. 3.5 and detailed below:

1. The current number of deployed NSSIs and the resource utilization metrics (e.g.,
vCPU consumption) are fetched continuously from the 5Gr-VS Catalog and the
monitoring platform, so as to build datasets that can be used for updating the ML
model;

2. the ML model is trained and stored;

3. the 5Gr-VS Arbitrator block requests the trained model to the 5Gr-MLaaSP to be
used for determining the SSA input parameters when needed;

4. upon receiving a request for service instance deployment, the VSI/NSI Coordinator
within the 5Gr-VS passes the request to the Arbitrator;

5. the Arbitrator retrieves the number of currently deployed NSSIs from the 5Gr-VS
Catalog;

6. it then executes the trained ML model to determine the latency classes and pass
them to the SSA (running at the Arbitrator);

7. the SSA determines which NSSI(s) can be shared and whether the computing
resources assigned to an NSSI need to be adjusted; it then provides this information
to the VSI/NSI Coordinator, which triggers the service instantiation process at the
5Gr-SO.

3.5 ML-driven Service Scaling for SLA Management
and OPEX Minimization

In the previous section, slice-subnet sharing has been discussed as a use case of ML-
driven provisioning of vertical slices, exploiting the interaction between 5Gr-MLaaSP

3.5 ML-driven Service Scaling for SLA Management and OPEX Minimization 61

Fig. 3.5 Interaction between 5Gr-VS and 5Gr-MLaaSP, and 5Gr-VS internal structure.

and 5Gr-VS. We now focus on the 5Gr-SO, and its interaction with the 5Gr-MLaaSP, for
an ML-driven SLA management and OPEX minimization. After providing in Sec. 3.5.1
an overview of the proposed approach, we detail our algorithmic solution in Sec. 3.5.2,
and the design for ML-driven operations at the 5Gr-SO in Sec. 3.5.3.

3.5.1 Service scaling at the 5Gr-SO: An overview

The ultimate goal of the 5G network provider is to maximize the profit via minimizing
the operational expenditure (OPEX), which is mainly due to:

• The cost of NSIs (instantiated as NFV-NSs at the 5Gr-SO), such as VNF license
cost;

• The cost of operating NSI/NFV-NSs, i.e., the cost of keeping instances up and
running, such as energy cost;

• The SLA violation cost, i.e., the penalty that the provider should pay if the
maximum value of the target metric (in this case, latency), upon which the provider
and the vertical agreed, is violated.

The challenges for minimizing OPEX are twofold. First, these costs are conflicting; to
minimize the SLA violation cost, the provider should allocate sufficiently large resources
to handle the peak load of the service, which would significantly increase the instantiation
and operation cost. Vice versa, if the provider aimed to minimize the provisioning and
operation cost by allocating the minimum resources to the services, it would incur a
considerable SLA violation cost. Thus, the problem consists in finding the optimal

62 ML-driven Provisioning and Management in Automated Cellular Networks

trade-off between the costs, i.e., the optimum IL that minimizes the OPEX. The second
challenge is that the optimum IL depends upon the traffic load, which is time-varying,
and it is a non-trivial task to understand when scaling out/in should be performed and to
which IL, so as to avoid SLA violation costs. To address this latter point, we leverage an
ML-based approach and, as detailed in Sec. 3.5.3, we design the internal architecture of
the 5Gr-SO to accommodate ML-driven operations in an effective and efficient manner.

3.5.2 NFV-NS resource scaling algorithm

The resource scaling algorithm is a logic in the SLA Manager of the 5Gr-SO, which uses
an ML model, already trained and maintained by 5Gr-MLaaSP, to determine the suitable
IL of the NFV-NS.

Let us first introduce the mathematical expression for the aforementioned costs and
the problem we address. We denote the NFV-NS latency threshold and its associated
penalty, as specified in the SLA, by δ and p, respectively. Let τ be the service latency;
we define the cost for violating the SLA as:

σsla = p(τ − δ) . (3.1)

The NFV-NSs are composed of a number of VNFs, but there is typically a bottleneck
VNF that dominates the service latency, as also better highlighted in Sec. 3.6. Thus,
to comply with the SLA, the provider needs to scale in/out the bottleneck VNF. The
descriptor of the NFV-NS, specifies a set L of ILs where ∀l ∈ L corresponds to nl

instances of the bottleneck VNF. The cost of creating a new instance of the VNF is σins,
and the cost of using an instance per unit of time is σopr. There is no cost for termination.

Given a time period T , let N be the set of NFV-NS requests arriving in this period,
and C be the set of instances created during this period; moreover, let ti

c and ti
t be,

respectively, the instantiation and termination times of instance i. The objective is to
minimize the OPEX, defined as

OPEX =
Ø
r∈N

σr
sla +

Ø
i∈C

1
σins + σopr(ti

t − ti
c)

2
. (3.2)

As mentioned, to achieve such a goal, the network provider needs to find the optimum IL
to be applied at each time t ∈ T .

3.5 ML-driven Service Scaling for SLA Management and OPEX Minimization 63

To this end, we adopt the following approach. We first determine the required IL to
not violate the SLA through an ML model that has been trained within the 5Gr-MLaaSP
and delivered to the 5Gr-SO. The 5Gr-MLaaSP trains the ML model using a dataset
where the features are (i) average CPU utilization over the active instances ucpu, (ii)
average memory utilization uram, (iii) service latency τ , and (iv) current IL l; the label is
the target IL to satisfy the target latency. Then, in the operation phase, the following
steps are performed at every period j:

1. The monitoring data uj
cpu, uj

ram, τ j, and lj are collected;

2. The exponential moving averages of the monitoring data are updated as x̄ ←
αxj + (1− α)x̄;

3. The ML model runs using the averages ūj
cpu, ūj

ram, τ̄ , and lj, and provides lj+1
ml so

as to comply with the SLA (but without necessarily minimizing the OPEX);

4. The ML-Driven Service Resource Scaling (ML-RS) algorithm runs using lj+1
ml and

determines lj+1 that yields the best trade-off between the costs;

5. If lj ̸= lj+1, the SLA Manager triggers the scaling operation to deploy the new IL.

Though fast switching between ILs can decrease q
r∈N σr

sla and the operation cost, i.e.,q
i∈C

1
σopr(ti

t − ti
c)

2
, it incurs significant instantiation cost q

i∈C σins. To alleviate it, three
steps are taken into account in this solution. First, the monitoring period is large enough
to avoid triggering the scaling operation per request. Second, instead of instantaneous
monitoring data, we use the exponential moving average as input to the model. Third,
the ML-RS algorithm, presented in Algorithm 2, takes into account the SLA violation
cost, instantiation cost, and operation cost to obtain the target IL.

This algorithm, in addition to the IL suggested by the ML model, lj+1
ml , takes the SLA

violation and operation costs in this monitoring interval, which are respectively denoted
by Σj

sla and Σj
opr. It also takes the scaling direction SDj−1 suggested by the ML model in

the previous interval where SD = 0 implies no scaling, and SD > 0 (SD < 0) means
scaling out (in). The algorithm at the beginning (Line 1) finds the scaling direction
suggested by the ML model in this interval. If it is “scale out” but the model has
changed the direction, SDj−1 ≤ 0, the SLA violation cost of this interval is saved as
the accumulated SLA violation cost Σsla (Line 4). However, if the model is continuously
requesting to scale out, the accumulated SLA violation cost is updated and, if it is large
enough that implies it is beneficial to create new instances to decrease the violation cost,

64 ML-driven Provisioning and Management in Automated Cellular Networks

Algorithm 2 ML-Driven Service Resource Scaling (ML-RS)
Input: lj+1

ml , Σj
sla, Σj

opr, SDj−1

1: SDj ← sign(nlj − nlj+1
ml

)
2: if SDj > 0 then ▷ scaling out suggestion by ML model
3: if SDj−1 ≤ 0 then ▷ a new scaling out suggestion
4: Σsla ← Σj

sla
5: else ▷ ML model keeps requesting scaling out
6: Σsla ← Σsla + Σj

sla
7: if Σsla > βσins then ▷ large SLA violation cost
8: lj+1 ← lj+1

ml
9: else

10: lj+1 ← lj

11: else if SDj < 0 then ▷ scaling in suggestion by ML
12: if SDj−1 ≥ 0 then ▷ a new scaling in suggestion
13: Σopr ← Σj

opr
14: else ▷ ML model keeps requesting scaling in
15: Σopr ← Σopr + Σj

opr
16: if Σopr > γσins then ▷ large operation cost
17: lj+1 ← lj+1

ml
18: else
19: lj+1 ← lj

20: return lj+1

then, the suggested IL is selected (Line 10). In a similar way, when the model suggests
scaling in (Line 11), the algorithm decides to scale in only if the previous suggestion was
also scaling in and the operation cost is large enough.

The conditions in Lines 7 and 16 aim to let the trade-off between the costs, where
0 < β < 1 and 0 < γ < 1 are tunable parameters, depend upon the dynamics of the
traffic load. The higher the traffic load dynamic, the larger these parameters to avoid
too many instantiations and terminations by small changes in the traffic load. However,
if traffic load changes smoothly, the value of the parameters can be small to minimize
the SLA violation cost and the operation cost.

3.5.3 ML-driven 5Gr-SO design

In accordance with the discussions in Sec. 3.2, when instantiating an NFV-NS, the
workflow describing the interaction between the 5Gr-SO and 5Gr-MLaaSP follows a
model in which the MTLF and AnLF are located in different architectural entities.
More specifically, the 5Gr-MLaaSP trains the model based on the previously uploaded

3.5 ML-driven Service Scaling for SLA Management and OPEX Minimization 65

dataset and makes it available to external entities. The 5Gr-SO downloads the model
and continuously runs it during the lifetime of the service for which scaling decisions are
needed.

This high-level architectural idea requires multiple steps to be deployed, which
are mainly related to the configuration of a complete data engineering pipeline, since
monitoring job configuration and data collection until execution of the management
and orchestration procedure based on the decision made by the model. Thus, once
the complete pipeline is in place and integrated with the 5Gr-SO operation, the closed-
loop automated network management decisions can be made, since relevant metrics are
gathered and ingested by the ML model, which infers the best possible IL, which in turn
generates the corresponding scaling procedure, when needed.

More specifically, the workflow is as follows (see [74] for further details). At the end of
the NFV-NS instantiation process, the 5Gr-SO requests the 5Gr-VoMS to configure the
monitoring jobs for the service, as specified in its network service descriptor (NSD). If
the NSD also embeds an AI/ML information element (IE) for solving a specific problem
(in this case, scaling), the SLA manager inside the 5Gr-SO detects it and starts the
configuration of the data engineering pipeline.

First, a dedicated Kafka topic is created. Second, data scrapers are also created
together with the 5Gr-VoMS that filter the relevant information to be fed to the scaling
topic. After that, the model is downloaded from the 5Gr-MLaaSP/MTLF, and the SLA
manager creates an Apache Spark streaming job in charge of feeding the ML model with
real-time information (including the current IL) for scaling decision making (AnLF).
If the inferred IL by the model is different from the current one, a scaling procedure
requesting the change of the IL is triggered. Furthermore, during scaling procedure
execution, the model inference process is stopped to avoid unexpected transient effects
and is created again for the scaled service at the end of the scaling process.

It is worth mentioning that in the current system design, the model does not need
to be changed after a scaling operation 2. Indeed, all possible states (i.e., ILs) of the
service are considered during the training phase, and the monitored metric values related
to different instances are averaged during inference so that a single model can be used
regardless of the current IL3. The current approach has the advantage of scaling very
well with the number of possible ILs. On the contrary, handling multiple ML models as

2It is assumed that the service implementation provides the corresponding logic (e.g., load-balancing)
to effectively support the scaling operation.

3Note, however, that the current IL is an input to the model during inference.

66 ML-driven Provisioning and Management in Automated Cellular Networks

the value of service IL changes would require the download from the MLaaSP of as many
trained ML models as the number of ILs allowed for the service, with only one specific
model being used at a time according to the current IL value.

Fig. 3.6 Service structure: collision detection (left), see through (center), and destination-aware
bird-eye view (right).

3.6 Automotive Services

To validate our approach to network slice provisioning and management, we take as
reference services three relevant use cases in the automotive domain, namely, (i) vehicle
collision detection at intersections (CD), (ii) see-through (ST), and (iii) destination-aware
bird-eye view (DaBEV). The first two are representative of safety services, while the
third is an example of convenience services for vehicular users [75]. The three services
are depicted in Fig. 3.6 and detailed below.

Collision detection. The CD service detects vehicles on collision course and sends
them an alert message. It exploits two types of messages defined by ETSI: Cooperative
Awareness Messages (CAMs), which are periodically transmitted by vehicles and carry
the position, speed, acceleration, and heading of the sender, and the Decentralized
Environmental Notification Messages (DENMs), which are delivered to vehicles to notify
them about events or dangerous situations. The service includes the following VNFs:

the Cooperative Infrastructure Manager (CIM), which receives, decodes, and stores
CAMs sent by the vehicles within the area covered by the CD service (see step 1 in
Fig. 3.6(left));

the Trajectory and Detection Algorithm (TDA), which queries the CIMs for new
CAMs (step 2) and runs a trajectory-based algorithm (i.e., the one presented in [23] and
evaluated in [76]), to detect pairs of vehicles on collision course;

the DENM Generator , which, triggered by the TDA (step 3), encodes and sends
(unicast) alarm messages to the vehicles detected to be on collision course (step 4), so
that, e.g., the emergency braking system aboard vehicles can be activated.

3.6 Automotive Services 67

Upon requesting a CD service instance, the vertical specifies the geographical area
(e.g., set of intersections) that has to be covered and the estimated number of users to
serve. Also, since the CD should be combined with other collision avoidance mechanisms
based on physical sensors aboard the vehicles, the maximum target CD latency specified
by the vertical is set to 20 ms [20]. Notice that the dominant contribution to the service
processing time is due to the TDA, which is thus the botteneck VNF of the CD service.

See-through. It provides a real-time view of the surrounding area of the requester,
to avoid collisions when an overtaking manoeuvre is executed. The service includes:

the CIM and the TDA, which, as above, store the vehicle’s CAMs (step 1 in
Fig. 3.6(center)) and run the trajectory-based algorithm (step 2), respectively. Upon
detecting pairs of vehicles that would be on collision course if one of them moved to the
left lane, the TDA triggers the Video Server (step 3);

the Video Server, which fetches the video from the smart-city cameras providing the
best view of the surroundings of the tagged vehicles, and encodes and transmits video
frames to the vehicles (step 4);

the Video Controller, which reports periodically to the video server the video quality
to be used, based on the channel quality experienced by the vehicles;

the Radio Network Information Service (RNIS), which is co-located with the radio
point of access and exposes radio contextual information, namely, the Channel Quality
Indicator (CQI); unlike the above functions, it is implemented as a physical network
function (PNF).

The quality of the video should be high enough to guarantee at least a rate of 30
frames per second (fps), i.e., a good representation of the position and movements of the
involved vehicles, sacrificing the resolution if necessary and maintaining the maximum
latency below 150 ms [77]. In the ST service, it is the Video Server that exhibits the
highest level of complexity, followed by the TDA.

Destination-aware bird-eye view. It provides a real-time view of the area between
the requester and its intended destination, leveraging smart-city cameras located along
the vehicle’s route. It includes:

the Video Server, receiving the vehicle request (step 1), and fetching the smart-city
videos, encoding them, and transmitting the bird-eye view to the requester (step 2);

the Video Controller, providing, as above, the Video Server with the video quality to
be used;

68 ML-driven Provisioning and Management in Automated Cellular Networks

the RNIS, providing the video controller with the vehicles’ CQI; as before, it is
implemented as a PNF.

The ideal output should be a high resolution (e.g., 1920 × 1080) and low fps (e.g.,
7 fps), since this is a convenience service and does not have to provide the user with a
highly dynamic context. For each received request, the processing load on the Video
Server (which is the dominant VNF here) depends upon the number of input video
cameras from which a stream is required to represent the bird-eye view of the area of
interest. The maximum service latency is set to 1 s.

Given the above services, we consider that CIM and TDA VNFs form the Trajectory
Detection Slice Subnet (TDSS), while Video Server and Video Controller compose the
Adaptive Video Slice Subnet (AVSS). Finally, we remark that all the above services
require the use of a radio access network for vehicle-to-infrastructure connectivity.

3.7 Validation and Performance Evaluation

In this section, we first detail the real-world scenario we used to build our training
datasets, and to derive large-scale simulation results (Sec. 3.7.1). Then, through our
experimental testbed, we validate the interaction between the 5Growth entities (5Gr-VS
and 5Gr-SO) and the 5Gr-MLaaSP, as well as the proposed ML-driven algorithms for
slice-subnet sharing at the 5Gr-VS and run-time scaling at the 5Gr-SO, in a small-scale
scenario (Sec. 3.7.2). Finally, we show the performance results of both solutions, via
simulation in the aforementioned large-scale, real-world scenario (Sec. 3.7.3).

3.7.1 Large-scale reference scenario, datasets, and ML model

We consider an 11 km2 area of the city of Turin, Italy, comprising 24 major crossroads and
a total of 112-km road stretches. Vehicle mobility is simulated thanks to the Simulation
of Urban Mobility (SUMO) and the Turin SUMO traffic (TuST) trace [78]. As the
latter refers to 24-hour traffic in a weekday, we select 6 different time slots that are
representative of different vehicle densities during the day; the 14 metropolitan zones
included in the trace are depicted in Fig. 3.7. Also, we consider the Metro Node of
the cellular network as the point of presence (PoP) where service instances should be
deployed. The number of vehicles travelling on the whole area varies from 2,110 in the
3am–4am time slot to 32,117 in the 6pm–7pm time slot.

3.7 Validation and Performance Evaluation 69

Fig. 3.7 Large-scale scenario: Turin metropolitan area.

In the scenario under study, a different number of CD instances are requested by the
automotive vertical, depending upon the vehicle density in the considered time slots, and
the CD service is provided to all vehicles entering an intersection covered by such service.
Tab. 3.1 reports the relation between the average number of vehicles per km in the overall
geographical area, and the number of CD instances that have to be deployed. Unless
otherwise specified, upon entering the area, 50% of the vehicles request the ST service,
while 30% request the DaBEV service, and the arrival of requests for these services is
modeled as a Poisson process with a rate value set as in Tab. 3.1. The lifetime of the ST
and DaBEV is set according to the time taken by the vehicles to travel across the urban
area. Finally, we consider that each VNF is implemented in a VM, and each active VM
can use up to 8 vCPUs.

Table 3.1 CD instances in the considered area

Veh. density [veh./km] No. of CD instances Vehicle rate [veh./s]
1.10 1 0.59
3.04 3 2.24
8.36 8 6.79
11.04 9 7.11
12.11 10 8.09
15.38 11 8.92

For slice-subnet sharing, each simulation is performed for a given latency class
configuration, among the many that we have considered, and vertical’s request arrival
rate. Such data is then labeled so as to identify the best configuration with respect to the
CPU consumption. For service scaling, we experimentally derived three datasets, one for

70 ML-driven Provisioning and Management in Automated Cellular Networks

each of the considered automotive services. The testbed has been configured to run the
CIM, TDA, Video Server, and Video Controller in the machine accommodating the Edge
Host, which also runs a srsRAN virtualized LTE eNB. A second machine, which hosts
the UE, connects to the Edge Host through the LTE link and acts as a client generating
requests to the offered automotive services. The rate of such requests varies over time to
emulate the behaviour of multiple users. The CPU consumption is monitored at runtime,
while the end-to-end latency is computed offline by post-processing the experiment logs.
The final datasets are built adding as label the IL that can successfully handle the
computational load associated with each rate of user requests. We considered that each
service has two possibile ILs, hence the dataset (and the NSD) includes two labels:
“small IL” and “big IL”. To label the datasets, we set the target processing times for the
considered services to values that, based on our testbed experiments, allow meeting the
maximum latency reported in Sec. 3.6.

To perform the prediction of the best parameter values to use within the SSA and the
the ML-RS algorithm, we employed a Random Forest (RF) Classifier, which leverages
multiple decision trees at training time when predicting the correct label to assign
to unseen data. The output prediction of each tree is taken into consideration when
calculating the final label to assign via a majority vote. This method, called also bagging
or bootstrap aggregation, reduces the variance by decorrelating the output of the different
trees by choosing a subset of the predictors considered for each tree [79].

The trained ML models we use for determining the latency classes to feed to the
SSA and the IL to feed to the ML-RS algorithm are generated within the 5Gr-MLaaSP
using Spark, which leverages a pipeline approach, applying different transformations to
the considered dataset (i.e., normalization) combining them into a single workflow. A
hyperparameter search is performed on the model in order to obtain the best possible
result. The considered hyperparameters are: the maximum depth of the trees, the
minimum number of samples required to split an internal node, the minimum number of
samples per leaf node, the number of decorrelated trees generated during the training
phase, and the split criterion in the trees generation, whether is Gini index or entropy.
The values of such hyperparameters, along with the suitable ones, are reported in Tab. 3.2.
The test accuracy obtained using the best model hyperparameters for the slice-subnet
sharing model is equal to 0.9835, and the related confidence intervals are presented in
Tab. 3.3. Similarly, Tab.3.4 shows the results obtained training the service scaling ML
models.

3.7 Validation and Performance Evaluation 71

Table 3.2 Values of the hyperparameters of the RF model

Parameter Tested values Best value
Number of estimators {100, 200, 300} 100

Maximum depth [1, 10] 9
Minimum sample per split [2, 10] 2
Minimum samples per leaf [1, 5] 2

Table 3.3 RF model for slice-subnet sharing: confidence intervals

Confidence level Confidence interval
90% [0.98331, 0.98358]
95% [0.98331, 0.98364]
98% [0.98332, 0.98365]
99% [0.98332, 0.98545]

To find the best combination of hyperparameters, the model has been validated using
a k-fold cross validation method, which divides the training dataset in k groups and
generates k evaluation scores by training the model on k − 1 folds and testing it on the
remaining one. The final result is given by the mean of the calculated scores. We chose
k = 10 since it provides an estimate with low bias and modest variance.

The training phase, using a 26,000-sample dataset and including the very time-
consuming search for the best model hyperparameters configuration, lasted 45 minutes
using a machine with a 2.2 GHz Intel i7-8750H processor and a 16 GB DDR4 RAM.

3.7.2 In-testbed validation

We now present the validation of the interaction between the 5Gr-MLaaSP and the
5Gr-entities, as well as of the ML-driven decision-making processes at the 5Gr-VS and
the 5Gr-SO.

Testbed results for slice-subnet sharing at the 5Gr-VS. The in-testbed
validation at the 5Gr-VS demonstrates the feasibility of the proposed architecture and
of the ML-based slice-subnet sharing algorithm presented in 3.4.1. Further, it shows
that the impact on the life-cycle management actions, in terms of introduced delays, is
negligible. For this, we deployed the 5Growth MANO platform as per the architecture
depicted in Fig. 3.2. This platform is used to manage the collision detection (CD) and
see-through (ST) services described in Sec. 3.6. The 5Gr-VS of the experimental setup
implements the architectural blocks and the interaction introduced in Sec. 3.4.3. It is

72 ML-driven Provisioning and Management in Automated Cellular Networks

Table 3.4 Accuracy of the service scaling models

Service Model accuracy Confidence interval (95% CL)
CD 0.9918 [0.9914, 0.9921]

DaBEV 0.9912 [0.9906, 0.9919]
ST 0.9953 [0.9949, 0.9958]

configured with a default arbitration policy, which determines the trained ML to be
retrieved from the 5Gr-MLaaSP, it runs the model to determine the latency classes
configuration, and executes the SSA for slice-subnet sharing.

The tests performed to gather the results consisted in repeating ten times the
instantiation of the CD and the ST services. During the instantiation of the services at
the 5Gr-VS, we measure the statistical distribution of the time required to execute the
ML-based model and the SSA. Each run of the tests starts with the instantiation of the
CD service. During this operation, the 5Gr-VS maps the service to one NSI containing
two NSSIs: NSSI_A implementing the TDSS logic (i.e., TDA and CIM), and NSSI_B
implementing the DENM Generator logic of Fig. 3.6. Upon being executed, the SSA
determines that all the NSI and NSSIs of the CD service are to be provisioned since
there are no candidate slice subnets to be shared. Thus, the 5Gr-VS provisions the NSI
and NSSIs, and requests the corresponding network services to the 5Gr-SO.

Once the CD service has been deployed, the test proceeds with the instantiation of
the ST service. In this case the service is mapped to one NSI, and two NSSIs: NSSI_A
as before, and NSSI_C containing the AVSS (i.e., Video Server and Video Controller).
Given the latency constraints of the new service, in this case the SSA determines that
the NSSI_A can be re-used and the scaling actions to be performed to accommodate the
additional traffic demand.

Fig. 3.8 presents the results for the CD and ST services. The depicted boxplots cover
the experienced maximum, minimum, average, median, 20th and 80th percentile values
across the ten performed repetitions. We note that the same boxplot representation is
going to be used used in the boxplots graphs presented in the rest of this section. Fig. 3.8
shows that the delays introduced by the ML-driven latency class configuration and the

SSA are approximately equal to 2.5 s for both considered cases. This proves both the
feasibility of our approach for ML-driven service provisioning, and the reduced impact in
terms of overall service instantiation time.

Finally, we remark that, although the results presented in Fig. 3.8 do not account
for the time required to train the ML model within the 5Gr-MLaaSP, our experiments

3.7 Validation and Performance Evaluation 73

Fig. 3.8 Time (in seconds) of ML-driven service provisioning for the collision detection and
see-through services.

showed that the model training takes about 25 s, which is acceptable, even if the model
needed to be retrained with fresher data collected from the monitoring platform at every
service instantiation.

Testbed results for resource scaling at the 5Gr-SO. As before, we use a
5Growth MANO platform instance as depicted in Fig.3.2. The platform controls an
NFVI infrastructure composed of three NFVI-PoPs, which are managed by dedicated
instances of a Virtual Infrastructure Manager (VIM), implemented with Openstack
software. A transport network, emulated with GNS3 software, interconnects these
NFVI-PoPs. The transport network has five packet-switches following a ring topology
of four elements with an additional packet switch in the middle to provide additional
path redundancy. These packet switches are controlled by an instance of an ONOS
SDN controller. In these experiments, we considered a distributed NFVI-PoP scenario
modeling an edge scenario, where resources are limited and may not be enough for
the deployment of a whole NSI. Moreover, this kind of distributed deployment allows
showing the impact of updating the interconnections between the different NSSIs that
are part of an NSI when a scaling operation is performed. It is worth mentioning that
this resource-driven handling of the interconnections between NSSIs upon scaling parts of
an NSI has been scarcely tackled in the literature (further details can be found in [80]).

Since the focus of the experimental evaluation is on measuring the scaling performance
of the system, the deployment of NSIs is as follows. Initially, the 5Gr-VS requests to the
5Gr-SO the deployment of the CD service as an NSI4 (NSI_1) is composed of two NSSIs
(NSSI_A and NSSI_B), defined as above. Then, the 5Gr-VS requests to the 5Gr-SO the
deployment of the ST service (NSI_2) and the 5Gr-VS determines the sharing of the

4As mentioned in Sec. 3.3, the NSIs are requested by the 5Gr-VS to the 5Gr-SO in the form of
composite NFV-NSs, and its nested NFV-NSs become the NSSIs of the service.

74 ML-driven Provisioning and Management in Automated Cellular Networks

(a) NSSI_A scale out operation (b) NSSI_C scale out operation

Fig. 3.9 ML-driven scale-out of an NSI shared deployment.

NSSI_A, so that the 5Gr-SO only needs to deploy the remaining AVSS (referred to as
NSSI_C) to complete the instantiation of the ST service. In this experiment, each NSSI
is deployed in a different NFVI-PoP. During the instantiation of the different NSIs, in
particular of NSSI_A and NSSI_C, the 5Gr-SO contacts the 5Gr-MLaaSP to download
the required ML model to drive scaling operations. The ML-based scaling decision is
driven by the performance of the TDA and Video Server VNF instances present in
NSSI_A and NSSI_C, respectively. The following graphs present the experienced time
to perform ML-driven scaling operations in the above deployment. Each experiment has
been repeated ten times.

Fig. 3.9 shows the statistical distribution of the time required to scale out NSSI_A
and NSSI_C, and the implications of the different performed operations in the overall
deployment. As the traffic density increases, the ML model for NSSI_A determines that
a new IL including a new instance of the TDA VNF is required to fulfill the service
requirements. Consequently, more requests are done to the Video Server VNF, and the
ML model for NSSI_C also determines that a new IL including a new instance of this
VNF is required.

The scale out of NSSI_A produces changes in the overall deployment affecting
also NSSI_B and NSSI_C because both deployed NSIs share the NSSI_A instance.
These changes take 47.98 s on average. Out of this time, 86.7% is devoted to adding
the new TDA VNF instance. This time also includes the operations carried out by
the 5Gr-SO due to the ML-driven scaling procedure followed, namely data-engineering
pipeline configurations actions, as explained in the last steps of the workflow presented
in Sec. 3.5.3. In total, these operations represent a 5.88% of the average NSSI_A scaling
time required to add the new TDA VNF instance. The most time-consuming operation in

3.7 Validation and Performance Evaluation 75

this set of actions associated with the ML-driven scaling process is the termination of the
inference job, running as an Apache Spark job (around 2.5 s on average). This high time
is experienced because the inference job is under execution when the termination request
arrives prior to proceeding with the scaling operation, as observed in [74]. The rationale
of stopping the inference job during the NSSI being scaled is to avoid overloading the
5Gr-SO with wrong scaling decisions issued while NSSI_A is updated.

The remaining 13.3% of the overall deployment scaling time is devoted to connecting
this new TDA VNF instance with the VNFs deployed to associated NSSIs, namely,
NSSI_B and NSSI_C. The average time required to update the interconnections with
NSSI_C is larger (3.431 s vs. 2.960 s) than the one with NSSI_B because NSSI_C includes
two VNFs.

When scaling out the Video Server VNF of the NSSI_C, the overall deployment
scaling time (37.94 s on average) is lower due to two facts. On one hand, the scaling
of NSSI_C only requires the update of the interconnections with a single NSSI, i.e.,
the associated NSSI_A. On the other hand, there is a difference in performance in the
hardware running in the NFVI-PoPs where NSSI_A and NSSI_C are deployed. In
these experiments, all VNF descriptors considered the same characteristics in terms of
resources (i.e., CPU, RAM, and storage). While it takes 41.59 s on average to scale
just the NSSI_A (i.e., add the new instance of the TDA VNF), the same operation for
NSSI_C (i.e., adding a new VNF instance) takes 34.14 s on average. In this case, the
impact of ML-related operations follows the same trends as before and represents the
7.19% of the NSSI_C scaling time. This is a higher percentage than before because the
overall deployment scaling time is lower for this case, but the time required by the ML
operations is approximately the same in both cases.

Fig. 3.10 shows the statistical distribution of the experienced time when scale-in
operations occur, e.g., due to a decrease in the traffic density, the ML model determines
that NSSI_C and NSSI_A can return to their initial IL (24.91 s and 34.48 s, respectively).
The overall observed trends are the same as with the scale-out operations explained before.
Regarding the impact of ML operations (10.22% for NSSI_C and 7.33% for NSSI_A),
the most time-consuming operations is the termination of the inference job before the
deletion of the corresponding VNFs required by the new target IL. In this case, the
experienced scaling time is lower mainly because the time to deallocate resources (VMs
associated with the VNFs and transport network connectivity services) is smaller than
to allocate them. We also observe the difference in performance between the hardware of
the different NFVI-PoPs hosting the VNFs of the different NSSIs.

76 ML-driven Provisioning and Management in Automated Cellular Networks

(a) NSSI_A scale in operation (b) NSSI_C scale in operation

Fig. 3.10 ML-driven scale-in of an NSI shared deployment.

In summary, for the deployed services under evaluation, ML-related operations
have taken, on average, roughly from 5% to 10% of the total scaling time. Since
these operations take approximately the same time independently from the service, the
higher shares are obtained when scaling operations take less time in absolute terms
(e.g., allocation/deallocation of VMs for scale out/in operations or less inter-nested or
inter-PoP connections to be established).

3.7.3 Numerical results in a large-scale scenario

We now consider the real-world, large-scale scenario described in Sec. 3.7.1 and assess
the performance of the proposed solutions via simulation.

Simulation results for slice-subnet sharing at the 5Gr-VS. Fig. 3.11(top)
shows the performance gain in percentage with respect to the case where no NSSI sharing
is applied. Specifically, the results are presented in terms of savings in number of vCPU
utilization and in number of VMs instantiated, and for different values of vehicle arrival
rate. As expected, the gain decreases as the workload grows, however it is interesting
to notice that NSSI sharing allows for substantial saving of computing resources. The
fluctuation of the number of active VMs is due to the fact that the best latency class
configuration selected through the ML approach aims at the minimization of the vCPU
consumption, which may not be the same as the configuration that would minimize the
number of used VMs.

Under the same scenario, Fig. 3.11(middle) shows the average number of instances that
share the same NSSI. Interestingly, we notice that, as the vehicle arrival rate increases

3.7 Validation and Performance Evaluation 77

Fig. 3.11 Simulation results on slice-subnet sharing vs. vehicle arrival rate. Top: gain in terms
of vCPU consumption and number of active VMs, compared to no sharing (ST and DaBEV
set to 50% and 30%, resp.); Middle: average no. of instances sharing the same NSSI (ST and
DaBEV set to 50% and 30%, resp.); Bottom: vCPU consumption gain vs. percentage of ST
and DaBEV requests, relatively to no sharing and for different vehicle arrival rates. Each plot
reports also the 95% confidence interval over 100 simulations (in some cases it is so small to be
scarcely visible).

78 ML-driven Provisioning and Management in Automated Cellular Networks

(hence the number of ST and DaBEV requests grows), the number of instances sharing
the same Trajectory Detection slice subnet decreases more slowly than in the case of
the Adaptive Video slice subnet. Indeed, ST and CD have a much more similar target
latency than ST and DaBEV, thus making the benefit of the latter two services sharing
a NSSI drop faster.

Next, in Fig. 3.11(bottom) we investigate the impact of the percentage of ST and
DaBEV requests for different values of vehicle arrival rates. The plot confirms that the
vCPU gain with respect to the case of no NSSI sharing is substantial for lower rates and
vanishes in the highest rate scenario, as the best latency class configuration tends to
place all the NSSIs in different latency classes.

In conclusion, the above results demonstrate that the proposed ML-drive slice-subnet
sharing for service provisioning is highly beneficial, with up to 40% reduction of vCPU
in light load conditions, and a reduction of the number of instantiated VMs that ranges
between 20% and 40%.

Simulation results for resource scaling at the 5Gr-SO. We now evaluate the
performance of the SLA management solution proposed for OPEX minimization. Three
different strategies are compared: the L-INS and H-INS strategies, where NFV-NSs are
instantiated using the “small IL” and “big IL” instantiation levels (resp.) and such ILs
are never changed, and our proposed ML-RS solution. Note that, in this case, “small
IL” and “big IL” correspond to 2 and 5 (resp.) instances of the bottleneck VNFs of the
NFV-NSs. Moreover, according to the target values in Sec. 3.6 and our experimental
implementation of the services, we set the latency thresholds, δ, for the nested NFV-NSs
to: 5 ms, for the TDSS, 120 ms for the ST AVSS, and 950 ms for the DaBEV AVSS. The
SLA violation penalty associated with the latency thresholds is p = 2 unit per second.
Moreover, we set σins = 1, 000 units, and σopr = 0.12 unit/s.

To evaluate the efficiency of the strategies, their performance as a function of traffic
load is compared in Fig. 3.12 where the SLA violation cost, the service provisioning cost,
which is the sum of instantiation and operation costs, and the total OPEX cost per
strategy are depicted. These results, obtained by averaging over 20 runs, are presented
as functions of parameter ℓ, by which the arrival request rate is multiplied. Also, the
costs are computed over a 24-hour period in Fig. 3.12(a)-(b), and over a 48-hour period
in Fig. 3.12-(c).

We observe that, under lightly loaded conditions, i.e., ℓ ≤ 0.3, all strategies comply
with the SLA, so there is no SLA violation cost. However, because of over-provisioning,
the OPEX of H-INS is significant while L-INS and ML-RS use the minimum number of

3.8 Related Work 79

instances and have the same OPEX. By increasing ℓ, the SLA violation cost of L-INS
grows exponentially but the proposed solution can maintain a negligible SLA violation by
efficient resource scaling that minimizes the OPEX. More specifically, when 0.3 < ℓ < 1.0,
ML-RS yields the same SLA violation cost as the H-INS, but with a considerable lower
OPEX due to the lower provisioning cost via the appropriate resource scaling. In the
highly loaded conditions where ℓ > 1, even the “big IL” is not sufficient to handle the
offered load, i.e., the H-INS-SLA > 0. In this case, ML-RS at the beginning scales out
the service and never scales it in, which makes H-INS and our solution have similar
performance.

In summary, these results show how the ML-based approach is capable of adapting
the service setup (in this case, IL) to improve the OPEX for the 5Growth provider by
finding an appropriate trade-off between SLA compliance and service provisioning cost.
Remarkably, the OPEX is halved in comparison to the overprovisioning strategy in lightly
loaded conditions, while the SLA violation is negligible in highly loaded conditions.

3.8 Related Work

In new-generation cellular networks, services are provided through the provisioning of
logical networks according to the well-known network slicing paradigm, on which useful
surveys can be found in [81–84], [85]. In this context, the MANO architecture [66] is
often used for the life cycle management and the runtime operation of network slices.
Beside the 5Growth project [58], also 5GCity [86] proposes an orchestration platform,
while 5G-MoNArch [87] aims at developing an experiential network intelligence that
combines AI/ML with network orchestration and management. Additionally, there are
similarities between our proposed architecture and that of the MATILDA project [88].
The emphasis of this chapter, however, is on the realization of the MLaaS concept through
the creation of a separate building block (5Gr-MLaaSP) providing an ML catalog that
can be consumed by any other block of the architecture. In this sense, the 5Gr-MLaaSP
can serve the needs of a wide variety of current problems related to service management,
and those that will appear. On the other hand, learning processes in the MATILDA
architecture are bound to the intelligent service orchestrator, and, hence, are integrated
with the logic of this block, which focuses on specific problems. We believe that an
external 5Gr-MLaaSP offers a generic and future-proof architectural solution, which also
follows the recommendations of such SDOs as 3GPP or O-RAN [61]. It is also worth
mentioning that, as in the case of the 5Growth architecture, the MATILDA project

80 ML-driven Provisioning and Management in Automated Cellular Networks

(a) Collision Detection service in a 24 hour period

(b) Bird Eye service in a 24 hour period

(c) Bird Eye service in a 48 hour period

Fig. 3.12 Provisioning cost, SLA violation cost, and OPEX with respect to the scale of the
arrival rate of the service requests. Each plot reports also the 95% confidence interval over 20
simulations.

3.8 Related Work 81

[89, 90] envisions a separation of concerns between the vertical application domain and
the network operator domain where slices are deployed.

ML techniques are also leveraged in [91] for radio resource scheduling and management,
and in [92] for resource orchestration and an optimal usage of physical resources. In [93],
deep reinforcement learning is investigated for network slice reconfiguration, with the
aim to minimize long-term resource consumption. Particularly relevant to our work are
also the studies in [94, 95]. Indeed, [94] proposes a hierarchical orchestration architecture
to deal with multi-domain scenarios, as well as a service auto-scaling algorithm. The
latter foresees both a ML-driven proactive provisioning technique and a reactive resource
adaptation, so that the service target latency can be met in spite of the time-varying traffic
demand. [95], instead, focuses on a negotiation game between verticals and network
providers, for service chains auto-scaling. Interestingly, [95] proposes an ML-driven
scaling decision process at the service orchestrator, which however does not account for
the trade-off between the cost of resources and that of SLA violations and is evaluated
through numerical tests only. Such a trade-off is instead investigated in [96], where an
ML-based scaling management, specifically designed for Kubernetes edge clusters, is
presented.

Several works have adopted algorithmic approaches to resource allocation and service
admission control. Among these studies, [97] proposes elastic NFV resource allocation
according to predefined resource pressure thresholds, while [98] predicts scaling events
feeding application-level metrics to a neural network, which however poses privacy
concerns. Also, [99] leverages deep learning models to reliably and dynamically orchestrate
end-to-end slices, and allocate radio, computing, and storage resources. Others focus on
admission control aspects, exploiting ML techniques [100] or auction mechanisms and
game theory [101, 102].

It is worth underlying that all the above studies have a different scope from that of
slice-subnet sharing that we consider. Indeed, they focus on resource allocation or sharing
among different network slices, instead of network slice-subnet sharing among different
services. Further, our work provides a complete, thorough evaluation of the proposed
solutions, via both large-scale simulations and experimental tests carried out through
our testbed. Importantly, the latter ones also demonstrate the interaction and functional
synergy between the 5G architecture entities, thus validating our system design. Finally,
we mention that a preliminary version of the ML-driven service scaling presented in this
work has been presented and demonstrated in our conference [74] and demo [103] papers.

82 ML-driven Provisioning and Management in Automated Cellular Networks

3.9 Conclusions

We tackled the problem of fully-automated service provisioning and management in a
virtualized 5G network platform. We proposed a system design that allows the 5Gr-
VS and 5Gr-SO architectural layers to effectively interact with the MLaaS platform
we created, and to leverage ML-driven decision-making processes. We also defined
algorithmic solutions for ML-driven slice-subnet sharing and run-time service scaling,
under dynamic traffic conditions. Through in-testbed validation, we demonstrated the
feasibility of our approach, the designed functional synergy between the 5G architecture
entities, as well as the limited time overhead introduced by the ML framework. Further,
simulation results in a large-scale, real-world scenario showed remarkable savings in
operational costs, e.g., up to 40% reduction in vCPU consumption and up to 30%
reduction in the OPEX.

This section concludes the first part of this thesis, where we addressed the problem
of SLAs satisfaction in 5G networks through centralized management and orchestration.
We showed the clear benefits that this approach has to offer, first using a threshold-based
service scaling mechanism, then integrating ML in the 5Growth platform for a more
advanced management capability. The centralized management is ideal for high-level
and coarse-grained decisions that can potentially operate on the entire network, but it is
not suitable for micromanagement of edge network segments, if fine-grained decisions
are considered. In this case, not only scalability with the number of nodes would be
difficult, but it would be impossible to manage the edge node with low latency control
loops. Starting from the next chapter, we will see the complementary approach of
deploying decision-making at the edge, colocated with the network services and the
user applications over which control actions are taken. Specifically, we will first present
CAREM, a reinforcement learning framework able to dynamically allocate radio resources
in heterogeneous vRANs.

Chapter 4

A Context-aware Radio Resource
Management in Heterogeneous
Virtual RANs

New-generation wireless networks are designed to support a wide range of services with
diverse key performance indicators (KPIs) requirements. A fundamental component of
such networks, and a pivotal factor in the fulfillment of the target KPIs, is the virtual
radio access network (vRAN), which allows high flexibility in the control of the radio link.
However, to fully exploit the potentiality of vRANs, an efficient mapping of the rapidly
varying context to radio control decisions is not only essential, but also challenging
owing to the interdependence of user traffic demand, channel conditions, and resource
allocation. Here, we propose CAREM, a reinforcement learning framework for dynamic
radio resource allocation in heterogeneous vRANs, which selects the best available link
and transmission parameters for packet transfer, so as to meet the KPI requirements. To
show its effectiveness, we develop a testbed for proof-of-concept. Experimental results
demonstrate that CAREM enables efficient radio resource allocation under different
settings and traffic demands. Also, compared to the closest existing scheme based on
neural networks and the standard LTE technology, CAREM exhibits an improvement
of one order of magnitude in packet loss and latency, while it provides a 65% latency
improvement relative to the contextual bandit approach.

This chapter starts the second part of this thesis, where we will shift the specific focus
of the 5G network management problem from the centralized orchestration, potentially
applied to the entire network, to the distributed local management of edge resources.

84 A Context-aware Radio Resource Management in Heterogeneous Virtual RANs

Specifically, CAREM, compared to the approaches presented in the previous chapters,
does not manage edge applications; instead, it focuses on the management of vRANs.
However, the fine-grained control policy of a vRAN can not be centralized in the core
network, but have to be colocated with the vRAN itself. In fact, as we will better see
in this chapter, the time scale of the control loop required to effectively allocate vRAN
radio resources is at least an order of magnitude lower than the time scale that applies to
network orchestration decisions such as service scaling. This tight timing is not feasible
unless the control logic connects to the vRAN to receive performance metrics and to
apply control decisions with a low latency interface.

Part of the work described in this chapter has been already published in S. Tri-
pathi, C. Puligheddu, C. F. Chiasserini and F. Mungari, "A Context-Aware Radio
Resource Management in Heterogeneous Virtual RANs," in IEEE Transactions on Cog-
nitive Communications and Networking, vol. 8, no. 1, pp. 321-334, March 2022, doi:
10.1109/TCCN.2021.3115098, ©2022 IEEE.

4.1 Introduction

The envisaged paradigm of new-generation mobile technologies is aimed to serve a
broad spectrum of applications having diverse requirements on various key performance
indicators (KPIs), ranging from high reliability and low latency to large-scale connectivity
and massive data rates [104]. To accommodate such an ambitious vision, new generation
wireless access networks are required not only to integrate various flexible multi-access
technologies such as mmWave and massive MIMO [105], but also to provide a versatile
radio resource management (RRM) system that can ensure efficient spectrum utilization
and seamless interoperability [106].

A powerful concept addressing such needs is the virtualization of the radio access
network (RAN), wherein the legacy communication system is decoupled by centralizing
the softwarized radio access through virtual machines or containers running on servers
at the edge of the cellular network [107, 108, 108]. While this makes the network more
agile and minimizes the requirement of expensive dedicated hardware, the edge may
host several applications competing for resources, thereby limiting the efficiency of radio
functions [109]. Besides, with an unprecedented increase in the number of devices trying
to concurrently access the virtual RAN (vRAN), it is expected to observe in the near
future a 1,000-fold growth in network traffic [110]. This will contribute to complex
interference dynamics and will require sophisticated techniques for RRM, which can

4.1 Introduction 85

effectively cope with both the diverse performance requirements of the applications to be
supported and the rapidly varying network and channel conditions.

Evidently, the unification of hybrid technologies under the new-generation cellular
umbrella adds to the complexity of the problem, thereby making the use of conventional
theoretic approaches often inadequate to achieve optimum traffic and resource manage-
ment, owing to intricate mathematical modeling and complex dependencies between
network and channel variables. It has thus become indispensable to design innovative
solutions that can effectively deal with the system complexity thanks to a fully automated,
data-driven approach.

Recently, machine learning (ML) techniques have shown to hold enormous potential in
addressing the challenges of applying standard mathematical optimization frameworks to
resource allocation problems in vRANs and in allowing an automatic system control [111].
A plethora of learning-based techniques including supervised, unsupervised, reinforcement
learning (RL), and deep learning have been proposed [112–114] for heterogeneous networks
in general, to tackle resource allocation problems (see Sec. 4.2 for a more detailed
discussion). However, it is worth noting that, while deep learning approaches are
computationally intensive, the primary challenge associated with simpler ones such as
supervised/unsupervised learning is the creation of an exhaustive dataset for training
the model. Besides, in case of a rapidly changing environment, frequent retraining of the
model is required to achieve the desired accuracy, which can be expensive when there are
stringent latency constraints. To this end, it is required to devise a framework that is
easy to train in non-stationary environments, yet effective in making intelligent choices in
an autonomous fashion using near real-time feedback on channel conditions and temporal
variation of user demand so as to improve performance and reliability of the network.

In this work, we leverage the advantages offered by ML and develop a context-aware,
RL-based solution to radio resource management in heterogeneous vRANs. Our scheme,
named CAREM (Context-Aware Radio rEsource Management), is devised considering
a formulation for RRM based on sequential decision making [115], which, thanks to a
persistent interaction between the learning agent and its environment, can effectively
cope with time-varying operating conditions. The key contributions of this work are as
follows:

1. We design CAREM, a framework using differential semi-gradient State-Action-
Reward-State-Action (SARSA) for periodic RRM in a multi-user vRAN scenario.
CAREM efficiently identifies the radio link to be used, allocates radio resources,
and sets such transmission parameters for packet transfer as the modulation and

86 A Context-aware Radio Resource Management in Heterogeneous Virtual RANs

coding scheme (MCS) while meeting two of the main KPI requirements identified
by 3GPP [116], namely, packet loss and latency.

2. Since each heterogeneous link features a maximum available resource capacity, we
define an algorithm ensuring that, if multiple users are assigned to the same link,
the allocation is Pareto-efficient fair and the overall allocated resources do not
exceed the link maximum capacity.

3. We investigate the complexity of the proposed CAREM framework, and introduce
a two-fold approach to expedite the convergence. Firstly, high dimensionality of
context variables is addressed using a practical tile coding approach. Secondly, the
action space is designed as a subset of discrete positive integers, which in turn limits
its cardinality and facilitates simultaneous selection of several action components
(e.g., link, fraction of radio resources, MCS) using a single action.

4. A proof-of-concept is provided in the context of heterogeneous communications
and multiple users, by designing a testbed implementing CAREM over 3GPP LTE
and IEEE 802.11p links using software defined radios (SDR).

5. The CAREM performance is evaluated under different settings, including different
decision periodicity, number of links and connected users, and values of traffic load.
The results show that, as the learning converges, CAREM can be efficiently used
for link, MCS and radio resource selection in vRANs. With respect to the 100-ms
decision, 1-s decisions significantly reduce the computational demand, without any
noticeable performance degradation. Further, when compared against the closest
existing RRM technique in [109], contextual bandit approach [117], and standard
LTE, CAREM always shows significantly better performance, with an improvement
of one order of magnitude in both packet loss and latency with respect to the radio
policy in [109] and standard LTE, and a 65% latency improvement relatively to
contextual bandit.

We remark that the use of a reward signal for associating the best decisions to
different contexts, and the dependence of future contexts on current decisions are two
important aspects of this problem which makes it different from a much simpler contextual
bandit formulation [117]. To effectively tackle these challenges, we adopt a model-free,
full-blown, RL approach using the differential semi-gradient SARSA algorithm. Unlike
Q-learning [118], which is a popular off-policy RL approach useful for episodic tasks,
SARSA has low per-sample variance, thereby making it less susceptible to convergence

4.2 Related Work 87

problems. Also, in a continuous task setting such as RRM where it is required to care
for agent’s performance during the exploration phase, online learning using SARSA
is preferred due to its conservative nature of avoiding high risk actions that generate
large negative rewards from the environment. To our knowledge, no existing work has
presented such comprehensive and dynamic framework for RRM, keen on fast and reliable
data transmission in heterogeneous vRANs.

The rest of the paper is organized as follows. Sec. 4.2 reviews the related works,
while Sec. 4.3 and Sec. 4.4 introduce, respectively, our system model and the proposed
RL framework. Sec. 4.5 describes the implementation of our solution and the developed
testbed, and Sec. 4.6 discusses performance evaluation results. Finally, Sec. 4.7 concludes
the paper.

4.2 Related Work

Owing to the intricate channel-network dynamics and complexity of heterogeneous
networks, several works have aimed at devising strategies for effective resource utilization,
while meeting the stringent KPI requirements of different applications to be supported
in a cellular network. The state-of-the-art primarily revolves around the idea of learning
environment variables and their evolution over time for optimizing resource utilization
and improving real-time system performance. In particular, learning-based techniques
have been developed to address multichannel access, scheduling and allocation of resource
blocks, modulation and coding schemes, computation resources, transmit power and
data rate, while maximizing KPI satisfaction, with particular emphasis on throughput,
latency, packet loss, channel utility, and user fairness.

The problems of dynamic rate allocation as well as of joint channel and rate selection
for throughput maximization have been studied in [119–124]. While [119, 120] use a
multi-armed bandit formulation and exploit unimodal feature of reward over the arms
using UCB policies, an algorithm based on Thompson sampling is used in [121] for
achieving link-rate selection in logarithmic time regret. Likewise, a ML approach, also
based on multi-armed bandit using tug-of-war dynamics, is presented in [122, 123] for
channel selection in IoT networks. These works however do not explore the contextual
information from the environment for transmission parameter optimization. To address
this limitation and further improving the performance, a structured RL approach using
contextual unimodal multi-armed bandit is proposed in [124], for dynamic rate selection
and distributed resource allocation.

88 A Context-aware Radio Resource Management in Heterogeneous Virtual RANs

Unlike the bandit model, the RL approach is more popular in recent literature for radio
resource provisioning problems, especially if the action corresponds to a decision making
scenario with discrete choices. RL-based schemes are proposed for selecting the radio
access technology in heterogeneous networks using network-centric [125], and user-centric
approaches [126]. In [127], a policy gradient actor-critic algorithm is studied for user
scheduling and resource allocation in energy-efficient heterogeneous networks. The works
in [128] and [129] investigate dynamic spectrum access in cognitive radio networks using
the RL framework, with the aim to achieve high controllability in spectrum sharing and
to minimize the sensing duration. Owing to delay-sensitivity and massive volume of data
traffic in 5G access networks, an RL-based scheduling scheme is introduced in [130, 131]
to minimize the packet delay and drop rate. The study in [109], instead, proposes a
deep deterministic policy gradient algorithm based on actor-critic neural network and
a classifier for resource control decisions. This is the most relevant work to ours, as
it specifically addresses a virtualized access network and presents an implementation
of the solution in a full-fledged testbed. Under high mobility and high traffic demand,
RL-based radio resource control in 5G vehicular networks is tackled in [132], with the
goal of adaptively changing uplink to downlink ratio in a frequency band.

Advanced ML such as deep learning techniques are of interest for resource allocation
problems when the size of state-action space is large, leading to slow convergence of
RL approaches. A deep Q-network for channel selection is proposed in [133, 134] to
adaptively learn in time-varying scenarios subject to maximization of network utility. The
study in [135] envisions an adaptive deep actor-critic, RL-based framework for channel
access in dynamic environment for multi-user scenarios. Deep RL is explored for selection
of suitable MCS for primary transmissions in cognitive radio networks in [136]. In a
similar setting, the study in [137] investigates a deep learning dynamic power control
method for a secondary user to coexist with the primary user. A distributed dynamic
power allocation using multi-agent deep RL is developed in [138], which exploits channel
state and quality of service information to maximize a sum-rate utility function. Deep RL
is also applicable to radio resource management in vehicular networks including channel
selection, optimal sub-band allocation, and power control, as shown in [139–142].

At last, we mention that a preliminary version of this work has appeared in our
conference paper [143].

Novelty. First, unlike most of prior art on RRM, we address the selection of link,
radio resources, and packet transmission parameters, so that the target values of packet
loss rate and latency KPIs are achieved for each traffic flow. While in terms of actions

4.3 System Architecture 89

Radio

scheduler

decision every
N slots

execution
every slot

CAREM framework

(feedback every slot)

vRPA

SNRk, Buffer statek,
{Link load1 · · · Link loadl}, Rewardk

MT1

MTK

∀k ∈ {1 · · ·K}

Wireless heterogenous link 1

Wireless heterogenous link 2

Wireless heterogenous link L

Transmission parameters link 1

Transmission parameters link 2

Transmission parameters link L

RL
algorithm

Radio
policy

Pareto
block

Fig. 4.1 vRAN system model and architecture of CAREM framework. CAREM gathers per
slot contextual information for each active MT and makes decisions every N slots. Through an
RL algorithm, a radio policy and a Pareto block, it selects the best available radio link and
transmission parameters for every MT, which is input to the radio scheduler that executes
these decisions every slot.

of the RL framework [126, 142, 136] are somewhat aligned to our work, their learning
objectives and KPI requirements are very different. Furthermore, with respect to all the
above works, including [109], we address connectivity between a radio point of access
and multiple users over heterogeneous links. In addition, the RRM policy in CAREM (i)
is spontaneously learned and updated over time by its continuous interaction with the
environment, thus being able to adapt continuously to time-varying channel and network
dynamics, and (ii) provides a fair Pareto-efficient allocation of capacity-constrained
resources, thus leading to an effective management of multi-user connectivity. Finally, we
provide a proof-of-concept of the proposed solution, implementing it in a multi-technology,
multi-user, SDR-based testbed.

4.3 System Architecture

In this section, we present the system model considered for provisioning of radio resources
via CAREM. Although our approach and methodology are general and can apply to
any number and type of vRAN technologies, while describing the framework we refer for
concreteness to the communication environment we implemented in our testbed where
LTE and IEEE 802.11p links are available.

90 A Context-aware Radio Resource Management in Heterogeneous Virtual RANs

We leverage SDR interfaces enabling point-to-point communications between virtual
radio point of access (vRPA) and K users, hereinafter referred to as Mobile Terminals
(MTs), implemented at the edge of the network. The architecture of the proposed
CAREM framework in a vRAN is presented in Fig. 4.1. We also envision that user
applications such as video streaming, gaming, road safety services (e.g., for vehicles or
vulnerable road users) are deployed at the edge through containerized infrastructure, and
possibly co-located with radio functions including radio resource management, scheduling,
admission control, and reliable packet delivery. In the following, we focus on the downlink
data transfers from the vRPA to the MTs, although our framework can be easily extended
to uplink scenarios as well.

On the cellular downlink, the vRPA determines the number of radio resources per MT,
i.e., of resource blocks (RBs), required for the transmission of data packets, based upon the
signal-to-noise ratio (SNR) reported by each MT through the Channel Quality Indicator
(CQI). Conversely, on the IEEE 802.11p link, the vRPA accesses the channel to transmit
to the MTs using the CSMA-based scheme foreseen by the corresponding standard To
minimize packet loss over the radio links, at the physical layer data packets are modulated
and encoded using a suitable MCS (namely, twenty-nine and eight different MCS values
are possible on the LTE and IEEE 802.11p links, respectively). Furthermore, at the
MAC layer, an automatic repeat request error control is in place, i.e., an unsuccessfully
transmitted packet can be resent till a maximum number of allowed retransmission
attempts. Beside SNR, the knowledge of the amount of data waiting to be transmitted
towards a MT and of the traffic load supported on available links is also essential for
radio resources provisioning, so as to minimize packet loss. The information on the buffer
occupancy can be acquired using buffer state reports at the MAC layer.

The proposed CAREM framework is a dynamic resource controller that is included as
an extended functionality within the vRPA and that interacts with the radio scheduler
implemented therein. At the logical level, it is composed of as many RL agents as the
number of quality of Service (QoS) classes to be supported, each agent differing from
the others in the target KPIs. Then, each RL agent can sequentially handle multiple
MTs. The RL agent considers the status corresponding to each MT, namely, SNR, buffer
state, and also the status of aggregate traffic load already hosted on the available links,
and selects the best action. The latter includes: link, MCS value, and number of RBs or
channel utilization time, so as to maximize the associated reward, hence meet the KPI
requirements.

4.4 The CAREM Framework 91

t = 0 t (ms)

1 2 N 1 2 N 1 2 N· · · · · · · · ·· · · · · ·

Decision period 1 Decision period 2 Decision period h

1 monitoring slot

Fig. 4.2 Relation between a decision period and monitoring slots, each decision period consists
of N monitoring slots.

For each MT, the SNR, buffer state, and link load values are periodically monitored in
a time-slotted fashion. From the learning of the environment variables, a decision on the
action to be adopted is made by the CAREM framework every N time slots. During the
decision making process, the link load values are continuously updated as the RL agent
sequentially selects an action for each MT. Subsequently, these decisions are enforced as
radio policies by the scheduler on a per-slot basis, till the next decision-making event.
Specifically, while the periodicity with which the scheduler operates remains constant,
we consider that CAREM may make decisions with periodicity equal to N ≥ 1 slots. A
clear demarcation of decision period and monitoring slot is depicted in Fig. 4.2.

4.4 The CAREM Framework

The joint impact of channel and network dynamics on RRM in wireless networks is far from
being trivial; therefore, for efficient resource mapping in non-stationary environments, we
adopt a model-free approach that does not require an environment model. Our CAREM
framework, depicted in Fig. 4.1, continuously maps the variations in transmission channel
and traffic load into a context, thus learning the best action for each given context.
For sake of clarity and without loss of generality, below we focus on a single RL agent,
handling multiple MTs connected to the vRPA and receiving traffic flows belonging to
the same QoS class.

Each RL agent includes three blocks, interacting with each other as depicted in Fig. 4.3:
(i) the radio policy selecting the best action for each MT connection, (ii) the Pareto
block, refining the previous action with respect to the allocation of capacity-constrained
resources, and (iii) the RL algorithm implementing a differential semi-gradient SARSA.
Note that in all our experiments we observed that a single-agent implementation can
cope with a large number of MTs, while entailing a negligible latency due to the decision-
making process. Nevertheless, whenever the container, or virtual machine, in which the
RL agent is implemented needs to be scaled out due to an exceedingly high computing

92 A Context-aware Radio Resource Management in Heterogeneous Virtual RANs

RADIO POLICY

REINFORCEMENT LEARNING

ALGORITHM

SHARED RL AGENT

ENVIRONMENT

Reward

C
o
n
te
x
t

Pareto-efficient

fair actions

PARETO

BLOCK

Greedy

actions
P
o
li
c
y
u
p
d
a
te

MT1 MT2 MTK

s
(1,n)

s
(2,n)

s
(K,n)

a
∗(1,n)

a
∗(2,n)

a
∗(K,n)

s
(1,n) s

(K,n)
s
(2,n)

ã
(1,n)

ã
(2,n)

ã
(K,n)

r
(1,n)

r
(2,n)

r
(K,n)

Fig. 4.3 Components of the CAREM framework. Radio policy maps contextual information
gathered from the environment into actions. Whenever needed, the Pareto block refines the
actions so that they meet the link capacity. The RL algorithm updates the radio policy using
differential semi-gradient SARSA.

burden, such techniques as those developed, e.g., within the 5G-Transformer [144] and
the 5Growth [58] projects, can be effectively applied.

Below, we detail the three main components of CAREM.

4.4.1 Radio policy

The radio policy block continuously maps observation of contexts from the environment
to decisions in the form of actions, for each MT. The goal of the RL model is to train the
agent to find a policy that eventually maximizes the cumulative reward from an uncertain
environment. The elements composing the radio policy are introduced below; unless
otherwise specified, we refer to a generic decision-making period, which is composed of
N monitoring slots.

4.4 The CAREM Framework 93

Context Space. For the generic MT k (k ∈ {1, . . . , K}) connected to the vRPA, in
monitoring slot n (n = 1, . . . , N) the agent observes a context vector s(k,n) ∈ X , applies
action a(k) ∈ A, which was selected at the end of the previous decision period and holds
for the whole current one, and receives a reward value r(s(k,n), a(k)) as feedback. As
discussed in Sec. 4.3, the environment variables, namely, SNR, buffer state, and links
load, influence the choice of the link, MCS, and radio resource allocation. Let γ(k,n) and
σ(k,n) be, respectively, the SNR and the buffer state reported by the k-th MT during the
n-th monitoring slot. Also, let ζ(k,l,n) denote the aggregate link load already on link l

(l ∈ {1, . . . , L}) during the n-th monitoring slot while making a decision for MT k. We
can then write the generic context vector as s(k,n) := {γ(k,n), σ(k,n), ζ(k,1,n) · · · ζ(k,L,n)}.

Action Space. Let us denote the amount of capacity-constrained resource allo-
cated to MT k by ρ(k), e.g., the number of RBs in LTE or channel utilization time in
IEEE 802.11p. Further, for MT k, we map the tuple (link, MCS, resource allocation),
{l(k), ω(k), ρ(k)},∀k ∈ {1, · · · , K} in the n-th monitoring slot within the same decision-
making period into a new, single action. Thus, the action space comprises choices for
the selection of the appropriate link, MCS, and the amount of radio resources over the
chosen link. We recall that an action is selected at the end of every decision period, and
it is applicable to the subsequent N monitoring slots.

Next, without loss of generality and for notation simplicity, we focus on two links
only, and denote the number of different MCS values supported over each link by i and
j, respectively. Also, we discretize the quantity of radio resources that can be allocated
over each link, and indicate them with p and q, respectively. Then, the action space is
given by A := {a(k) ∈ [0, (ip + jq − 1)]}, such that a(k) = {0, . . . , ip− 1} when the first
(e.g., LTE) link is selected, and a(k) = {ip, . . . , ip + jq − 1} in case of the second (e.g.,
IEEE 802.11p) link. The advantage of such definition of an action is that it limits the
action space to a subset of discrete positive integers with low cardinality, and facilitates
simultaneous selection of several resources with a single action.

Reward. Given a traffic flow, we consider as KPIs the packet loss rate and the latency
observed at the MAC layer during packet transmission. To meet the KPI requirements
at the MT, it is required to provide the traffic flow with radio resources such that the
observed KPIs are always less or equal to their target values (hereinafter also referred to
as thresholds). Beside meeting the KPI thresholds, it is essential to keep the observed
KPIs as close as possible to the respective KPI thresholds for optimum utilization of
network resources: substantially better values than the target ones would indeed translate
into a waste of resources. Thus, the choice of reward function should be such that it

94 A Context-aware Radio Resource Management in Heterogeneous Virtual RANs

0 0.002 0.004 0.006 0.008 0.01

Observed packet loss

0.988

0.99

0.992

0.994

0.996

0.998

1

R
e

w
a

rd
 c

o
m

p
o

n
e

n
t

r x

Packet loss

threshold = 0.01

(a)

0 0.2 0.4 0.6 0.8 1

Observed packet loss

-1

-0.8

-0.6

-0.4

-0.2

0

R
e

w
a

rd
 c

o
m

p
o

n
e

n
t

r x

Packet loss

threshold = 0.01

(b)

0 0.02 0.04 0.06 0.08 0.1

Observed delay [s]

0.88

0.9

0.92

0.94

0.96

0.98

1

R
e

w
a

rd
 c

o
m

p
o

n
e

n
t

r l

Latency

threshold = 0.1 s

(c)

0 1 2 3 4 5

Observed delay [s]

-1

-0.8

-0.6

-0.4

-0.2

0

R
e

w
a

rd
 c

o
m

p
o

n
e

n
t

r l

Latency

threshold = 0.1 s

(d)

Fig. 4.4 Variation of reward component as a function of packet loss rx (fulfilled (a) and unfulfilled
(b) target KPI) and as a function of latency rl (fulfilled (c) and unfulfilled (d) target KPI). The
reward components take positive values as long as the KPI targets are fulfilled, and negative
otherwise; further, the closer the KPI to its target value, the higher the reward.

equally accounts for both the KPIs and its value increases as the observed KPIs approach
the corresponding thresholds and vice versa.

Let the observed packet loss rate, target packet loss rate, observed latency, and target
latency be denoted with xo, xth, lo, and lth, respectively. We define the reward value r as
the sum of two reward components corresponding to packet loss rx(·) and latency rl(·),
respectively. Thus, for the k-th MT, at the n-th monitoring slot, we have:

r(s(k,n), a(k)) = rx(s(k,n), a(k)) + rl(s(k,n), a(k)) (4.1)

where packet loss and latency components are given by:

rx(s(k,n), a(k)) = 1− erf(xth − xo) (4.2a)
rl(s(k,n), a(k)) = 1− erf(lth − lo) (4.2b)

if the target KPIs are met, and by:

rx(s(k), a(k,n)) = erf(xth − xo) (4.3a)
rl(s(k), a(k,n)) = erf(lth − lo) (4.3b)

otherwise.

Since the maximum and minimum value of the erf function lies between +1 and −1,
we have: −2 ≤ r(s(k,n), a(k)) ≤ 2. Our choice of erf for estimating individual reward
components is motivated by its shape, which takes 0 value at the origin, and gradually
increases (decreases) and saturates to the maximum (minimum) value in the positive
(negative) direction. Consequently, for the individual reward components, in the positive

4.4 The CAREM Framework 95

region of operation, i.e., when the KPI threshold is met, the reward value is positive
and it further increases to its maximum value at +1 as the observed KPI approaches
its target KPI value. Likewise, in the negative region of operation, i.e., when the KPI
threshold is not met, the value of the individual reward components is negative, which
further reduces and saturates to the minimum value −1 as the observed KPI moves away
from the KPI threshold. Note that the penalty in the reward component for observed
KPI overshooting the KPI threshold is larger than for observed KPI undershooting the
KPI threshold by the same amount. This is so because an observed KPI value that
exceeds the KPI threshold adversely affects the QoS at the user end, which is a critical
issue from the system design point of view. On the contrary, the case of an observed
KPI undershooting the KPI threshold is an acceptable situation, however even in this
case, we do not want the observed KPI value to deviate from the KPI threshold by a
large amount, as this would lead to the system performing exceptionally well at the cost
of extra resource consumption. The variation of the reward components as a function of
the observed KPI values for packet loss and latency is shown in Fig. 4.4, which highlights
how the behavior of the individual reward components in the typical range of observed
KPI values is as desired.

We recall that the goal of the RL agent is to eventually maximize the cumulative
reward measured as the sum of immediate reward and future rewards in the long run. To
this end, we consider the generic decision period h and, extending the previous notation,
we let a(k,h−1) denote the action for MT k selected in decision period (h− 1) and applied
in decision period h. We then define the average reward over h as,

r(s(k,h), a(k,h−1)) =
qN

n=1 r(s(k,n), a(k,h−1))
N

(4.4)

where s(k,h) is the vector of states observed for MT k in the N monitoring slots in decision
period h, while a(k,h−1) is the action for MT k selected in decision period h − 1 and
applied in decision period h. Then, we adopt the definition of cumulative reward for the
k-th MT, observed during decision period h, as the differential return G(k,h) [145],

G(k,h) =
∞Ø

ℓ=0
r(s(k,h+ℓ), a(k,h+ℓ−1))− (l + 1)âr(k, π) (4.5)

96 A Context-aware Radio Resource Management in Heterogeneous Virtual RANs

where π : X → A denotes the radio policy mapping the context space of each MT into
actions, and âr(k, π) in [145]:

âr(k, π) = lim
h→∞

1
h

hØ
t=1

E[r(s(k,t), a(k,t−1))|s(k,1), a(k,0) ∼ π] . (4.6)

In (4.6), we consider h = 0 to be the time at which the algorithm execution started,
and s(k,1) is the mean state computed averaging over the state values observed in the N

monitoring slots of the initial decision period. Thus, âr(k, π) is obtained as the average of
the reward conditioned on s(k,0) and the subsequent actions taken according to policy π.

Action value estimation. Given decision period h, at the end of the corresponding
N monitoring slots, actions need to be evaluated in order to ultimately select the best
one. To this end, we compute the average context over the N monitoring slots in h for
each given MT k, as

s(k,h) =
NØ

n=1

yns(k,n)qN
n=1 yn

(4.7)

where yn > 0 and yN > yN−1 > · · · y1 are the weights assigned such that the latest
context has the highest weight. Although they can be arbitrarily set, in our experiments
we fix them to 1, . . . , N , in accordance with the temporal sequence of the monitoring
slots. We then quantify the goodness of taking an action in such a context using action
values. For MT k, if a(k,h) is selected based on state s(k,h) under policy π, then its action
value qπ(s(k,h), a(k,h)) is defined as expected differential return conditioned on s(k,h) and
a(k,h), following policy π. Mathematically,

qπ(s, a) = Eπ[G(k,h)|s(k,h) = s, a(k,h) = a] . (4.8)

Apparently, a policy, π, can be better than any other policy π′ if qπ(s, a) ≥ qπ′(s, a).
Since the context vector comprises SNR, link aggregate traffic load and buffer state,
context space X is real and an uncountable number of states are possible. Consequently,
tracking action values corresponding to different contexts is not scalable. To overcome
this problem, we use a practical method for action value estimation using function
approximation in an F-dimensional space, yielding the following approximated function,

q̂π(s(k,h), a(k,h), w) =
FØ

f=1
wfxf (s(k,h), a(k,h)) (4.9)

4.4 The CAREM Framework 97

where w = [w1, . . . , wF] ∈ RF and xf (s(k,h), a(k,h)) denote the weight and feature vector,
respectively. Here, feature vector xf(s(k,h), a(k,h)) is generated using tile coding [146],
which converts a point in the 2-dimensional context vector into a binary feature vector
such that vectors of neighboring points have a high number of common elements. The
continuous space of context variables is tucked up with tiles, and each tile corresponds
to an index in the binary feature vector. Several offset grid of tiles, called tilings, are
then stacked over the space to create regions of overlapping tiles. We have used 8 tilings,
with 512 tiles each. Every context vector falls in one tile in each of the 8 tilings, which
correspond to 8 features.

Action selection. The estimation of the action values is followed by an ϵ-greedy
action selection policy [145], which selects the best action for each MT so as to maximize
its cumulative reward over an infinite time horizon. We consider an ϵ-greedy action
selection with ϵ = 0.5 and ϵ-decay factor = 0.999. Thus, for MT k, if the average context
over decision-making period h, s(k,h), and the action value estimates for all possible
actions a(k,h) ∈ A in s(k,h) are obtained as q̂π(s(k,h), a(k,h), w), the greedy action for the
MT, ã(k,h), is chosen with probability 1− ϵ such that ã(k,h) = argmaxa q̂π(s(k,h), a(k,h), w).
The ϵ parameter decays by a factor of 0.999 in the subsequent decision period. This
favors higher exploration while the environment is still unfamiliar; with progression of
time, instead, it allows for further exploitation of the environment knowledge gained
during the exploration, so as to maximize the expected return.

4.4.2 Pareto block

At the input of the CAREM framework, contexts from different MTs are considered
independently from each other, which may sometimes lead the radio policy to choose
actions for different MTs where the sum of individual allocations of a capacity-constrained
resource exceeds its respective maximum availability. We solve this issue by introducing
a novel algorithm that further fine tunes the resources allocated by the radio policy.
Such refinement makes sure that if multiple MTs are using the same link, the allocation
is Pareto-efficient fair and the sum of allocated resources to the MTs adheres to the
maximum capacity constraint of the link.

We focus again on a given decision period, thus omitting the dependency on h,
and we map the Pareto-efficient fair allocation of a capacity-constrained resource on
a given link l across all MTs assigned to l, onto a multi-criteria optimization problem
as detailed below. Let us denote the set of MTs assigned to link l by Kl. Given a set

98 A Context-aware Radio Resource Management in Heterogeneous Virtual RANs

of coefficients vk ≥ 0, k ∈ Kl, such that q
k∈Kl

vk = 1, it is required to find a solution
S = {ρ(k)}k∈Kl

, S ∈ Φ, that maximizes q
k∈Kl

vkΓ(k,n)(S) such that q
k∈Kl

ρ(k) ≤ ρmax.
Here, Φ is the set of feasible solutions, ρ(k) is the capacity-constrained resource allocated
to the k-th MT during the considered decision-making period, Γ(k,n)(S) is the criteria
function denoting the reward of MT k in the n-th monitoring slot following the resource
allocation strategy S, and ρmax is the maximum availability of the capacity-constrained
resource.

The optimization problem is solved using an iterative multi-objective search and
update algorithm described as follows. The Pareto block is invoked if the sum of
allocated capacity-constrained resource across all MTs exceeds ρmax. To start with,
the capacity-constrained resource ρ(k) is extracted from the greedy action ã(k) to form
solution S1 = {ρ(k)}k∈Kl

. Then each ρ(k) in S1 is scaled so that q
k∈Kl

ρ(k)(S1) ≤ ρmax.
Note that, beside S1, other solutions Si are possible as well where ρ(k)(Si) ≥ ρ(k)(S1), as
intuitively, if an action ã(k) = {l(k), ω(k), ρ(k)} is feasible for a given ρ(k), it will also be
feasible for any other allocation ρ′(k) ≥ ρ(k). In such case, q

k∈Kl
ρ(k)(Si) ≥ ρmax, however

since scaling is anyways imperative to satisfy the maximum capacity constraint, it is in
best interest to consider all such possible solutions. In view of this argument, we create
an expanded solution set Se = {S1, S2, . . .} such that ∀Si ̸= S1,

ρ(k)(Si) ≥ ρ(k)(S1),∀k ∈ Kl,∧
Ø

k∈Kl

ρ(k)(Si) ≤ |Kl|ρmax . (4.10)

Further, we create scaled expanded solution set Ss,

Ss = {Si/|Kl|}Se . (4.11)

Subsequently, Pareto dominant solution set S is obtained through an iterative search
and update over Ss using the following condition ∀S ′ ∈ S and S ′′ ∈ Ss,

Γ(i)(S ′) > Γ(i)(S ′′), Γ(j)(S ′) ≥ Γ(j)(S ′′),∀i, j ∈ Kl, i ̸= j . (4.12)

Finally, an optimal solution S∗ = {ρ∗(k)}k∈Kl
is chosen from the Pareto dominant solution

set S such that ∀S ′ ∈ S, S∗ ∈ S,

max min
i∈Kl

(viΓ(i)(S∗)) ≥ max min
i∈Kl

(viΓ(i)(S ′)) . (4.13)

Since S∗ maximises the minimum criterion function across all k ∈ Kl, it is the required
Pareto-efficient fair solution. For each link, the procedure to obtain such solution, i.e.,

4.4 The CAREM Framework 99

Algorithm 3 Allocation of the capacity-constrained resource on radio link l

1: Input: greedy actions, ã(k) = {l(k), ω(k), ρ(k)},∀k ∈ Kl

2: Extract capacity-constrained resource allocation S1 = {ρ(k)}k∈Kl
from greedy actions

3: if q
k∈Kl

ρ(k) ≤ ρmax then ▷ Check on the resource allocations on link l
4: S∗ ← S1 ▷ Pareto-efficient fair solution
5: else
6: Create expanded solution set, Se using (4.10)
7: Rescale Se to create Ss using (4.11)
8: Identify Pareto dominant solution set S using (4.12)
9: Compute Pareto-efficient fair solution S∗ using (4.13)

10: Output: Pareto-efficient fair actions, a∗(k) = {l(k), ω(k), ρ∗(k)},∀k ∈ Kl

action a∗(k) for each MT k, is summarized in Algorithm 3. Using theorems defined in
[147], it can be proved that the obtained solution is Pareto efficient.

4.4.3 Learning algorithm

In the absence of any prior knowledge of the environment, here we exploit the concept
of experience-based learning using sample sequences of context, actions, and rewards
observed from the actual interaction of the RL agent with the environment. SARSA, an
acronym for quintuple (St, At, Rt, St+1, At+1), is an on-policy algorithm where learning of
the RL agent at time t is governed by its current state St, choice of action At, reward Rt

received on taking action At, state St+1 that the RL agent enters after taking action At,
and finally the next action At+1 that the agent chooses in new state St+1 [145]. Then,
given the average context vectors for the different MTs and the possible actions, the key
steps involved in the learning of the SARSA approach are: (i) estimation of action values
qπ(s, a), (ii) action selection for each MT, (iii) Pareto-efficient fair action tuning, and (iv)
update of the action-value estimates.

Action value update. Action values satisfy the recursive Bellman equations given
as,

qπ(s, a) =
Ø
r,s′

p(s′, r|s, a)[r − âr(k, π) +
Ø
a′

π(a′|s′)qπ(s′, a′)] (4.14)

where

p(s′, r|s, a) = P
;

s(k,h) = s′, r(s(k,h), a(k,h−1)) = r|

s(k,h−1) = s, a(k,h−2) = a
<

, (4.15)

100 A Context-aware Radio Resource Management in Heterogeneous Virtual RANs

with π(a′|s′) being the probability of taking action a′ in state s′ under policy π. This
fundamental property forms the basis of the update of the action values of the present
context, based on an error term defined as the difference between a target action value
and the current action value. Details on Bellman equation and the derivation of the
update rule can be found in [145]. Here we consider the temporal difference learning,
in which the target action value for the context in the given decision period h is the
bootstrapping estimate of action values for the context in the subsequent decision period
(h + 1). Since the difference in action value estimates of successive contexts drives the
learning procedure, error is termed as temporal difference error δ, given by

δ = r(s(k,h), a∗(k,h−1))− âr(k, π) + q̂π(s(k,h+1),

a∗(k,h+1), w)− q̂π(s(k,h), a∗(k,h), w) .
(4.16)

In (4.16), a∗(k,h) is the Pareto-efficient fair action for MT k selected in decision period h

and applied in decision period (h + 1). Also, we recall that s(k,h) and r(s(k,h), a∗(k,h−1))
are (resp.) the weighted mean context and mean reward observed over decision period h.

Subsequently, δ is used to update âr(k, π) and weight vector w using gradient descent
as, âr(k, π)← âr(k, π) + βδ (4.17)

w← w + αδ∇q̂(s(k,h), a∗(k,h), w) (4.18)

where α and β are the step sizes for updating weight vector and average reward conditioned
on initial state and the subsequent actions, respectively. Note, however, that the
bootstrapping target itself depends on the weight vector. Consequently, it is biased and
does not produce a true gradient descent, hence this is referred to as a semi-gradient
method. Step sizes α and β govern the learning rate of the algorithm by deciding how
much closer the estimate moves towards the target in a single iteration. If the chosen step
sizes are too small, it takes a large time to reach the best values of weights and average
reward, hence slower learning, which is clearly undesirable. On the contrary, although a
large step size may reduce the training time, there is a possibility of overshooting the true
optimum position and oscillating between local optima. To this end, in our experiments,
we considered different choices and found α, β = 0.01 to be the best suited one.

The workflow of the CAREM RL algorithm is summarized in Algorithm 4, where
for simplicity we focus on MT k and decision period (h + 1). Parameters including the
decision-making periodicity, N , and step sizes, α and β, are initialized at the start of
the algorithm. Given a decision period (h + 1), after observing the context vector, the

4.4 The CAREM Framework 101

radio policy gives as output a greedy action for MT k. Once Algorithm 4 is run for all
MTs, the greedy actions are further tuned by the Pareto block to obtain Pareto-efficient
fair actions {a∗(k,h+1)}, subsequently reinforcement learning takes place using differential
semi-gradient SARSA. Specifically, the temporal difference error δ, the average reward
conditioned on initial state and subsequent actions, and the weight vector are updated
using (4.16), (4.17), and (4.18), respectively. Note that, although the SNR and buffer
state for MT k may be independent of those experienced by other MTs, due to the
sequential decision making process, information of the link allocated to MT k is used to
update the aggregate link load on each link while making decisions for subsequent MTs.

Algorithm 4 RL algorithm in CAREM for MT k in decision period (h + 1)
1: Define parameters: decision-making periodicity N , step sizes α, β ∈ (0, 1]
2: for the n-th monitoring slot in the h + 1-th decision period, n = 1, 2, · · · , N do
3: if n = 1 then
4: s(k,n) ← s(k,h), a∗(k) ← a∗(k,h)

5: else
6: Observe s(k,n), a∗(k) ← a∗(k,h)

7: Evaluate reward per slot r(s(k,n), a∗(k)) using (4.1)
8: Find mean reward over the h + 1-th decision period, r(s(k,h+1), a∗(k,h)) using (4.4)
9: Find weighted mean context s(k,h+1) using (4.7)

10: Compute action values q̂π(s(k,h+1), ·, w) for all possible actions using (4.9)
11: Choose ã(k,h+1) using the ϵ-greedy policy

4.4.4 Computational complexity analysis

Based on Algorithms 1 and 2, the most complex operations are given by the following
steps: (i) greedy action selection for the K MTs, (ii) Pareto-efficient fair action selection
on L links, (iii) computation of weighted mean of context and mean reward per decision
period for the K MTs, and (iv) update of weight vector for learning radio policy based on
KPI observation from the K MTs. Corresponding to each of these steps and considering
that the number of radio resources is finite, the computational complexities are given
by O(K|A|), O(K), O(K), and O(KN), respectively. Hence, the overall complexity is
given by O(K|A|) + O(K) + O(K) + O(KN) ≈ O(K|A|) + O(KN), where the first
term is the dominant one as |A| is much larger than N .

We recall that every decision period is comprised of N monitoring slots. The smaller
the value of N , the more frequently CAREM makes decisions and the more the performed

102 A Context-aware Radio Resource Management in Heterogeneous Virtual RANs

Edge Host

ENBEPC

RSU

Router

Edge

App 1

Edge

App 2

Mobile Terminal 1

Router

Mobile

App 1

Mobile

App 2UE

STA

Internet
Legend

Linux Network

Gigabit Ethernet

USB 3.0 Link

Radio Link

Docker Container

AI decision

CAREM

MCS

MCS

Router
Route

Router

LTE

IEEE 802.11p

Context

Context

Mobile Terminal 2

Router

Mobile

App 1

Mobile

App 2UE

STA

Router

Fig. 4.5 Testbed architecture (for clarity two links and two mobile terminals only are shown).
Edge Host provides connectivity to the MTs through a heterogeneous vRAN. For clarity, two
links (3GPP LTE and IEEE 802.11p) and two MTs only are shown.

computations, with worst case scenario given at N = 1 wherein computations on the
order of O(K|A|) + O(K) are done every monitoring slot. It follows that choosing a
high N value leads to a significant computation gain, at the cost (as shown in Sec. 4.6)
of a marginal performance degradation.

4.5 Testbed Design and Implementation

The testbed architecture, illustrated in Fig. 4.5, is composed of two main interconnected
blocks: the edge host (left block) and the mobile terminal (right block). For clarity of
presentation, only two links and two MTs are shown. The purpose of the edge host is to
provide computational resources and mobile connectivity for services offered by the edge
applications, which are then consumed by the mobile applications running at the MTs.
Connectivity between the edge host and the MTs is provided through a heterogeneous
vRAN integrating the 3GPP LTE (bottom link in Fig. 4.5) and IEEE 802.11p (top link)
technologies, both implemented through SDR solutions.

The LTE vRAN is based on srsRAN [148], an open-source SDR LTE stack implemen-
tation that offers EPC, eNB, and MT applications. It is compliant with LTE Release 9
and supports up to 20 MHz bandwidth channels as well as transmission modes from 1 to 4,
all using the FDD configuration. The IEEE 802.11p transceiver is implemented through
a GNU Radio flowgraph, released by the WiME project [149], and it is interoperable
with commercial IEEE 802.11p devices. We mention here that, because of processing

4.5 Testbed Design and Implementation 103

5 6 7 8 9 10 11 12 13 14 15

SNR [dB]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
T

h
ro

u
g

h
p

u
t

[M
b

/s
]

GNURadio 802.11p

Unex DHXA-222

Fig. 4.6 Throughput of IEEE 802.11p with MCS set to 2: comparison between the SDR interface
implemented through the GNURadio card (blue curve) and that of the off-the-shelf device,
namely, Unex card (red curve). The SDR IEEE 802.11p transceiver performance has been
properly scaled to match that of commercial cards.

delay limitations, the IEEE 802.11p transceiver lacks important features of the standard
such as ACKs and CSMA/CA mechanisms.

The core component of edge host is the proposed CAREM framework, which controls
the operation of the heterogeneous vRAN. The algorithm periodically selects the appro-
priate link, MCS to be used, and allocated resources on the selected link for downlink
packet transmission. To interact with the host operating system network stack, both the
SDR solutions expose a tun/tap interface to which an IP address is assigned. A router is
connected to those interfaces to steer traffic over the radio links, the host applications,
and the internet, according to the link selected by CAREM. The link selection is enforced
with dynamic modification to the Linux kernel routing table.

The SDR applications, as well as the edge applications, are implemented and executed
within docker containers, to control resource usage and isolate the different applications.
The SDR applications have been patched to allow for the dynamic selection of the MCS
used for the data radio transmission, according to the radio policy. The srsRAN eNB

104 A Context-aware Radio Resource Management in Heterogeneous Virtual RANs

Fig. 4.7 Testbed implementation setup with two MTs and one Edge Host: each MT is connected
to two USRP B210 boards, implementing LTE and IEEE 802.11p, respectively.

application has been patched to run a dedicated thread that listens to and applies the
MCS and the RBs allocation selected by CAREM to the communication with a specific
MT. As for IEEE 802.11p, the GNU Radio flowgraph has been modified by adding an
XMLRPC server block, which exposes a remote procedure call interface to dynamically
set the MCS to be used. The airtime allocation instead has been implemented by
limiting the IP flow throughput with Linux Traffic Control according to the radio policy.
Indeed, since the transceiver does not support the CSMA/CA mechanism, the physical
throughput is known given the MCS. Furthermore, both the SDR applications have been
modified in order to collect such context data as the average SNR and the buffer state
report through a sidelink connection.

The UDP throughput of the SDR IEEE 802.11p transceiver has been compared to
the throughput of a commercial wireless card, namely, the Unex DHXA-222, based on
the Qualcomm Atheros AR9462 chipset. Using the same MCS (MCS 2: QPSK, 1/2),
different levels of SNR have been tested. As shown in Fig. 4.6, the two solutions exhibit
similar throughput for SNR below 8.5 dB, where a high packet loss is observed. At higher
SNR, i.e., above 10 dB, the maximum achievable throughput is instead limited by the
physical data rate. Throughput saturates at around 2 Mb/s using the SDR transceiver
– a value that is more than 50% lower than the Unex card throughput. Consequently,
for the sake of fair comparison between the IEEE 802.11p and the LTE technology, the
measured packet loss of the SDR IEEE 802.11p transceiver has been scaled so that its
throughput (and packet loss) performance matches that exhibited by commercial cards.

The testbed implementation setup used to evaluate CAREM is shown in Fig. 4.7. The
edge host and the MTs are installed in Ubuntu 18.04 systems. The edge host system is
equipped with an Intel i7-7700HQ 4-core CPU and 16 GB of DDR4 RAM, while the one
used for the MTs integrates an Intel i7-8550U 4-core CPU and 16 GB of DDR4 RAM.
Each Ubuntu system is connected to two ETTUS Universal Software Radio Peripheral

4.6 Performance Evaluation 105

0 250 500 750 1000 1250

Time [min]

6

10

14

18

22

S
N

R
 [

d
B

]

(a)

0 250 500 750 1000 1250

Time [min]

0

50

100

150

200

250

B
u
ff
e
r

s
ta

te
 [
p
a
c
k
e
ts

]

(b)

Fig. 4.8 Variation of context with time: SNR (a) and per-MT buffer state for 3 Mbps traffic
load (b). SNR being an independent variable varies randomly, while the buffer state reduces
close to zero as the algorithm learns to select better actions.

(USRP) B210 boards, one for LTE and the other for IEEE 802.11p, using USRP Hardware
Driver (UHD) v3.15.

4.6 Performance Evaluation

In this section, we first detail the experimental settings of the testbed under which
we derived our performance results. We then assess the performance of CAREM by
showing the convergence of reward values and the behavior of the KPIs in response
to the action selection. Finally, we present a comparison of CAREM with the closest
competitive technique in [109], a relatively simpler contextual Bandit (CB) approach,
and the standard LTE cellular system.

106 A Context-aware Radio Resource Management in Heterogeneous Virtual RANs

4.6.1 Experimental settings

We evaluate the performance of the CAREM framework using our testbed implementation.
We consider two cases: (a) N = 1, which corresponds to per-slot (i.e., 100-ms) decision
making, and N = 10, where decision is periodically made every 10 monitoring slots (i.e.,
every second).

In our performance evaluation, we consider two scenarios, hereinafter referred to as
2-link and 3-link scenario, respectively. In the 2-link scenario, we consider a 10-MHz
bandwidth LTE and an IEEE 802.11p link, and 5 MTs connected; the traffic load at
the vRPA for each MT is equal to 1 Mbps. In the 3-link scenario, instead, we add a
5-MHz LTE link and consider 3 MTs, each associated with 3-Mbps traffic load, plus 4
MTs, each associated with 1-Mbps traffic load. Fig. 4.8 shows an instance of the time
evolution of two context components, the SNR and the buffer state, with the latter
referring to the per-MT 3 Mbps downlink traffic load. Here we observe that the SNR
is an independent variable and randomly takes values between 8 dB and 21 dB, while
the evolution of the buffer state is action dependent, in the sense that over a course
of time, as the algorithm is expected to learn to select better actions, the buffer state
gradually reduces to zero. Finally, looking at the variation of the KPI values observed in
our testbed and whether they meet their respective thresholds, we set such thresholds as
per the 3GPP specifications for 5G [116], i.e., at 0.1 s for latency and 0.01 for packet loss.

4.6.2 Convergence analysis

We first focus on the 2-link scenario and evaluate the performance of CAREM in terms
of convergence of reward values on time-sequenced context. The variation of reward
values as a function of time is depicted in Fig. 4.9(a)-(b), for both N = 1 and N = 10
decision-making settings, and for best, worst and average MT in the system. Here, the
best (worst) MT is the one experiencing the highest (lowest) value of reward averaged
over the experiment duration. Instead, average MT is a benchmark scenario wherein
during each monitoring slot the reward is evaluated by averaging the reward over all
MTs. For both operational settings, we observe that the variation in the convergence
behavior is negligible for best, worst, and average MT. Thus, we remark that even in the
presence of multiple MTs, each having a different temporal evolution of context vector,
the learning of the CAREM framework is efficient. Further, although the variation in
reward values if higher for N = 10, its convergence is as good as that for N = 1. Thus, a

4.6 Performance Evaluation 107

Time [min]

0 250 500 750 1000 1250

R
e

w
a

rd

0

0.5

1

1.5

2

Worst MT

Ave. MT

(a)

Time [min]

0 250 500 750 1000 1250

R
e

w
a

rd

0

0.5

1

1.5

2

Worst MT

Ave. MT

(b)

Time [min]

0 200 400 600

R
e

w
a

rd

0

0.5

1

1.5

2

Without pretraining

With pretraining

(c)

Fig. 4.9 Convergence of reward for decision making periodicity N = 1 (a) and N = 10 (b), with
reward corresponding to the best (blue), worst (red), and average (green) MT performance.
Comparison between CAREM convergence with and without pre-training, for N = 1 and worst
MT (c). Uniform convergence across different MTs and for different decision periodicities
indicating efficient learning. Pre-training helps to achieve faster convergence.

longer decision making periodicity lowers the computation complexity with respect to
per-slot decision making without affecting the convergence behavior of the algorithm.

Finally, Fig. 4.9(c) shows how convergence can be further sped up when the RL
model is pre-trained, as it is often deemed as required before a model starts operating
in real-world systems. To highlight the difference between the cases with and without
pre-training, we focus on a smaller time range on the plot x-axis and on the performance
of the worst MT. It is worth remarking that the limited difference between the two curves
shown in the plot further confirms that CAREM can quickly converge even in absence of
pre-training.

4.6.3 2-link scenario: KPIs, throughput, and action selection

The results derived for the 2-link scenario, presented in Fig. 4.10, show that, except for
an initial exploration period, the observed KPI values remain below their respective
thresholds. This holds for all MTs, as can be seen by observing the curves referring to
the best, worst and average MT performance. Compared to the N = 1 decision making
(Fig. 4.10(a)), the observed packet loss is slightly higher for N = 10 (Fig. 4.10(b)), as in
the latter case the action executed by CAREM during a decision making interval may
not be the optimum choice for all the slots in that interval. No significant degradation
however is noticeable for either KPIs, thus suggesting that a larger decision making
periodicity can be a viable solution to reduce the computational burden. Further, in case
of pre-training (results omitted here for lack of room), CAREM can learn even faster,
leading to a very significant reduction of the time during which KPIs are above threshold.

108 A Context-aware Radio Resource Management in Heterogeneous Virtual RANs

0 250 500 750 1000 1250

Time [min]

10-5

10-4

10-3

10-2

10-1

100

101

L
a
te

n
c
y
 [
s
]

10-5

10-4

10-3

10-2

10-1

100

P
a
c
k
e
t
lo

s
s

Latency threshold = 0.1

Packet loss threshold = 0.01

Best MT

Worst MT

Ave. MT

Best MT

Worst MT

Ave. MT

0 250 500 750 1000 1250

Time [min]

10-5

10-4

10-3

10-2

10-1

100

101

L
a
te

n
c
y
 [
s
]

10-5

10-4

10-3

10-2

10-1

100

P
a
c
k
e
t
lo

s
s

Latency threshold = 0.1

Packet loss threshold = 0.01

Best MT

Worst MT

Ave. MT

Best MT

Worst MT

Ave. MT

Fig. 4.10 2-link scenario: Time evolution of the latency (blue shades) and packet loss (red
shades) KPIs for the best (solid line), worst (dashed line), and average (dashed dotted line)
MT performance. KPI thresholds are depicted in gray. Decision making with periodicity N = 1
(a) and N = 10 (b). KPI requirements are met in all cases.

Next, we look at the throughput corresponding to the best, average, and worst MT
performance. Even if throughput is not one of the KPIs targeted by CAREM, it is clearly
correlated with latency and packet loss, and it is one of the reference metrics considered
for the analysis of wireless systems. As shown in Fig. 4.11, for all MTs the throughput
matches the data traffic they are supposed to receive (i.e., 1 Mbps), thus confirming the
effectiveness of CAREM.

Finally, Fig. 4.12 depicts the frequency with which CAREM selects the values of MCS
(Fig. 4.12(a) and Fig. 4.12(b) for N = 1 and N = 10, resp.) and resource allocation
(Fig. 4.12(c) and Fig. 4.12(d) for N = 1 and N = 10, resp.). We remark that, with the
aim to combine results for different capacity-constrained links, the resource allocation

4.6 Performance Evaluation 109

0 250 500 750 1000 1250

Time [min]

0

0.5

1

1.5

2

T
h

ro
u

g
h

p
u

t
[M

b
p

s
]

Best MT

Worst MT

Ave. MT

(a)

0 250 500 750 1000 1250

Time [min]

0

0.5

1

1.5

2

T
h

ro
u

g
h

p
u

t
[M

b
p

s
]

Best MT

Worst MT

Ave. MT

(b)

Fig. 4.11 2-link scenario: throughput in the case of best (blue), worst (red), and average (green)
MT performance, for N = 1 (a) and N = 10 (b). For all the MTs, the measured throughput
matches the offered traffic load.

0 1 2 3 4 5 6 9 12 15 18 21 24 27

MCS

10-3

10-2

10-1

100

P
ro

b
a
b
ili

ty

802.11p

LTE

(a)

0 1 2 3 4 5 6 9 12 15 18 21 24 27

MCS

10-3

10-2

10-1

100

P
ro

b
a
b
ili

ty
802.11p

LTE

(b)

0.125 0.25 0.50 0.75 1.00

Resources allocation

10-3

10-2

10-1

100

P
ro

b
a
b
ili

ty

802.11p

LTE

(c)

0.125 0.25 0.50 0.75 1.00

Resources allocation

10-3

10-2

10-1

100

P
ro

b
a
b
ili

ty

802.11p

LTE

(d)

Fig. 4.12 2-link scenario: MCS selection for N = 1 (a) and N = 10 (b), and fraction of per-MT
resource allocation for N = 1 (c) and N = 10 (d). Bars in yellow and blue refer to IEEE 802.11p
and 10-MHz LTE, respectively. The distribution of the selected MCSs ((a), (b)) indicates that
CAREM can deal well with the correlation between MCS and the MTs’ state, while that of the
link utilization ((c), (d)) highlights that LTE is the most selected link.

fraction on the plots x-axis is expressed as the ratio of resources allocated for each MT
on a given link, to the number of available radio resources thereof.

110 A Context-aware Radio Resource Management in Heterogeneous Virtual RANs

By looking at the results obtained for N = 1 (Fig. 4.12(a) and (c)), one can observe
that the choice of the MCS value varies depending on the experienced SNR as well as
the link, as IEEE 802.11p supports only a subset of the MCS values that can instead be
selected in LTE. On the latter link, it is quite evident a preference for relatively higher
MCSs (greater or equal to 6), since, given a number of allocated RBs, such values allow
for higher throughput.

With regard to link utilization in Fig. 4.12(c), the results reflect what the intuition
suggests: LTE is the most used link. Indeed, since the 10-MHz LTE link offers a higher
capacity than IEEE 802.11p, the latter likely accommodates the traffic for only one MT
at the time, while LTE is used for multiple MTs. Also, while the allocated air time on
IEEE 802.11p varies depending on the number of packets to be transmitted to the MT
using that link and the adopted MCS, the most likely number of RBs allocated on LTE
for each accommodated traffic flow is equal to 0.24 (i.e., 12 RBs). Indeed, with the aim
to best meet the target KPIs, CAREM tries to allocate as many resources as possible for
the served MTs.

At last, looking at Fig. 4.12(b) and (d), which refer to N = 10, we note that, although
in this case the actions executed by CAREM may not be the optimum choice for all
slots in a decision interval, its average resource utilization is almost at par with N = 1.
This is further confirmed by the fact that the average resource utilization is found to
be 14.91% and 19.86% for IEEE 802.11p and LTE (resp.) when N = 1, and 11% and
19.87% for IEEE 802.11p and LTE (resp.) when N = 10.

4.6.4 3-link scenario: KPIs and action selection

To further show the scalability of CAREM, we now focus on the 3-link scenario and
present the results in Fig. 4.14 for N = 1. In particular, the plot in Fig. 4.13 shows the
latency (in shades of blue) and packet loss (in shades of red) for the best, worst and
average MT performance. After the initial learning, both KPIs meet the target value,
except for the packet loss value of the MT experiencing the worst performance, which
exceeds the threshold in very few time instants.

Fig. 4.14(a)–(b) depict instead the probability with which the different actions are
selected, referring to the MCS values and the per-MT fraction of radio resource allocation
(resp.) on the three available links. Most of the trends observed for the 2-link case are
confirmed. For 5-MHz LTE, we notice that MCS values smaller than 27 are mostly
selected, as the traffic load allocated on that link is lower than on 10-MHz LTE, hence less

4.6 Performance Evaluation 111

0 250 500 750 1000 1250

Time [min]

10-5

10-3

10-1

101

L
a

te
n
c
y
 [

s
]

10-6

10-4

10-2

100

P
a

c
k
e

t
lo

s
s

Latency threshold = 0.1

Packet loss threshold = 0.01

Best MT

Worst MT

Ave. MT

Best MT

Worst MT

Ave. MT

Fig. 4.13 3-link scenario for N = 1. KPIs time evolution (latency in shades of blue and packet
loss in shades of red) for the best (solid line), worst (dashed line), and average (dashed dotted
line) MT performance (KPI thresholds are in gray). As the learning converges, average KPI
thresholds are always met.

0 1 2 3 4 5 6 9 12 15 18 21 24 27

MCS

10-3

10-2

10-1

100

P
ro

b
a

b
ili

ty

802.11p

LTE10MHz

LTE5MHz

(a)

0.125 0.25 0.50 0.75 1.00

Resources allocation

10-3

10-2

10-1

100

P
ro

b
a

b
ili

ty

802.11p

LTE10Mhz

LTE5Mhz

(b)

Fig. 4.14 3-link scenario for N = 1. Probability of selecting MCS (a) and resource allocation
fraction (b). In (a) and (b), bars in yellow, blue and gray refer to IEEE 802.11p, 10-MHz LTE,
and 5-MHz LTE, respectively. Trends concur with 2-link scenario.

efficient, yet more robust, schemes are preferred. As for resource allocation on the 5-MHz
LTE link, we notice that the unitary value (i.e., 25 RBs) is selected with significantly
higher probability, given the smaller link capacity.

112 A Context-aware Radio Resource Management in Heterogeneous Virtual RANs

0 250 500 750 1000 1250

Time [min]

10
-3

10
-2

10
-1

10
0

L
a
te

n
c
y
 [
s
] Latency threshold = 0.1 s

CB

Radio Policy [7]

CAREM

(a)

0 250 500 750 1000 1250

Time [min]

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
a
c
k
e
t
lo

s
s

Packet loss threshold = 0.01

CB

Radio Policy [7]

CAREM

(b)

Fig. 4.15 KPIs time evolution for CAREM, radio policy [109], and contextual bandit (CB),
in a one LTE-link scenario: latency (a) and packet loss (b). CAREM only can fulfill latency
requirements, while target packet loss is met by CAREM and CB.

4.6.5 Comparative performance analysis

Here, we compare the performance of CAREM with the closest competitive approach
in [109], a relatively simpler contextual bandit (CB) approach [150], and standard LTE.
For the latter, we rely on the srsRAN implementation, which is compliant with LTE
Rel. 9. As for [109] (see also Sec. 4.2), after relaxing the computation constraints, the
radio policy targets the selection of suitable MCS for fast and reliable packet transmission
over an LTE link. Note that heterogeneous links are considered neither in [109] nor in
LTE. Hence, for the sake of fair comparison, we focus on the MCS allocation problem
over a 10-MHz LTE link, and consider two MTs, each receiving a 3-Mbps traffic flow. In
both [109] and CB, the classifier is trained using the dataset obtained from our testbed
implementation of the LTE vRAN, as discussed in Sec. 4.5. Finally, in CB the same
setting as in CAREM is used for the ϵ decay.

4.6 Performance Evaluation 113

0 250 500 750 1000 1250

Time [min]

10-3

10-2

10-1

100

L
a

te
n

c
y
 [

s
]

Latency threshold = 0.1 s

srsLTE: Avg

srsLTE: Avg+stdev

CAREM: Avg

CAREM: Avg+stdev

(a)

0 250 500 750 1000 1250

Time [min]

10-5

10-4

10-3

10-2

10-1

100

P
a

c
k
e

t
lo

s
s

Packet loss threshold = 0.01

srsLTE: Avg

srsLTE: Avg+stdev

CAREM: Avg

CAREM: Avg+stdev

(b)

Fig. 4.16 KPIs time evolution for one LTE link, under CAREM (red lines) and LTE (blue lines).
Latency (a) and packet loss (b) averaged over two MTs (solid lines), and average plus standard
deviation (dashed lines). CAREM outperforms LTE under high traffic load, owing to a more
extensive exploration of different MCS values.

Fig. 4.15 presents the comparison of the KPI variation over time for N = 1 for CB,
the radio policy in [109] and CAREM. We observe that, under CAREM and after the
initial learning time, the variation of the latency in Fig. 4.15(a) is essentially always
below threshold. The target latency value instead cannot be met using the MCS selection
from the CB scheme or the radio policy in [109]: on average, CAREM provides a 65%

114 A Context-aware Radio Resource Management in Heterogeneous Virtual RANs

improvement with respect to CB and about one order of magnitude relatively to [109].
In case of CB, this is attributed to the fact that being a relatively simpler scheme, it is
unable to capture the associative aspect of context-action mapping when the choice of
current action influences the future values of the context. Further, the radio policy in
[109] is trained using a loss function that minimizes the decoding error probability of the
packet without accounting for latency as a criteria, consequently leading to larger latency
values. This confirms that, thanks to the ability of SARSA to learn the best state-action
trajectories, CAREM avoids taking high risk actions and incurring undesirable network
states, which makes it a better match for dynamic scenarios than, e.g., a CB approach.

Further, from the packet loss variation in Fig. 4.15(b), we note that CAREM and
CB provide similar performance, which is almost one order of magnitude better than
that of the radio policy in [109]. Indeed, the latter aims at limiting the bit error rate at
the physical layer, which may lead to different actions with respect to such policies as
CAREM targeting instead a desired level of packet loss at the MAC layer.

At last, Fig. 4.16 compares the performance of CAREM against LTE, as implemented
in srsRAN, again with two MTs and 3 Mbps traffic load. For clarity of the plots, we
depict the value of the KPIs averaged over the MTs, along with the average value plus
standard deviation. Note that, given the considered SNR pattern, the offered traffic
load exceeds the maximum throughput that the standard LTE link can provide. Under
such conditions, CAREM can instead support the considered traffic load with the target
latency (Fig. 4.16(a)) and packet loss (Fig. 4.16(b)) values, although it has been designed
primarily to manage heterogeneous links in vRANs. By looking at the physical layer
metrics (omitted here for lack of room), we noticed that the better performance of
CAREM is due to its ability of exploring various actions for a given context, hence more
possible values of MCS. Some of them are never selected by standard LTE, but they can
actually lead to a higher reward and are therefore chosen by CAREM.

4.7 Conclusions

We have proposed CAREM, a novel RL-based framework that efficiently allocates radio
resources in terms of link, MCS, RBs and airtime for packet transmissions in heterogeneous
vRANs. The choice of the RL algorithm, actions, and reward function has been made so
that the resource utilization is optimized with respect to dynamic and non-stationary
environments, with limited computation efforts. Importantly, we have provided a proof-
of-concept of our solution, by developing a testbed that leverages an LTE and an IEEE

4.7 Conclusions 115

802.11p SDR implementation. We have evaluated CAREM under different operational
settings, with different decision-making periodicity, number of links, number of MTs
connected, and traffic load. The results show that, as the learning process of the model
saturates, actions are chosen so that both the observed KPIs, latency and packet loss,
always satisfy their target values. Further, it outperforms state-of-the-art solutions as
well as standard LTE, as implemented in the srsRAN framework. In comparison to the
closest competitive scheme in [109] and LTE, both the latency and packet loss observed
with CAREM are of about one order of magnitude lower, while CAREM provides a 65%
latency improvement relative to contextual bandit. Finally, we remark that CAREM
is a promising starting point for the development of heterogeneous networks, where
the advantages of different radio technologies can be fully exploited to maximize the
performance and the robustness of the network. Additionally, it effectively addresses the
need for a solution that can swiftly adapt to the underlying channel-network dynamics
for context-aware radio resource allocation in heterogeneous vRANs.

In the next chapter, we will reuse and extend some of the concepts at the base of
CAREM to develop a new RL framework for the management of not just only radio,
but also compute resources. We will consider a scenario where a single LTE vRAN and
a video transcoder application run on the same node and thus on shared resources, so
a careful allocation of such resources will be required to avoid disrupting the services
provided by the two applications. With VERA, we address the dynamic resource needs
of the applications providing fair and efficient decisions through an additional framework
block that performs Pareto analysis. Finally, we will prove the performance of our
solution through numerical and testbed results.

Chapter 5

Fair and Scalable Orchestration of
Edge Services Resources

The combination of service virtualization and edge computing allows for low latency
services, while keeping data storage and processing local. However, given the limited
resource availability at the edge, a conflict in resource usage arises when both virtualized
user applications and network functions need to be supported. Further, the concurrent
resource request by user applications and network functions is often entangled, since the
data generated by the former has to be transferred by the latter, and vice versa. In this
chapter, we first show through experimental tests the correlation between a video-based
application and a vRAN. Then, owing to the complex involved dynamics, we develop a
scalable reinforcement learning-based framework for resource orchestration at the edge,
which leverages a Pareto analysis for provable fair and efficient decisions. We validate
our framework, named VERA, through a real-time proof-of-concept implementation,
which we also use to obtain datasets reporting real-world operational conditions and
performance. Using such experimental datasets, we numerically demonstrate that VERA
meets the KPI targets for over 96% of the observation period and performs similarly when
executed in our real-time implementation, with KPI differences below 12.4%. Further,
its scaling cost is 54% lower than a centralized framework based on deep-Q networks.

While VERA shares some low-level implementation details with CAREM, presented
in the previous chapter, it is a substantially different framework. Here, the focus shifts
from the management of only the heterogeneous RAN to the management of both radio
and user applications. Moreover, to guarantee fairness between different applications, the
Pareto block, which in CAREM takes care of adjusting the radio resource allocation to

5.1 Introduction 117

satisfy the capacity constraint, has been improved to consider also the compute resource,
namely the vCPU.

Part of the work described in this chapter has been already published in S. Tripathi, C.
Puligheddu, S. Pramanik, A. Garcia-Saavedra and C. F. Chiasserini, "VERA: Resource
Orchestration for Virtualized Services at the Edge," ICC 2022 - IEEE International Con-
ference on Communications, 2022, pp. 1641-1646, doi: 10.1109/ICC45855.2022.9838935,
©2022 IEEE.
Part of the work described in this chapter has been submitted for possible publication in
IEEE Transactions on Mobile Computing.

5.1 Introduction

Network Function Virtualization (NFV) and edge computing are disrupting the way
mobile services can be offered through mobile network infrastructure. Third parties such
as vertical industries and over-the-top players can now partner up with mobile operators
to reach directly their customers and deliver a plethora of services with substantially
reduced latency and bandwidth consumption. Video streaming, gaming, virtual reality,
safety services for connected vehicles, and IoT are all services that can benefit from the
combination of NFV and edge computing: when implemented through virtual machines
or containers in servers co-located with base stations (or nearby), they can enjoy low
latency and jitter, while storing and processing data locally.

The combination of NFV, edge computing, and an efficient radio interface, e.g.,
O-RAN [151], is therefore a powerful means to offer mobile services with high quality of
experience (QoE). However, some important aspects have been overlooked. On the one
hand, user applications are not the only ones that can be virtualized: network services
such as data radio transmission and reception are nowadays virtualized and implemented
through Virtual Network Functions (VNFs) as well [152–156]; and both types of virtual
services, user’s and network’s, may be highly computationally intensive. On the other
hand, it is a fact that computational availability at the network edge is limited [157].
It follows that in the edge ecosystem, user applications and network services
compete for resources, hence designing automated and efficient resource
orchestration mechanisms in the case of resource scarcity is critical.

Further, looking more closely at the computational demand of virtualized user
applications and at that of network service VNFs, one can notice that they certainly

118 Fair and Scalable Orchestration of Edge Services Resources

depend on the amount of data each service has to process, but they are also entangled [158].
As an example, consider a user application at the edge and (de-)modulation and (de-
)coding functions in a virtualized radio access network (vRAN). For downlink traffic,
the application bitrate determines the amount of data to be processed by the vRAN;
on the contrary, for uplink traffic, the data processed by the vRAN is the input to the
application service. A negative correlation, however, may also exist: the more data
compression is performed by a user application, the higher its computational demand, but
the smaller the amount of data to be transmitted and the less the computing resources
required by the vRAN. In a nutshell, a correlation exists between the amount of
data processed/generated by virtual applications at the edge and network
services VNFs, and such correlation can be positive or negative depending on
the type of involved VNFs.

Related joint resource problems have been addressed before [158] albeit ignoring the
complex relationship between all system parameters and context variables and, therefore,
making simplifying assumptions that do not work in practice [159]. Our experimental
analysis in Sec. 5.3 indeed unveils such complex couplings. For instance, contextual
features of the wireless link, such as signal-to-noise-ratio (SNR), radio policies such as the
modulation order and coding scheme (MCS) selected by the vRAN, and the computing
resources allocated to the vRAN have non-linear effects on the resulting latency and, as
a result, on the amount of buffering required by a video-based service. These issues
impair the use of modeling techniques traditionally used for optimal resource
allocation in practical situations.

To capture such trends and relations, and withstand the above challenges, we design
a flexible and scalable framework, called VERA (Virtualized Edge for Radio and user
Applications), leveraging a model-free reinforcement learning (RL) approach. Like us,
other authors also use model-free approaches to address the aforementioned complex
relationship across different aspects of a vRAN [160, 161]. However, extending such
approaches to a multi-service scenario falls into serious scalability issues. To address
this problem, we adopt a distributed multi-agent learning approach. Not surprisingly,
designing a multi-agent learning framework where the actions of individual agents must
collectively satisfy the hard capacity constraints characteristic of mobile edge platforms
is inherently hard. Inspired by [162] and other literature on autonomous driving, we
decompose the policy function into two stages; the first stage produces greedy actions
based on the context collected from the environment while the latter refines these actions
to enforce hard constraints. Unlike previous work in other settings, however, our use case

5.1 Introduction 119

requires some notion of fairness when enforcing these constraints. To address this, we
design a novel Pareto component that guarantees a fair Pareto-efficient solution.

In summary, we provide the following contributions:

• First, we present experimental evidence for the above observations, through a
containerised edge and a software-defined-radio (SDR)-based vRAN testbed;

• Then, given the many interplaying factors and their complex interaction, we
introduce an RL model for an effective, joint allocation of computing resources for
user applications and vRAN at the edge;

• To aid scalability, we resort to distributed learning agents, which we complement
with a Pareto analysis for a fair and efficient decision-making, whenever resource
utilization is constrained to a given budget;

• We show the excellent performance of the VERA framework in terms of convergence
as well as its ability to closely meet the target KPIs of all services in resource-
constraint scenarios. Specifically, we show that, post convergence, VERA meets
the KPI targets for more than 96% of the observation period, and that it performs
similarly when executed in our real-time proof-of-concept implementation, with
KPI differences below 12.4%. Further, we remark that the scaling cost of VERA is
54% lower compared to a competitive centralized framework using deep Q networks.

• Finally, we validate our approach by implementing VERA on our testbed and
showing that its performance is preserved when interacts with a real system in
real-time.

We remark that, to our knowledge, we are the first to address the allocation of
a common pool of edge resources to different, competing, virtualized services
through distributed learning, and to tackle the non-trivial correlations existing among the
behaviors of such services in a scalable manner. Moreover, not only VERA can swiftly
adapt to time-varying network conditions and application traffic, but it also controls
the settings of both user applications and vRAN, selecting at each decision step a fair
Pareto-efficient solution.

The rest of the chapter is organized as follows. Sec. 5.2 introduces the reference
scenario and system architecture. Our experimental analysis is presented in Sec. 5.3,
highlighting the relevant components of the environment contextual information, the
target KPIs, and the driving factors determining the system behavior. Sec. 5.4 describes

120 Fair and Scalable Orchestration of Edge Services Resources

the VERA framework, Sec. 5.5 presents our proof-of-concept and testbed. Sec. 5.6 shows
VERA’s performance, compares it against a state-of-the art alternative, and validates our
approach by running the complete framework on our testbed. Finally, Sec. 5.7 discusses
related work, and Sec. 5.8 draws our conclusions.

Video transcoder &
server

RU

Service Management &
Orchestration (SMO)

vRAN CU/DU

VERA
controller

Other
Apps

RU

CPU Deficit

Performance
metrics

Livecast
actions

vRAN
actions

Output video

Input video

Transcoder

PHY

CPU
scheduler

vCPU n

...

vCPU 3
MAC

...
RLC

RNTIs

Scheduler

vCPU 2

vCPU 1

Livecast
controller O-RAN RICs

Edge
Computing

Platform

CPU Allocation

VIM

Fig. 5.1 Virtualized user application and vRAN at the edge: system scenario and reference use
case

5.2 Reference Scenario and System Architecture

The system architecture and reference scenario under study are depicted in Fig. 5.1.
For clarity, we focus on one type of vertical service and one virtual base station (vBS),
implemented within an edge computing platform. Note that, as explained in Sec. 5.4,
VERA is highly scalable and can effectively handle multiple coexisting services as well as
multiple coexisting vBSs (and/or network slices therein).

As sample use case, we consider a livecast service representing a live video recording
of an event occurring, e.g., at a stadium, that is broadcast to multiple mobile users
located therein or in the nearby area. The high-quality source video is processed within
an edge computing platform through a standard video transcoding service. We remark
that deploying services like livecast at the edge entails that video traffic is produced and
consumed locally, thus saving network bandwidth. Further, it can leverage a multi-access
edge computing (MEC) platform and the associated Radio Network Information Service
(RNIS) [163], which, through feedback-based multicast, allows the use of estimated radio

5.3 Experimental analysis 121

channel conditions for real-time tuning of the video coding parameters [164]. Finally,
emerging interactive services for which video streaming is one of the essential components,
e.g., crowdcast, augmented reality and mobile gaming, have such strict latency constraints
that only an edge-based architecture can meet.

In addition to the livecast service (as well as, possibly, other user services running at
the edge), the edge computing platform hosts vBS functions, central unit (CU) and/or
distributed unit (DU), which are jointly controlled by the VERA controller. As depicted
in Fig. 5.1, the VERA controller is deployed in the Service Management & Orchestration
(SMO) platform, and interacts with both O-RAN intelligent controllers (RIC) to configure
the vBS functions, the edge service controllers (in this case the livecast controller), and the
NFV virtual infrastructure manager (VIM) to configure the CPU schedulers (see O-RAN
specification [151]). In this way, VERA’s workflows (data collection and decision making)
are fully compliant with O-RAN’s machine learning procedures [151]. Indeed, VERA
continuously monitors the state of the vRAN and the livecast application (hereinafter
also referred to as services), as well as the overall usage of computing resources in the
edge platform. Then, it uses such observations to compute the values of the operating
parameters for both livecast and vRAN, which, given the available computing and
networking resources, meet both the application and vRAN KPI targets.

5.3 Experimental analysis

The system architecture described in Sec. 5.2 has been recreated in a smaller scale in our
testbed for the development and testing of VERA. The main components are the edge
computing platform, and the user equipments (UEs), which communicate by means of
an LTE vRAN implemented using the srsRAN suite [165]. The edge platform runs two
Docker containers implementing, respectively, the livecast and the vRAN service, which
consume the edge resource pool.

Our experimental vRAN testbed includes one srseNB instance, i.e., the LTE vBS, and
two srsUE instances, which represent the recipients of the video content livecast by the
vBS. The livecast application consists of a live video streaming transcoder, implemented
with ffmpeg1, and a server, based on ffserver2. It receives the high-quality original video
and transcodes it through the recent VP9 codec using the bit rate and frame rate settings
provided by VERA. Then, the transcoded video is served to the UEs, each running a

1https://ffmpeg.org/
2https://trac.ffmpeg.org/wiki/ffserver

https://ffmpeg.org/
https://trac.ffmpeg.org/wiki/ffserver

122 Fair and Scalable Orchestration of Edge Services Resources

player that streams, decodes, and plays the video. The radio and livecast services are
connected to VERA through a dedicated API, used to dynamically set radio and livecast
operating parameters and retrieve performance measurements. VERA also interacts with
the edge computing platform operating system and the Docker daemon to monitor and
allocate computing resources to the services. More details about our testbed are provided
in Sec. 5.5.2.

We then use our testbed to analyze empirically the trade-offs between different actions
configurable in our system, given different contexts. To ease the analysis, we focus on
a single user, but we note that VERA supports multiple users and we evaluate VERA
with multiple users in later sections.

We start by defining a contextual feature that characterizes the videos being delivered
by the livecast service:

• Context 1: Video input bit rate, input frame-per-second (FPS) rate, and input
resolution;

and another feature that indicates the computational demand required by the livecast
service:

• Context 2: Video CPU throttled time. This feature gives us an indication of
the processing pressure associated with the requested video, which is a footprint
distinguishable across videos, and hence impacts the overall performance and the
choice of appropriate actions.

We also define three sets of actions for our livecast service, some of which re-encode
each video accordingly:

• Action 1: Video output bit rate;

• Action 2: Video output FPS rate; and

• Action 3: CPU resources allocated to the livecast service;

and a KPI that we can use to estimate the quality of the video being delivered, as set
forth below:

5.3 Experimental analysis 123

100%

increase

60%

increase

30

40

50

60

0 2500 5000 7500

Bit rate (Kb/s)

M
ea

n
W

V
M

A
F

Frame rate (FPS) 10 20 30

Fig. 5.2 Video quality (WVMAF) for different livecast service configurations (output FPS rate
and bit rate)

• KPI 1: Weighted Video Multimethod Assessment Fusion (WVMAF). It is based
on the VMAF, a widely used objective metric to assess video quality, which provides
a score between 0 (worst) and 100 (best) per video frame. The score is computed by
aggregating different components such as Visual Information Fidelity, Detail Loss
Metric, or Mean Co-Located Pixel Difference (the interested reader can find further
details in [166]). However, because VMAF assesses the quality of individual video
frames only, it is not helpful to measure the smoothness of a video, which is well
known to impact the perceived quality. To weight this in, we amplify or attenuate
the measured VMAF of each frame by the ratio between the output frame rate and
the input frame rate, and we refer to this metric as WVMAF.

Fig. 5.2 shows the mean WVMAF score for a wide variety of VP9-encoded videos
with different output FPS rates and bit rates, CPU throttle time, and (for simplicity)
the same resolution. The results are intuitive: higher-bit-rate and higher-FPS videos
have higher WVMAF. It is interesting to observe that the frame rate setting has a larger
impact on WVMAF (100% increase for high video bit rate) than the target bit rate
(60% increase for 30 FPS), which moreover shows diminishing returns. This is due to the
weight that amplifies the measured VMAF, which increases the score when higher frame
rates are used.

A second relevant KPI to assess the perceived QoE of the livecast service is:

• KPI 2: Video player buffering. Information about the client’s buffer state, which
stores video frames for playout, is a good estimator of the user’s QoE [167].
Specifically, when the buffer size gets close to zero, the user’s player may stutter,
which resorts in a low level of QoE.

124 Fair and Scalable Orchestration of Edge Services Resources

Video CPU = 0.75 Video CPU = 1 Video CPU = 1.5 Video CPU = 1.75

0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5

0.01

0.10

1.00

Bit rate (Mb/s)
B

uf
fe

r
th

re
sh

ol
d

vi
ol

at
io

n
ra

te

Frame rate (FPS) 10 20 30

Fig. 5.3 Buffering threshold violation rate for different livecast service configurations and CPU
allocations

To assess this KPI, we select a threshold equal to 0.5 seconds of video buffered at the
client’s video player, and report in Fig. 5.3 the frequency that such threshold is violated
for the same set of videos used before and for different combinations of actions. In this
case, the target bit rate and the amount of CPU resources, measured in units of virtual
CPU (vCPU) assigned to the service, have a much larger impact on this KPI than before
(ruling ranges of this KPI that span 2 orders of magnitude). Note the logarithmic scale
in the y-axis, which indicates a non-linear behavior.

Next, we focus on the vRAN service, and define two more actions related to it:

• Action 4: CPU resources allocated to the radio; and

• Action 5: A Modulation and Codign Scheme (MCS) policy. This policy follows
that used in [159] and imposes an upper bound on the MCS eligible by the base
station, which helps to control the computational demand of the radio service;

• Action 6: Bandwidth allocated to each UE, measured as the aggregate amount of
radio Resource Blocks (RBs);

and three relevant contextual features:

• Context 3: Radio CPU throttled time, which is the radio counterpart of Context
2;

• Context 4: Signal-to-noise-ratio (SNR), which is a common feature used to
estimate the quality of a wireless channel and in turn bounds its capacity; and

• Context 5: Network load, which corresponds to the offered load that the vBS has
to process, generated by the applications deployed at the edge (such as our livecast
service) and background data related to the mobile network.

Concerning radio KPIs, we first define:

5.3 Experimental analysis 125

Latency req. VIOLATED Latency req. SATISFIED

Higher MCS policy,

better latency

Higher CPU,

better latency

Higher SNR,

better latency

Higher load,

worse latency

Radio CPU = 0.6 Radio CPU = 0.8 Radio CPU = 1

M
C

S
 p. =

 9
M

C
S

 p. =
 18

M
C

S
 p. =

 27

10 20 30 10 20 30 10 20 30

0

2

4

6

0

2

4

6

0

2

4

6

Signal-to-Noise-Ratio (dB)

N
et

w
or

k
lo

ad
 (

M
b/

s)

Fig. 5.4 Latency violations for different radio service configurations, contexts, and CPU
allocations

• KPI 3: Radio latency. This is the latency associated with the data transmitted
successfully over the air.

To analyze this KPI, we plot in Fig. 5.4 every data frame that violates/meets a
latency threshold equal to 150 ms with red/blue colored dots when the vBS has to
deliver randomly chosen videos from our set. We present these as functions of two of
the radio contextual features (SNR and network load) and for different combinations of
actions. Correlations between context, actions, and latency are evident. For instance, a
higher MCS policy show a consistent improvement in latency performance, which however
requires more computing resources. We observe a similar behavior when allocating a
higher number of RBs (results omitted to reduce clutter).

We then define one last KPI associated with the radio service:

• KPI 4: Packet loss rate, which measures the number of unacknowledged TCP
segments due to corruption on the radio link.

Fig. 5.5 shows this KPI for all the videos in our set as a function of the SNR (Context
4) and for different MCS policies (Action 5). In red, we mark those samples that exceed
1% packet loss. Obviously, the sample set is highly biased towards 0 packet loss rate.
However, there are a number of video scenes that cause packet losses, and these are highly
correlated with SNR and our MCS policy in a non-trivial manner as shown by the plot.
For instance, we can observe that higher MCS policies yield considerably lower packet
loss rate. Note that this gain comes from the extra wireless capacity granted by larger
MCS policies and not from the reliability of a given MCS that is selected automatically

126 Fair and Scalable Orchestration of Edge Services Resources

Packet loss req. VIOLATED Packet loss req. SATISFIED

Higher MCS,

better loss rate

Lower SNR,

worse loss rate

MCS policy = 0 MCS policy = 9 MCS policy = 18 MCS policy = 27

10 20 30 10 20 30 10 20 30 10 20 30

0.001

0.010

0.100

Signal-to-Noise-Ratio (dB)

P
ac

ke
t l

os
s

ra
te

Fig. 5.5 Packet loss rate for different vRAN configurations and contexts

Buffer req. VIOLATED Buffer req. SATISFIED

Higher MCS, higher SNR

better video performance

MCS policy = 0 MCS policy = 9 MCS policy = 18

10 20 30 10 20 30 10 20 30

0.01

0.10

1.00

Signal-to-Noise-Ratio (dB)

B
uf

fe
r

st
at

e
(s

)

Fig. 5.6 Livecast performance (buffer state) for different vRAN configurations and contexts

by the radio scheduler: we simply impose a restriction on the set of eligible MCSs.
Moreover, better SNR provides also better performance, which is intuitive. However,
this relationship is non linear (note the logarithmic y axis). Likewise, the dependency
between packet loss and the number of allocated RBs is also monotonic, i.e., high packet
losses are observed with overly low RB allocations (like before, we omit these results to
be concise).

To conclude our experimental analysis, we plot in Fig. 5.6 a livecast KPI (buffer state)
as a function of SNR (radio context) and MCS policy (radio action). Evidently, the
buffer dynamics of the client’s video player are highly correlated with the context and the
actions performed over the livecast service. This proves that the resource orchestration
problem we endeavour into in this chapter is a coupled problem and all these edge services
must be optimized jointly.

Conclusion: It becomes evident that the support of different applications in the edge
platform leads to complex inter-dependencies between system parameters, context-action
variables and KPIs, thereby making optimum resource allocation a challenging task. To
this end, we propose the VERA framework, which is completely data-driven, and, hence,

5.4 The VERA Framework 127

Context Shared state
representation

Livecast
learning agent

vRAN learning
agent

Pareto-
efficient

fair
allocation

no

yes

resource
constraints

met

Final actions:
UE

UE

UE

...

Final actions:

Fig. 5.7 Structure of the VERA framework

a good match for flexible and effective decision making in virtualized environments,
despite the system complexity.

5.4 The VERA Framework

The VERA framework is designed using a model-free RL approach. It includes distributed
learning agents, each corresponding to a service in the edge platform, which simultaneously
make decisions for the allocation of radio and computing resources as well as tune service-
specific operating parameters. This design choice is key to attain a scalable solution.
These decisions are hereafter collectively referred to as a resource allocation policy, which
consists of two development stages:

• In the first stage, each RL agent makes decisions based on the shared context
representation to obtain a greedy resource allocation policy;

• In the second one, greedy policies from all RL agents are collated and further
refined in view of the feasibility of the chosen actions to obtain a Pareto-efficient
fair resource allocation policy.

The structure of the VERA framework is shown in Fig. 5.7. Decisions are made with
periodicity equal to N ≥ 1 monitoring slots, i.e., an action is selected at the end of every
decision window of duration N slots, and it is applicable to the subsequent N monitoring
slots. The individual stages are elaborated in the sequel.

5.4.1 Notation

Rn denotes the set of n-dimensional real vectors. Vectors (usually in column form) are
written in bold font, matrices are in upper-case, bold font, and sets are in calligraphic font.

128 Fair and Scalable Orchestration of Edge Services Resources

Table 5.1 Notation
Symbol Description

Context notation
b Video input encoding bit rate
f Video input FPS rate
v Video input resolution

tv , tr Normalized video and radio (resp.) throttled time
γ CQI value
l Livecast network load

Action notation
β Video output encoding bit rate
φ Video output FPS rate
c CPU allocation
ω vRAN MCS policy
ρ RB allocation

KPI notation
ζ WVMAF score
σ Client’s buffer state
λ Latency
µ Packet loss rate

{ζm
o , σm

o , λm
o , µm

o } Observed KPI values by m-th UE
{ζt, σt, λt, µt} Target KPI values

Subscripts and superscripts denote an element in a vector and elements in a sequence
(resp.). E.g., ⟨x(t)⟩ is a sequence of vectors with x(t) = [x(t)

1 , . . . , x(t)
n]⊤ (superscript ⊤ is

the transpose operator). x
(t)
i is the i-th component of the t-th vector in the sequence.

5.4.2 Greedy analysis

Since the edge platform may have several services consuming the resource pool, owing to
resource sharing, the KPI satisfaction of each is interdependent. We therefore consider
a context vector comprising variables pertinent to each service. The context vector is
processed through an autoencoder to create a shared context representation that captures
the correlation among context variables, as well as reduces the dimensionality of the
context vector. Then, each RL agent devises a greedy resource allocation policy by using
the same shared context representation and by mapping it onto an action vector such
that its long-term cumulative reward from the environment is maximized. Notice that,
although the decisions are based on shared context, greedy policies do not ensure that
the sum of capacity-constrained resources among all the services does not exceed their
maximum capacity. To solve this issue, we design a Pareto algorithm that allows for
feasible and fair resource sharing. The elements composing the greedy resource allocation
policy are introduced below, while the notation we use is summarized in Tab. 5.1.

Context space. As described in Sec. 5.3, the resource allocation for the livecast
service is governed by the following contextual information: input bit rate (b), input video
FPS (f), and input resolution (v) of the streaming video (i.e., Context 1 in Sec. 5.3).

5.4 The VERA Framework 129

Besides, to accommodate any backlog in video processing, the normalized CPU throttled
time of the livecast application (tv) in the previous monitoring slot is considered (Context
2).

Likewise, resource allocation for the vRAN is based on normalized CPU throttled
time (tr) (Context 3), the 3GPP-compliant Channel Quality Indicator (CQI) (γ) reported
from UEs to vBS, which is representative of the SNR (Context 4), and the traffic from
the livecast application sent over the radio link to the UEs (Context 5), specified by the
network load (l). Thus, the context vector observed in monitoring slot n (n = 1, . . . , N)
can be written as x(n) ∈ X , x(n) := {b(n), f (n), v(n), tv

(n), tr
(n), γ

(n)
1 , · · · γ(n)

M , l
(n)
1 , · · · l(n)

M }.

Further, to extract the correlation between context variables, an autoencoder projects
context vector x(n) ∈ X onto its latent representation y(n) ∈ RD, y(n) := {y1

(n), . . . , y
(n)
D }

where D < dim(X). The latent representation y(n) is shared with each RL agent so that
its decision process for a given service is informed of the performance of others accessing
the resource pool, thus representing a shared context representation. The autoencoder
is implemented through a simple feed forward neural network that is activated using
rectified linear units in the hidden layers. Note that dimensionality reduction is only
one advantage of the autoencoder: indeed, it is primarily used to capture multimodal
patterns among context variables, which may not otherwise be evident owing to the
system complexity.

Action space. Since services are heterogeneous, we define action space A :=
{ak}, ∀k ∈ (1, . . . , K), comprising action vectors each having service-specific action
variables. In our reference scenario, K = 2, and we associate k = 1, 2, respectively, to
action vectors for livecast and vRAN. Consequently, a1 comprises the CPU allocated to
the livecast application (cv), i.e., Action 3 in Sec. 5.3, the video output encoding bitrate
(β), i.e., Action 1, and the video output encoding FPS (φ), i.e., Action 2.

Conversely, a2 includes the CPU allocated to vRAN (cr), i.e,. Action 4, the MCS
value (ω) defined before as Action 5, and the bandwidth allocated to each UE, ρ =
{ρ1, ρ2, · · · ρM} as defined in Action 6, where M is the maximum number of users
supported in the system. Here, the CPU and the radio (RB) resources are capacity
constrained, i.e., cv +cr ≤ Bc and ρ1+ρ2+· · · ρM ≤ Bρ, where Bc and Bρ are, respectively,
the total available CPU and number of RBs that can be allocated. To avoid clutter, we
replace cv and cr with a generic ck that denotes the CPU allocated to service k, and let

130 Fair and Scalable Orchestration of Edge Services Resources

ρm be the number of RBs allocated to UE m. Mathematically,

ak =

(β, φ, ck), if k = 1,

(ω, ck, ρ), if k = 2 .
(5.1)

Next, we discretize the quantity of capacity-constrained resources that can be allocated,
and map each feasible combination of action variables during the n-th monitoring slot
into an action index a

(n)
1 := {1, 2, . . . , Nβ ·Nφ ·Ncv} and a

(n)
2 := {1, 2, . . . , Nω ·Ncr ·Nρ},

where Ni is the number of elements in the discretized version of action variable i =
{β, φ, ω, cv, cr, ρ}. The advantage of such action definition is that it limits the action
space to a subset of discrete positive values with low cardinality, and it facilitates
simultaneous selection of several resources with a single action.

Reward. For a given service, KPI satisfaction is achieved when the allocated resources
make the observed KPIs to meet their respective target values. However, beside meeting
the target KPIs, it is essential to keep the observed KPIs as close as possible to the
target KPIs; failing that, the system may perform better than required at the cost of
extra resource consumption. Consequently, the choice of a reward function should be
such that it equally accounts for all the KPIs for a given service and its value increases
as the observed KPIs approach the corresponding thresholds and vice versa.

Let the observed values of the livecast KPIs, i.e., WVMAF and client buffer state,
and of the vRAN KPIs, i.e., latency and packet loss rate for the m-th UE, be denoted
by ζm

o , σm
o , λm

o , µm
o , while the corresponding target values be ζt, σt, λt, µt, respectively.

We define the reward value for m-th UE, rm, as the sum of the reward components
pertaining to each service-specific KPI k in the n-th monitoring slot within the same
decision window, as:

rm(y(n), a
(n)
k) =

rm
ζ (y(n), a

(n)
k) + rm

σ (y(n), a
(n)
k), if k = 1 ,

rm
λ (y(n), a

(n)
k) + rm

µ (y(n), a
(n)
k), if k = 2 .

(5.2)

In the above expressions, rm
ζ (·), rm

σ (·) are the reward components from WVMAF and
buffer state (resp.) for the m-th UE, given by:

rm
KPI(y(n), a

(n)
k) =

1− erf(KPIm

o (y(n), a
(n)
k)−KPIt),

if KPI is met
erf(KPIm

o (y(n), a
(n)
k)−KPIt), else .

(5.3)

5.4 The VERA Framework 131

The terms rm
λ (·) and rm

µ (·) are instead the reward components from latency and packet
loss rate (resp.), which are given by similar expressions but with (KPIt−KPIm

o (y(n), a
(n)
k))

as an argument of the erf function, since all values of latency and packet loss rate lower
than their respective target values are acceptable. Since the minimum and maximum
values of the erf function lie between −1 and +1, we have: −2 ≤ rm(y(n), a

(n)
k) ≤ 2. For

the individual reward components, in the positive region of operation, i.e., when the KPI
threshold is met, the reward value is positive and it further increases to its maximum
value +1 as the observed KPI approaches its target KPI value. Likewise, in the negative
region of operation, i.e., when the KPI threshold is not met, the value of the individual
reward components is negative, which further reduces and saturates to the minimum
value −1 as the observed KPI moves away from the KPI threshold.

We recall that while devising the greedy resource allocation policy, the goal of the RL
agent is to maximize the cumulative reward measured as the sum of immediate reward
and future rewards over a long time horizon. To this end, we consider a generic decision
window h and, extending the previous notation, we let a

(h−1)
k denote the action for the

k-th service selected in decision window (h− 1) and applied in decision window h. We
then define the average reward over h, considering all the UEs, as

r(y(h), a
(h−1)
k) := 1

MN

NØ
n=1

MØ
m=1

rm(y(n), a
(h−1)
k), (5.4)

where y(h) is the vector of shared contexts observed in the N monitoring slots in decision
window h, while a

(h−1)
k is the action for service k selected in decision window h− 1 and

applied in decision window h. Finally, we adopt the definition of cumulative reward
for the k-th service, observed during decision window h, as the differential return G

(h)
k

defined in [145] (see Appendix A in the Supplemental Material).

Estimation of user buffer states. A key challenge, however, is to estimate the
actual buffer dynamics without explicit feedback from the users. Thus it is important to
design an effective online learning mechanism. To this end, we keep track of the time
status information provided by the video encoder and the sequence number of TCP
acknowledgments, all information locally available. By monitoring the amount of bytes
successfully delivered, the corresponding timestamp of the scenes been transmitted, and
the encoded video’s frame rate, we can estimate the buffer dynamics at the client’s side
using simple queuing theory. Fig. 5.8 shows the evolution over time of a video player’s
buffer state (ground truth) vs. the inferred value for 3 trivially chosen videos and system
configuration parameters. In most of the cases, our inference method is remarkably

132 Fair and Scalable Orchestration of Edge Services Resources

bit rate=300 Kb/s
FPS=10

bit rate=1500 Kb/s
FPS=30

bit rate=5000 Kb/s
FPS=30

0 10 20 30 0 10 20 30 0 10 20 30
0.0
0.5
1.0
1.5
2.0

Monitoring slot (s)

B
uf

fe
r

st
at

e
(s

)
Inference Ground truth

Fig. 5.8 Livecast client’s buffer state inference

accurate. This is the case for the first two subplots in Fig. 5.8. However, we have found
that there are some small number of cases where there is a non-negligible inference error.
We show an example of this in the right-most plot of the figure, where we have an error
of almost one second. Fortunately, these always occurs for non-critical cases, i.e., cases
where the buffer state never approaches zero (the state we want to avoid). Since our
estimator is pessimistic, the outcome are simply more conservative decisions. We hence
conclude that our inference approach is valid to compute reward.

Action-value estimation and action selection. At the end of the generic decision
window h, actions need to be evaluated and the best one has to be selected. To this end,
we compute the mean shared context over the N monitoring slots in h as

y(h) =
NØ

n=1
zny(n)/

NØ
n=1

zn, (5.5)

where zn > 0 and zN > zN−1 > · · · > z1 are the weights assigned so that the latest shared
context has the highest weight.3 We then quantify the goodness of taking an action in
response to the mean shared context using action values. For service k, the value of a

(h)
k

given policy πk, which is qπk
(y(h), a

(h)
k) (see Appendix A in the Supplemental Material),

is defined as the expected differential return conditioned on y(h) and a
(h)
k , following policy

πk, i.e.,
qπk

(y, a) = Eπk
[G(h)

k |y(h) = y, a
(h)
k = a]. (5.6)

3Although they can be arbitrarily set, we fix them to 1, . . . , N , in accordance with the temporal
sequence of the monitoring slots.

5.4 The VERA Framework 133

Since the context space X falls in the domain of real numbers, we use a practical
method for action-value estimation using function approximation in an F-dimensional
space, yielding the approximated function q̂πk

(y(h), a
(h)
k , w) = qF

f=1 wfsf(y(h), a
(h)
k),

where w and s(y(h), a
(h)
k) denote the F -size weight and feature vectors (resp.), with

the latter being generated using tile coding [146] (see Appendix B in the Supplemental
Material).

The estimation of the action values is followed by an ϵ-greedy action selection policy
[145], which selects the best action for each service so as to maximize its cumulative
reward over an infinite time horizon. We consider an ϵ-greedy action selection with
ϵ = 0.5 and ϵ-decay factor = 0.999. The ϵ parameter decays by a factor of 0.999 in the
subsequent decision period. This favors higher exploration while the environment is still
unfamiliar; with progression of time, instead, it allows for further exploitation of the
environment knowledge gained during the exploration, so as to maximize the expected
return.

Discussion. While single-agent RL approaches can easily solve the above capacity
constraints, they suffer from the curse of dimensionality, even if implemented with deep
neural networks (see DQNs) [168]. As a result, the key challenge is to provide safe (i.e.,
within a set of hard constraints) and fair resource allocation decisions with a distributed
multi-agent RL model that is amenable to scalable orchestration.

In this way, our distributed approach allows us to handle two sets of capacity
constraints:

1. Computing resources: VERA can handle multiple vBSs (or multiple radio slices
within a vBS), and multiple edge services that are competing for the same computing
resource budget;

2. Radio resources: VERA can handle multiple users sharing a common carrier
bandwidth.

Although for the sake of clarity the above text and Fig. 5.7 refer to two service learning
agents only, one of which is a single vBS serving M UEs, the scalable multi-agent design
of VERA allows for as many learning agents as services, vBSs, or slices under the above
capacity constraints.

134 Fair and Scalable Orchestration of Edge Services Resources

Algorithm 5 Fair Pareto-efficient Resource allocation
1: S = {ãk}k, {ck, ρm(k) ∀m ∈M} ← ãk(S), S′ = {ck, ρm(k) ∀m ∈M},∀k ∈ C ▷ Extract capacity-constrained actions

from greedy action set {ãk}
2: if

q
k∈C ck ≤ Bc and

q
m∈M ρm(k) ≤ Bρ,∀k ∈ C then ▷ Capacity-constraint check on the primary and secondary

resource
3: S⋆ = S′ ▷ Output: Fair Pareto-efficient solution
4: else if

q
k∈C ck ≤ Bc and

q
m∈M ρm(k) > Bρ, for any k ∈ C then ▷ Primary resource budget constraint met,

secondary resource budget constraint not met
5: {ρ′

m(k) ∀m ∈M} ← ParetoBlock({ρm(k) ∀m ∈M}), for the considered k ∈ C ▷ Revised Pareto-efficient fair
secondary resource allocation adhered to budget constraint and allocated CPU

6: S′′ = {ck, ρ′
k(m) ∀m ∈M}, ∀k ∈ C

7: S⋆ = S′′ ▷ Output: Fair Pareto-efficient solution
8: else if

q
k∈C ck > Bc then ▷ Primary resource budget constraint not met

9: {c′
k} ← ParetoBlock({ck}), ∀k ∈ C ▷ Revised Pareto-efficient fair primary resource allocation adhered to its

budget constraint
10: {ρ′

m(k) ∀m ∈M} ← ParetoBlock({ρm(k) ∀m ∈M}), ∀k ∈ C ▷ Revised Pareto-efficient fair secondary resource
allocation adhering to revised Pareto efficient fair primary resource allocation

11: S′′ = {c′
k, ρ′

m(k) ∀m ∈M}, ∀k ∈ CS⋆ = S′′ ▷ Output: Fair Pareto-efficient solution

Algorithm 6 ParetoBlock
Input: {ck} ∀k ∈ C s.t.

q
k∈C ck > Bc or {ρm(k) ∀m ∈M} s.t.

q
m∈M ρm(k) > Bρ} ▷ Primary or secondary

resource allocation violating the budget constraints
1: S1 = {ck} ∀k ∈ C or S1 = {ρm(k)} ∀m ∈M, as applicable Se = {S1, S2, . . .} ▷ Build expanded solution set
2: Ss ← {Si/|C|}Se or Ss ← {Si/|M|}Se , as applicable ▷ Rescale expanded solution set
3: for S ∈ Ss do âSs ← {âak(S)} ▷ Define refined actions set wrt Ss

4: Create Sd ▷ Pareto dominant solution set
5: Choose S′

1 ▷ Fair Pareto-efficient resource allocation
6: return S′

1 = {c′
k} ∀k ∈ C or S′

1 = {ρ′
m(k)} ∀m ∈M, as applicable

5.4.3 Pareto analysis

We recall that the CPU and RB allocation for (resp.) service k and UE m are capacity-
constrained resources. Hence, it is essential that the sum of CPU (RB) allocated to
different services (UEs) does not exceed the available resource budget and that the
selected actions can be enacted. To this end, we introduce an algorithm that works
on the multi-dimensional actions selected by the ϵ-greedy policy in the RL framework
introduced above, and it further refines them so that the resulting actions (i) meet the
budget constraint and (ii) entail fair Pareto-efficient resource sharing.

It is important to note here that not only the CPU allocation across the services
and RB allocation across the UEs are capacity constrained, the RB allocation is also
dependent on the CPU allocated to vRAN. Thus, CPU and RB (resp.) act as the
primary and secondary capacity constrained resources for vRAN. Unlike vRAN, the
livecast service has no associated secondary capacity-constrained resource. However,
for the sake of mathematical proofs, this observation can be generalized as follows: the
primary capacity constrained resource (here CPU) is distributed among K services, and
each service may in turn serve M units (UEs for vRAN, none for livecast) using the
primary resource. The secondary capacity constrained resource is distributed among

5.4 The VERA Framework 135

M units of the service (if applicable). Further, the QoS satisfaction of each service in
entirety comprises QoS satisfaction of individual units, and depends both on primary
and secondary capacity constrained resource allocation.

To model such interdependence, we formulate the fair Pareto-efficient allocation
of CPU across the services and RBs across the UEs in a given decision window as a
constrained joint multi-criteria optimization problem. Further, for notational simplicity,
we assume that each decision window comprises of just one monitoring slot, i.e., N = 1.
Let C,M denote the set of services and UEs; given a set of coefficients uk ≥ 0, k ∈ C, m ∈
M, with q

k∈C uk = 1, it is required to find a solution S⋆ = {c⋆
k, ρ⋆

m(k) ∀m ∈M},∀k ∈ C,
that maximizes q

k∈C ukΓk(S) such that S ∈ Sc,
q

k∈C ck ≤ Bc and q
m∈M ρm(k) ≤ Bρ.

Here, ck is the primary capacity constrained resource allocated to k-th service, ρm(k)
denotes the secondary capacity constrained resource allocated to m-th unit of the k-th
service, Sc is the set of feasible capacity constrained resource allocations and Γk(S) is the
criteria function denoting the reward of the k-th service in a decision period following
the CPU allocation strategy S.

The flow of fair Pareto-efficient resource allocation is summarized in Alg. 5. The
key component of Alg. 5 is ParetoBlock (Alg. 6) that solves the joint multi-criteria
optimization problem. It is invoked whenever the sum of allocated primary (secondary)
capacity constrained resource exceeds its specified budget. It initially considers the
CPU (RB) allocation to the services (UEs) provided by the greedy resource allocation
policy, and creates the expanded CPU (RB) allocation solution set by considering
all possible values for the ck’s (ρm(k)’s) that are greater than those output by the
greedy policy and whose sum does not exceed |C| (|M|) times the available budget.
Such values are then scaled by |C| (|M|), to get candidate allocation values that meet
the CPU (RB) budget. The corresponding action set, âSs, is built starting from such
ck’s (ρm(k)’s) and possibly refining the actions so that their components take feasible
values considering the dependence of primary and secondary resource. Such actions,
{âak(S)}, S ∈ âSs, are then used to compute the values of Γk(S) to identify the Pareto-
dominant solution set through iterative search and update, Sd ← {S}, s.t. ∀S ∈ Sd,
∀S ′ ∈ âSs, Γi(S) > Γi(S ′), Γj(S) ≥ Γj(S ′),∀i, j ∈ C(M), i ̸= j. Finally, for the primary
capacity constrained resource, the Pareto-dominant solution that maximizes the minimum
value of criterion function, i.e., the reward value over all the services is chosen as the
fair Pareto-efficient solution. For the secondary capacity constrained resource, we define
g(m) := lt(m) − li(m) ∀m ∈ M, where lt(m), li(m) denote (resp.) the target traffic
load and the instantaneous rate achieved by m-th UE. Further, we choose the secondary

136 Fair and Scalable Orchestration of Edge Services Resources

resource allocation {ρ′m(k) ∀m ∈M} for a given fair primary resource c′k as the solution
that minimizes maxm∈M g(m) over all S ∈ Sd.

We finally prove the following results:

• The solution S⋆ introduced above is Pareto-efficient with respect to the primary
(see Proposition 1), as well as jointly Pareto-efficient with respect to primary as
well as secondary capacity constrained resources (see Proposition 2);

• Alg. 6 converges to a Pareto-efficient solution set, at a sub-linear rate (see Proposi-
tion 3);

• Alg. 6 converges to a solution that is fair with respect to the primary capacity
constrained resource (see Proposition 4), as well as the secondary capacity con-
strained resource for a given primary capacity constrained resource allocation (see
Proposition 5), thus leading to a fair Pareto-efficient solution.

Proposition 1. Pareto-efficient allocation of the primary resource: Given a set of
coefficients uk ≥ 0, k ∈ C, such that, q

k∈C uk = 1, then the solution S⋆ = {c⋆
k}, k ∈ C,

that maximizes the multi-criteria optimization problem q
k∈C ukΓk(S), is Pareto-efficient.

Proof. See Appendix C in the Supplemental Material.

Proposition 2. Pareto-efficient joint allocation of primary and secondary resource:
Given a set of coefficients uk ≥ 0, k ∈ C, such that, q

k∈C uk = 1, then the solution
S⋆ = {c⋆

k, ρ⋆
m(k) ∀m ∈ M},∀k ∈ C, that maximizes the multi-criteria optimization

problem q
k∈C ukΓk(S), is Pareto-efficient.

Proof. See Appendix C.

Proposition 3. Alg. 6 converges to a Pareto-efficient solution set at a sub-linear rate.

Proof. See Appendix C in the Supplemental Material.

Proposition 4. Fairness of Pareto-efficient primary resource allocation: The solution
S⋆ = {c⋆

k, ρ⋆
m(k) ∀m ∈ M},∀k ∈ C obtained using Algorithm 2 is fair with respect to

primary resource allocation c⋆
k,∀k ∈ C.

Proof. See Appendix C in the Supplemental Material.

5.5 Proof-of-concept Implementation 137

Proposition 5. Fairness of Pareto-efficient secondary resource allocation in the vRAN :
For a given fair primary resource allocation c⋆

k in the solution S⋆ = {c⋆
k, ρ⋆

m(k) ∀m ∈M},
for k = 2 (denoting the vRAN service), S⋆ is fair with respect to secondary resource
allocation {ρ⋆

k(m) ∀m ∈M}.

Proof. See Appendix C in the Supplemental Material.

5.4.4 Learning algorithm

We exploit the concept of experience-based learning using sample sequences of shared
context, actions, and rewards observed from the actual interaction of the RL agent with
the environment. SARSA, an acronym for quintuple (St, At, Rt, St+1, At+1), is an on-line
policy algorithm where learning of the RL agent at time t is governed by its current
state St, choice of action At, reward Rt received on taking action At, state St+1 that the
RL agent enters after taking action At, and finally the next action At+1 that the agent
chooses in new state St+1 [145].

For clarity and without loss of generality, here we focus on the learning of a single RL
agent that corresponds to one of the services, over successive decision windows. Given the
mean shared context and possible actions, the primary steps in the learning algorithm
are: (i) obtain greedy resource allocation policy for service k through estimation of action
values qπk

(y, a), (ii) obtain a fair Pareto-efficient resource allocation policy by collating
and returning the greedy policies of all the services, and (iii) update of the action-value
estimates for service k using differential semi-gradient SARSA [145].

5.5 Proof-of-concept Implementation

In this section, we first introduce our proof-of-concept implementation (Sec. 5.5.1), and
then we present the parameters and settings we use to collect our datasets and run our
experimental tests (Sec. 5.5.2).

5.5.1 VERA implementation

As depicted in Fig. 5.9, we have integrated VERA in a testbed based on srsRAN (to
emulate a vRAN service), ffserver (to emulate a livecast video service), and mpv
(livecast video client deployed at each UE video player).

138 Fair and Scalable Orchestration of Edge Services Resources

Edge Computing Platform

UE

ML framework

probe
setup

UE

VERA

Video player
buffer

estimator

TCP retx
rate

WVMAF
table

LaTe client

Docker engine

sysfs

sn
iff

ed
 tr

af
fic

pcap

Livecast app

ffserver ffprobe

vRAN app

srsepc srsenb

UE

LaTe
servermpv

Video stream
latency
probingsrsue

Fig. 5.9 (top) VERA system representation (details in Sec. 5.5.1); (bottom) picture of the
testbed (details in Sec. 5.5.2)

VERA’s learning agents receive real-time context information directly from the vRAN,
the livecast service, and the edge computing platform, using custom-made TCP-based
interfaces. More specifically, the CQI information is retrieved from srseNB using its
enb_metrics_interface class. The input video features (i.e., input video FPS, bitrate,
and resolution) are instead probed using ffprobe, which is part of ffmpeg, and then
sent to VERA whenever a new video source is selected. The CPU throttling times of
the livecast and vRAN services are collected by interfacing with Linux cgroups, using
Linux’ pseudo file-system sysfs. Finally, the network load, which corresponds to the
offered load that the vBS has to process, is derived by summing up the bytes produced
each second by the video encoder, as reported in its output log.

Concerning the reward signal, the observed unidirectional latency, the packet loss
rate, the estimated video player buffer state, and the WVMAF are sent to VERA in
real time, using additional custom TCP-based interfaces. In more detail, the latency
measurements are obtained using LaTe4, a flexible client-server multi-protocol Latency
Tester that sends probes to the network under test and measures the delay that the
probe experiences. To this end, clock synchronization between the Edge Platform and
the UEs is performed using Precision Time Protocol daemon (PTPd).

4https://github.com/francescoraves483/LaMP_LaTe

https://github.com/francescoraves483/LaMP_LaTe

5.5 Proof-of-concept Implementation 139

Table 5.2 Input and output video characteristics
Video characteristics Input Output
Resolution [pixels] 1920× 1080 1280× 720
Bit rate [Mbps] 18 0.3, 1.5, 5, 10
Frame rate [FPS] 30 10, 20, 30
Codec (container) VP9 – WebM VP9 – WebM

0 100 200 300 400 500 600 700 800
Time [min]

-10

0

10

20

30

40
SN

R
 [d

B]

Fig. 5.10 Time evolution of SNR in our experiments

The packet loss rate, computed through the TCP segment retransmission rate, and the
buffer occupancy are estimated at the edge platform by leveraging, respectively, the TCP
sequence and the acknowledgment numbers obtained using libpcap. To model the player
buffer and, hence, infer its status, VERA exploits the TCP acknowledgment numbers,
the offered load, and the output frame numbers of the video encoder, as explained in
Sec. 5.4. Finally, to compute the WVMAF, we use a lookup table that maps every choice
of encoding parameters to the expected VMAF score. Calculating the VMAF score
is indeed a computing-intensive task that cannot be performed in real-time without a
noticeable performance impact. The table has been built by considering a collection of
1080p video samples5, and by encoding each source video using every encoding parameters
combination available to VERA. The VMAF score is calculated by comparing the frames
of each encoded video to the original frames. The WVMAF score of each video sample
is obtained by multiplying its VMAF score by the ratio of the output frame rate and
the input frame rate. Then, for every combination of the encoding parameters, the
corresponding WVMAF score is computed averaging the WVMAF scores of all video
samples encoded with the same combination of parameters.

At last, to enforce decisions made by VERA, the per-UE RB allocation and the
MCS policy are sent to the vRAN through a custom interface, the CPU allocation is
set through Docker API (which, in turn, enforces it using Linux cgroups), and the video
encoding FPS and bit rate policies are updated overriding the parameter settings in the
livecast service, thus allowing VERA to work in real time.

5https://media.xiph.org/video/derf/

https://media.xiph.org/video/derf/

140 Fair and Scalable Orchestration of Edge Services Resources

Table 5.3 Video encoder, server and client parameters
Encoder/server param. Description Value

StartSendOnKey
If set, the video is streamed starting from the first I-frame
generated by the encoder, i.e., P-frames not preceded by an
I-frame are discarded

Enabled

Preroll N
The video is streamed starting not from the most recent
frame but from N seconds in the past; if set, it increases
buffer occupancy at the expense of the end-to-end latency

Disabled

VP9 Threads
No. of threads that decoder & encoder can use: high values
increase speed if multiple vCPUs are allocated, at the cost
of a small overhead.

No. of allocated
vCPUs

VP9 Quality
Possible settings: realtime, good, or best. It controls the
time that the encoder can take to encode frames beyond
their presentation time

Realtime (no ad-
ditional time be-
yond presentation
timestamp)

VP9 Speed

It controls the trade-off between computational lightness and
picture quality. Possible values in [0,16], with the higher
values prioritizing encoding speed (i.e., lower CPU consump-
tion) over picture quality

16

Client CachePauseInitial
The client pauses the playback at the beginning to wait for
the buffer to fill, so as to avoid pauses while the video is
playing

Enabled

Client CachePauseWait

Video time that the client requires before resuming the play-
back when paused. It affects the end-to-end latency, but
a bigger size can better cope with oscillations in the data
transfer and encoding delays

1 s

5.5.2 Testbed configuration

The testbed configuration used to collect the necessary dataset and run the VERA
framework in real time is based on the architecture presented in Sec. 5.2.

The edge computing platform and the UEs are hosted on GNU/Linux machines; they
accommodate, respectively, an Intel i7-7700HQ and an Intel i7-8550U CPU, with 16 GB
of DDR4 memory. The LTE network uses a 10-MHz channel in band 7, which provides
a capacity of 50 RBs. The dynamic SNR pattern, considered in our experiments to be
experienced by the UEs, is depicted in Fig. 5.10; the values of SNR are then mapped
into CQI by the vRAN system. We assume a network slice dedicated to the livecast
service, with a capacity that may vary between 12 and 36 RBs. As RF frontend, Ettus
USRP B210 boards are used to perform up/down-conversion, filtering, amplification, and
AD/DA conversion of the UEs and eNB LTE signals.

5.6 Evaluation and experimental validation 141

As mentioned above, we use ffmpeg, as this is compatible with a wide set of video
codecs, picture formats, containers, besides offering a number of filters to modify video
characteristics. Tab. 5.2 reports the characteristics of the input and output videos in
our experiments. The characteristics of the input videos are representative of a livecast
content, as they ensure that the video can be properly played by the client player in
a wide range of network conditions and client configurations. The output parameters
have been set so as to allow for the best video quality retention, hence a good level of
user Quality of Experience, while requiring a reasonable consumption of network and
computing resources. Tab. 5.3 includes additional parameters settings that we have used
at the video encoder, server, and client, which are typical of a livecast service.

Finally, we consider that decisions are made every monitoring slot (N = 1), and,
unless otherwise specified, we set the available CPU budget to 3 vCPUs.

5.6 Evaluation and experimental validation

In this section, we first present the numerical results (Sec. 5.6.1) derived using the data
sets obtained through extensive experiments on the testbed described in Sec. 5.5; and
then, we present the performance of a real-time implementation of VERA on the testbed
(Sec. 5.6.2).

5.6.1 Numerical results

The baseline scenario we consider in our numerical performance evaluation includes 1
vBS, 2 UEs, and a livecast service streaming a single video to both UEs. The CPU and
RB budgets are fixed to 2 vCPUs and 60 RBs, respectively.

Convergence evaluation. Fig. 5.11 depicts the time evolution of reward values for
the vRAN and livecast services in the baseline scenario. From the plots, we observe that,
despite the large heterogeneous action set and the diverse context vector, the reward
corresponding to each of the KPIs, and hence the total reward, saturates close to the
maximum value for both the UEs, thereby highlighting the efficient learning capability
of the VERA framework. Also, the convergence of the livecast service is relatively slower
with respect to vRAN owing to its slowly varying dynamics.

KPI performance. Next, Fig. 5.12 presents the evolution of the KPIs across
iterations during the learning process. Notice that the KPI satisfaction for vRAN is

142 Fair and Scalable Orchestration of Edge Services Resources

0 0.5 1 1.5 2 2.5

Number of iterations 10
4

0

0.5

1

1.5

2

R
e
w

a
rd

 v
R

A
N

Total UE1

Total UE2

Latency UE1

Latency UE2

Packet loss UE1

Packet loss UE2

(a)

0 0.5 1 1.5 2 2.5

Number of iterations 10
4

0

0.5

1

1.5

2

R
e

w
a

rd
 l
iv

e
c
a

s
t

Total UE1

Total UE2

WVMAF UE1

WVMAF UE2

Playout buffer UE1

Playout buffer UE2

(b)

Fig. 5.11 Convergence of reward values: vRAN (a) and livecast (b) services

L
a
te

n
c
y
 [
s
]

0

0.2

0.4

UE 1 UE 2

Number of iterations ×104

0 0.5 1 1.5 2 2.5

P
a
c
k
e
t
lo

s
s

0

0.05

0.1

Target latency = 0.15 s

Target packet loss = 0.01

(a)

P
la

y
o
u
t
b
u
ff
e
r

0

0.5

1

1.5

UE 1 UE 2

Number of iterations ×104

0 0.5 1 1.5 2 2.5

W
V

M
A

F

20

40

60

Target playout buffer = 0.5

Target WVMAF = 40

(b)

Fig. 5.12 KPI evolution with respect to iterations: (a) vRAN and (b) livecast. Dashed dark
line shows target KPI values.

achieved when its latency and packet loss do not exceed their respective targets. On the
contrary, for the livecast service, the playout buffer and WVMAF should not fall below
their target values, while keeping the KPIs observed for both the services as close as
possible to their target values. According to the 3GPP 5G specifications and acceptable
QoE, the target KPI values are set at 150 ms, 0.01, 0.5 s and 40 (resp.) for latency, packet
loss, playout buffer, and WVMAF. From the plots, we observe that barring a few initial
iterations during which the algorithm is still learning, the choice of actions by the VERA
framework leads to KPI satisfaction for both vRAN and livecast services. To quantify
VERA’s suboptimality, the mean KPI target violation for VERA post convergence of
the algorithm is 3.7%.

5.6 Evaluation and experimental validation 143

Number of iterations

0 0.5 1 1.5 2 2.5

d
la

te
n
c
y

-0.2

0

0.2

0.4

0.6

CPU 3 RB 60

CPU 2 RB 60

CPU 2 RB 54

× 104

(a)
Number of iterations

0 0.5 1 1.5 2 2.5

d
p
a
c
k
e
t
lo

s
s

-0.015

-0.01

-0.005

0

0.005

0.01

CPU 3 RB 60

CPU 2 RB 60

CPU 2 RB 54

× 104

(b)

Number of iterations
0 0.5 1 1.5 2 2.5

d
p
a
y
lo

a
d
 b

u
ff
e
r

-0.2

0

0.2

0.4

0.6

CPU 3 RB 60

CPU 2 RB 60

CPU 2 RB 54

× 104

(c)
Number of iterations

0 0.5 1 1.5 2 2.5

d
W

V
M

A
F

-8

-6

-4

-2

0

2

4

6

8

CPU 3 RB 60

CPU 2 RB 60

CPU 2 RB 54

× 10
4

(d)

Fig. 5.13 Performance of VERA under varying CPU and RB budget constraints: (a) latency,
(b) packet loss, (c) playout buffer, and (d) WVMAF

Performance under different constraints. We now evaluate the impact that
different CPU and RB capacity constraints have on the performance of VERA. To this
end, we consider two additional scenarios having budgets 3 vCPUs - 60 RBs and 2 vCPUs
- 54 RBs, along with the baseline scenario. The performance is characterized using a
distance parameter dKP I = KPIo −KPIt, where KPIo is the KPI target threshold and
KPIt is the KPI experienced at time t, and which basically quantifies how far away the
observed KPI value is from its target. Fig. 5.13 compares the average value of dKP I

computed over both UEs for the said scenarios, for both vRAN and livecast services. It
may be noted that a negative (positive) value of dKP I for vRAN (livecast) denotes KPI
satisfaction, and, irrespective of the service type, it is desirable that dKP I is as close as
possible to 0. From the plots, we observe that when the budget constraints are stringent,
the choice of actions in order to meet the KPI target values is limited. Consequently, the
resource allocation efficiency is slightly compromised as shown by higher dKP I values.

144 Fair and Scalable Orchestration of Edge Services Resources

CPU 2 RB 60 CPU 2 RB 54 CPU 3 RB 60

P
a
re

to
 b

lo
c
k
 u

s
a
g
e
 (

%
)

0

20

40

60

80

CPU training

RB training

CPU convergence

RB convergence

37.34

6.9

68.62

28.44 26.64

1.58

Fig. 5.14 Utilization of Pareto block in VERA during training and after convergence has been
attained

L
a
te

n
c
y
 [
s
]

0

0.5

1

Uniform reduction Pareto block

Number of iterations ×104

0 0.5 1 1.5 2 2.5

P
a
c
k
e
t
lo

s
s

0

0.05

0.1

Target latency = 0.15 s

Target packet loss = 0.01

(a)

P
la

y
o
u
t
b
u
ff
e
r

0

0.5

1

1.5

Uniform reduction Pareto block

Number of iterations ×104

0 0.5 1 1.5 2 2.5

W
V

M
A

F

20

40

60

Target WVMAF = 40

Target playout buffer = 0.5

(b)

Fig. 5.15 KPI comparison of VERA with Pareto block and uniform reduction approach: (a)
vRAN, (b) livecast

Nevertheless, the KPI satisfaction is still achieved. As more resources are made available
in terms of CPU and RBs, dKP I values cling closer to 0, thereby minimizing the wastage
in resource allocation. Thus, VERA can successfully attain KPI satisfaction for both the
services and UEs under varying CPU and RB capacity constraints, however, stringent
constraints may lead to a marginal loss in efficiency.

Pareto block statistics. Next, we investigate the significance of the Pareto block in
the VERA framework. The bar plot in Fig. 5.14 shows the statistics of the Pareto block
usage under different CPU and RB capacity constraints. We observe that the Pareto

5.6 Evaluation and experimental validation 145

Number of iterations ×10
4

0 1 2 3 4 5 6

T
o
ta

l
re

w
a
rd

1

1.5

2

2.5

3

3.5

4

VERA, ǫ = 0.3

DQN, ǫ = 0.3

DQN, ǫ = 0.8

Fig. 5.16 Performance of VERA in comparison to DQN

block usage for CPU as well as RB is the highest when budget is the most stringent, i.e.,
2 vCPUs - 54 RBs. However, on a positive note, the Pareto block invocation substantially
reduces once VERA has attained convergence compared to its training phase. This in
turn suggests that, when a pre-trained VERA model is used, the Pareto block will not
add to the system runtime complexity.

To further emphasize this aspect, we replace the Pareto analysis in the VERA
framework by a more intuitive and simpler uniform reduction approach, wherein an equal
proportion of any excess CPU (RB) allocated beyond the budget is subtracted from the
allocated CPU (RB) values across the services (UEs) such that the budget constraint is
met. Fig. 5.15 presents the KPI (averaged over both UEs) comparison using the Pareto
block and uniform reduction in the worst of our considered scenarios, i.e., 2 vCPUs
- 54 RBs for vRAN and livecast services. From the plots we observe that unlike the
Pareto block, uniform reduction fails to meet the target KPI values. This confirms that
the Pareto block has a crucial role in optimal resource orchestration, especially when
resources are constrained.

Comparison with other approaches. Finally, we address the scalability of the
VERA framework. To emphasize the distributed decision making used by VERA, we
compare its performance to a data-driven centralized framework using deep Q-network
(DQN). Since a generic DQN has no provision to enforce capacity constraints, to be fair,
we consider a scenario wherein full CPU is available to the hosted services and there is no
RB capacity constraint. Fig. 5.16 shows the convergence of total reward from vRAN as
well as livecast services observed in consequence to actions chosen by VERA and DQN.

146 Fair and Scalable Orchestration of Edge Services Resources

We observe that, even if the same number of actions per service is considered both for
VERA and DQN, being a centralized framework, DQN has to deal with a much larger
action space that increases exponentially with the number of services. This is also evident
from the poor convergence of DQN plots in Fig. 5.16. With the same ϵ-greedy action
selection policy as VERA (i.e., ϵ = 0.3, ϵ-decay = 0.9999), DQN is unable to explore
all the actions while ϵ decays down to a negligibly small value and the learning agent
gets caught up in a local optimum. Even if the action selection parameters are improved
(ϵ = 0.8, ϵ-decay = 0.9999), DQN still explores the action space until ∼ 60k iterations in
our experiments, whereas VERA has shown a clean and early convergence with smaller
ϵ value. To this end, it is worth noting that VERA exhibits a much higher scalability
in terms of cardinality of action space compared to the state-of-the-art DQN-based
centralized framework. To quantify the scalability performance, we define the scaling
cost as the sum of reward deficit with respect to maximum reward value at convergence
and the fraction of total iterations used for convergence. In our experiments, we found
that the scaling cost of VERA is 45% and 60% lower compared to DQN, (resp.) for
ϵ = 0.3 and ϵ = 0.8. In more complex scenarios, considering the CPU and RB budget
constraints, or more services or more UEs in the system, further increases the cardinality
of the action set, however, our observations on scalability of VERA with respect to DQN
still hold.

5.6.2 Proof-of-concept results

A pre-trained version of the VERA RL agents has been generated offline using the dataset
collected from our testbed, then it has been evaluated online and in real time in two
scenarios with different RBs availability, i.e., 24 and 36 RBs, and with CPU budget
equal to 3 vCPUs. In both scenarios, a single UE connects to the vRAN and receives
the livecast, using the configuration described in Sec. 5.5.2. For this case, the USRPs’
transmission gain is set to a high value, so as to ensure that the SNR on uplink and
downlink does not drop below 29 dB.

The radio latency, playout buffer and WMAF KPIs, collected from both testbed and
numerical experiments, are compared in Figure 5.17 (packet loss is omitted as it is equal
to 0 in all cases). All KPIs are always satisfied for both the vRAN and the livecast
service. As expected, the latency is higher in the case of 24 RBs than for 36 RBs, on the
contrary, the playout buffer and WVMAF are less for 24 RBs than 36 RBs, owing to the
lower number of radio resources being available in the first scenario: a higher number

5.7 Related Work 147

Scenario

K
P

I

24 RBs 36 RBs
0

1

2

3

4

5

6

7

L
a
te

n
c
y
 [
m

s
]

24 RBs 36 RBs
0

0.2

0.4

0.6

0.8

1

P
la

y
o
u
t
b
u
ff
e
r

[s
]

24 RBs 36 RBs
0

10

20

30

40

50

60

W
V

M
A

F
 s

c
o
re

Testbed Numerical

Fig. 5.17 Comparison of testbed and numerical KPI values for the livecast and vRAN services
on the 24 RBs and 36 RBs scenarios with CPU budget equal to 3 vCPUs. Error bars indicate
the confidence interval at 95% confidence level.

of allocated RBs leads to higher user throughput, which results in less latency, higher
playout buffer and higher WVMAF score.

Importantly, the relative difference between testbed and numerical KPI values never
exceeds 12.4%, with such a value being observed in the case of the playout buffer in the
36 RBs scenario. The similarity between testbed and numerical results validates VERA
performance in a real time, hardware-in-the-loop implementation, and it demonstrates
the effectiveness of our solution in a real-world environment.

5.7 Related Work

Several works have addressed the VNF placement problem at the network edge, which is
related but orthogonal to the problem we face. Recent examples include: [169], which
minimizes latency and system cost; [170], which optimizes both service placement and
traffic routing under different resource constraints; and [171], which uses cooperation
among edge nodes for service caching and workload scheduling.

Other studies have focused on QoE provisioning to mobile users through edge-assisted
solutions. In particular, [172] presents an RL framework for crowdcasting services at the

148 Fair and Scalable Orchestration of Edge Services Resources

edge meeting bit rate as well as streaming and channel switching latency requirements,
while minimizing the overall computing and bandwidth cost. [173], instead, designs and
implements an edge network orchestrator, and a server assignment and frame resolution
selection algorithm for best latency-accuracy trade-off in mobile augmented reality.

Relevant to our work are also existing studies on resource consumption by edge user
applications. In particular, [174] investigates the impact of real-time video analytics on
computing and energy resources, while [175] focuses on image processing through CNNs
and maximizes the learning accuracy given the limited resources at the edge.

The above literature does not consider the inherent resource contention between
edge services and virtualized RANs. Related with this, [158] jointly optimizes the
allocated resources to edge services and the placement of RAN functions, but uses an
over-simplistic linear optimization model that cannot adapt to quick system dynamics.
Like us, some other authors have used machine learning for practical resource allocation,
radio parameter settings, and service KPI support in cellular networks. Among these,
[119–123] aim at maximizing throughput through channel or link-rate selection, using
multi-armed bandit techniques. Similarly, but leveraging the contextual information
from the environment, [124] proposes an RL approach for rate selection and resource
allocation, and [161] to maximize throughput subject to power consumption constraints.
Finally, [160] extends the latter to accommodate service KPI constraints. However, [160]
does not consider individual user dynamics nor fairness in resource allocation, as we
do. RL-based schemes can also be found in [130, 131, 176], to minimize latency and
packet drop rate in 5G systems. The work in [159], instead, tackles computing resource
allocation in a virtualized radio access, and introduces a deep RL approach for resource
management. Deep RL is also used to determine the suitable MCS and transmit power
level in cognitive radio networks in [136] and [137], respectively, and to maximize the
network sum-rate in [138]. More recently, [177] proposed a data-driven O-RAN-compliant
framework that configures DUs/RUs according to a specified spectrum access policy.

We underline that, unlike previous work, we address the allocation of edge resources
constrained to a limited budget across different, competing, virtual services. Through our
testbed, we identify the non-trivial correlations existing among the actions related to
the different services, making the VERA learning objectives very different from those of
existing works. To derive a scalable solution that can accommodate multiple services
and vBSs (or slices of vBSs), we resort to a multi-agent RL mode. And, inspired by
[162] and other literature on autonomous driving, we accommodate such hard constraints
as a non-learnable building block. Different from previous work, however, we design a

5.8 Conclusions 149

Pareto-efficient block for this task, which provides fair resource allocation across agents
(vBSs and edge applications).

Finally, a preliminary version of our solution with only one user and considering only
CPU as a constrained resource was presented in our conference paper [178].

5.8 Conclusions

We considered an edge computing platform hosting virtualized user applications and
network services (namely, vRAN) competing for the same resources. We first investigated
the correlations existing between the dynamics of such services through an experimental
testbed that leverages a containerized livecast application and a containerized LTE base
station. Then we developed a distributed learning framework, called VERA, that sets the
configuration of both types of services so that the target KPIs can be met in spite of the
limited availability of computing resources at the edge. Importantly, VERA also exploits
a Pareto analysis that leads to fair Pareto-efficient decisions, and it can scale well with
the number of virtualized services that are hosted at the edge platform. Our experimental
results demonstrate the feasibility of the VERA approach and the important role of
the Pareto analysis. Also, they show the excellent performance we can obtain in the
presence of capacity-constrained resources with the KPI target violation limited to just
3.7%. Further, we show that VERA performs similarly when executed in our real-time
proof-of-concept implementation, with KPI differences below 12.4%, thus confirming
the effectiveness of VERA also in a real-world environment. Finally, we compare the
performance of VERA to the centralized DQN framework and found it to be 54% more
scalable, thereby establishing the efficacy of distributed over centralized learning in such
complex resource limited scenarios.

This chapter concludes the second part of the thesis. In the next one, a summary of
the obtained results will be presented, along with the conclusive comments.

Chapter 6

Conclusions

In this thesis, we have seen how concepts such as Network Function Virtualization, Edge
Computing and Machine Learning can be combined to improve network intelligence,
flexibility and performance, paving the road ahead for vertical industries to reach mobile
users with their innovative yet demanding services.

To answer the research questions listed in Sec 1.1, we investigated the potential
of network automation taking separately two complementary approaches. First, we
considered centralized automated service provisioning in 5G networks, where management
of 5G services is performed at the core of the network. We examined the assurance
of Service Level Agreements both with a simple threshold algorithm and leveraging
ML-based approaches, showing excellent performance and the possibility of reducing
the OPEX incurred by network operators and vertical industries by up to 30%. Then
we explored the capabilities of managing network and compute resources at the edge
using reinforcement learning, with the objective of meeting predefined KPIs. CAREM
has been designed to manage heterogeneous vRANs, selecting in real-time the most
appropriate radio link and radio parameters to use for each data packet. We demonstrated
CAREM effectiveness and showed that it provides a 65% latency improvement relative
to a competitive contextual bandit approach. VERA uses a similar learning framework
to dynamically assign edge resources to network services and user applications, whose
resource needs are often entangled. Considering as a network service an LTE vRAN and,
as a user application, an adaptive video transcoder, we showed how the ML framework is
able to learn the relationship between the radio and video actions. Moreover, to assure
fairness when accounting for competing resource requests by the applications, a pareto

6.1 Future Work and Open Challenges 151

analysis has been integrated into VERA to avoid resource hogging. We observed that
VERA is able to reach the target KPIs for over 96% of the observation periods.

As briefly mentioned in the Sec. 1.1, centralized edge service orchestration (Chapters
2 and 3) and distributed vRAN and user application management (Chapters 4 and
5), even though in this work they have been considered separately, can and should be
utilized together to obtain the best possible results, since they perform different kind
operations at different network levels. Specifically, in the first case, edge applications
are managed on a coarse level to satisfy SLAs while avoiding resource waste, in the
second case fine-grained actions are taken to optimize the real-time performance of
the vRAN and edge applications. Notably, from several mobile network operators and
research teams, there has already been a joint effort to design a unified RAN architecture
able to accommodate the two approaches together, leveraging the synergy that their
concurrent utilization can provide. The O-RAN alliance designed an architecture where
non-real-time centralized intelligence can be provided by special purpose applications
called rApps, which can directly operate on the RAN or coordinate with distributed near
real-time applications, called xApps, to perform more fine-grained operations. Not only
the O-RAN architecture envisions the dichotomy between centralized non-real-time and
distributed near-real-time decisions, but it also directly integrates Machine Learning as a
core component of the architecture specifications, paving the way for the pivotal role of
this technology in the future of mobile networks.

6.1 Future Work and Open Challenges

Moving towards an architecture that unifies interfaces and procedures for centralized
and distributed network management and control poses new challenges that the research
community must address. The research effort focused on the O-RAN architecture is
recently rising because of the clear advantages in managing and optimizing the RAN. In
fact, relying on disaggregated, virtualized and software-based components would enable
increased flexibility in deploying the network infrastructure, for improved reconfigurability
and resiliency. Moreover, the network operators would be allowed to rely on interoperable
network equipment of different vendors and avoid lock-ins, thus driving down CAPEX.
However, this new paradigm, although it answers current mobile operators’ needs,
introduces many new research challenges that call for further investigation. Without any
pretensions of being exhaustive, some interesting directions for future work within this
scope are presented below.

152 Conclusions

Coexistence of virtualized services and vRAN The VERA framework presented
in Chapter 5 has been designed to optimize the coexistence of the video-streaming
user service and the vRAN at the edge. We showed that the resource demands of
these two are tightly entangled, which is a behavior that could apply, albeit with
different relationships, also to other user services. Further research is needed to
better examine the coexistence of user applications and network services in the
edge ecosystem, in order to investigate whether margins for better optimization
exist.

O-RAN new use cases In Chapter 4 we proposed a reinforcement learning framework
to perform radio resource management in heterogeneous RAN, then, in Chapter
5, we considered video transcoding and streaming at the edge, colocated with a
vRAN, to build a learning framework able to optimize performance and resource
consumption. The O-RAN intelligent, data-driven closed-loop control architecture,
which allows for the radio parameter tuning according to the feedback from the
mobile terminals, well suits the mentioned frameworks. Indeed, O-RAN specifica-
tions already consider these two use cases, as well as more advanced ones[179]. The
identification of new use cases is currently ongoing and very relevant. As new use
cases emerge, it will be necessary to investigate whether they are implementable
with the current revision of the O-RAN specifications and, if they are not, propose
the required additional features to make sure that the O-RAN architecture can
properly allow for their implementation.

Application deployment optimization In a large-scale scenario, it is not unrealistic
to imagine tens or hundreds of control applications running concurrently to optimize
the different blocks that constitute the vRAN to achieve high-level intents set by
the network operator. These applications are going to perform similar operations:
collect and process RAN metrics, run optimization algorithms and then output
an optimized action to be applied on the RAN. Many applications will execute
a data processing pipeline common to other applications running at the same
time, which could be shared to avoid resource waste. Some applications may also
output partially colliding actions, thus requiring an arbitrator to avoid undesirable
behaviors. To exploit synergies and avoid conflicts between applications, it is
needed to design and develop dedicated orchestration frameworks, which can also
ensure that each application run within its time budget. A preliminary step in this
direction has been taken in [180], where the authors propose a framework to map
network operators’ intents to required control algorithms.

6.1 Future Work and Open Challenges 153

Real-time applications: dApps We have seen how the control algorithms and proce-
dures presented in this work operate at different timescales. Centralized control
algorithms, such as those demonstrated in Chapters 2 and 3, take actions that are
applied in a matter of seconds or tens of seconds. Instead, distributed algorithms,
such as CAREM and VERA (Chapter 4 and 5, respectively), work in timescales in
the order of fractions of seconds. Though, it is still an open question whether a
tighter time scale below 10 ms could be beneficial in reaching further optimization
in the RAN operation. This real-time time scale is not mentioned yet in the O-RAN
specification, but it is interesting because it would allow for fine-grained TTI-level
optimization (e.g., FEC tuning, channel equalization, beamforming). In [181],
the authors propose the concept of dApps, which are distributed applications to
perform real-time inference and control in O-RAN.

Multi-time-scale integration Network management applications operate at different
timescales according to the specific network component they intervene on. In
the literature, many examples of rApps and xApps have been produced, however,
there are not many examples of RAN services constituted by multiple applications
running at different time scales. It would be interesting to investigate if a holistic
approach to network management, in which applications at different time scales
operate in synergy, would be able to achieve a deeper level of optimization and
performance. The O-RAN specifications provide clear examples of the integration
of different time scales with the Machine Learning models’ lifecycle [182]. One of
the most interesting presented scenarios foresees the training of an ML model in
non-real-time since that is a usually long and demanding operation, followed by its
deployment and execution close to the user where it can perform near-real-time
inference.

AI/ML algorithms integration The integration of AI/ML algorithms in RAN man-
agement is a well-investigated topic with still many open challenges. Among them,
it is worth mentioning (i) how to test or refine data-driven ML models without
affecting production RAN performance and (ii) how to collect training datasets that
are representative of all possible nuances of production large-scale deployments.

References

[1] Ericsson. Ericsson Mobility Report. https://www.ericsson.com/
49d3a0/assets/local/reports-papers/mobility-report/documents/2022/
ericsson-mobility-report-june-2022.pdf, June 2022. [Online; accessed 21-
September-2022].

[2] ETSI. Network Functions Virtualisation - An Introduction, Benefits, Enablers,
Challenges & Call for Action. http://portal.etsi.org/NFV/NFV_White_Paper.pdf,
October 2012. [Online; accessed 21-September-2022].

[3] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing:
Vision and challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016.

[4] EU H2020 5G-PPP 5G-TRANSFORMER project. 5G Mobile Transport Platform
for Verticals. Available at: http://5g-transformer.eu/. [Online; Accessed: 21-
September-2022].

[5] A. Oliva et al. 5G-TRANSFORMER: Slicing and Orchestrating Transport Networks
for Industry Verticals. IEEE Communications Magazine, 56(8):78 – 84, 2018.

[6] ETSI. 3GPP TS 28.541, 5G Network Resource Model (NRM); Stage 2 and state 3
(Release 16), v16.4.1. 2020.

[7] Oscar Adamuz-Hinojosa, Pablo Munoz, Pablo Ameigeiras, and Juan M. Lopez-Soler.
Sharing gNB components in RAN slicing: A perspective from 3GPP/NFV standards.
2019 IEEE Conference on Standards for Communications and Networking (CSCN),
Oct 2019.

[8] R. Ferrus, O. Sallent, and J. et al. Pérez-Romero. On the automation of RAN
slicing provisioning: solution framework and applicability examples. EURASIP
Journal on Wireless Communications and Networking volume 2019, Jun 2019.

[9] S. E. Elayoubi, S. B. Jemaa, Z. Altman, and A. Galindo-Serrano. 5G RAN
Slicing for Verticals: Enablers and Challenges. IEEE Communications Magazine,
57(1):28–34, 2019.

[10] 3GPP. Technical Specification Group Services and System Aspects; Management
and Orchestration; Concepts, use cases and requirements (Release 17), TS 28.530,
v. 17.0.0, December 2020.

https://www.ericsson.com/49d3a0/assets/local/reports-papers/mobility-report/documents/2022/ericsson-mobility-report-june-2022.pdf
https://www.ericsson.com/49d3a0/assets/local/reports-papers/mobility-report/documents/2022/ericsson-mobility-report-june-2022.pdf
https://www.ericsson.com/49d3a0/assets/local/reports-papers/mobility-report/documents/2022/ericsson-mobility-report-june-2022.pdf
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://5g-transformer.eu/

References 155

[11] J. Mangues-Bafalluy et al. 5G-TRANSFORMER Service Orchestrator: Design
Implementation and Evaluation. In Procs of the 28th European Conf. on Networks
and Communications (EuCNC), pages 31 –36, June 2019.

[12] J. Baranda et al. Realizing the Network Service Federation Vision: Enabling
Automated Multidomain Orchestration of Network Services. IEEE Vehicular
Technology Magazine, 15(2):48–57, 2020.

[13] F. Paganelli, M. Ulema, and B. Martini. Context-aware Service Composition and
Delivery in NGSONs over SDN. IEEE Communications Magazine, 52(8):97–105,
2014.

[14] S. Fichera et al. Latency-aware resource orchestration in sdn-based packet over op-
tical flexi-grid transport networks. IEEE/OSA Journal of Optical Communications
and Networking, 11(4):B83–B96, 2019.

[15] Wenfeng Xia, Peng Zhao, Yonggang Wen, and Haiyong Xie. A Survey on Data
Center Networking (DCN): Infrastructure and Operations. IEEE Comm. surveys
& tutorials, 19(1):640 – 656, 2017.

[16] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz. Near optimal placement
of virtual network functions. In Procs of the IEEE Int. Conf. on Computer
Communications (INFOCOM), pages 1346–1354, April 2015.

[17] Satyam Agarwal, Francesco Malandrino, Carla Fabiana Chiasserini, and Swades
De. VNF Placement and Resource Allocation for the Support of Vertical Services
in 5G Networks. IEEE/ACM Transactions on Networking, 27(1):433 – 446, 2019.

[18] Leonard Kleinrock. Theory, Volume 1, Queueing Systems. Wiley-Interscience,
1975.

[19] J. Mangues-Bafalluy et al. Experimental framework and evaluation of the 5G-
Crosshaul Control Infrastructure. Elsevier Computer Standards and Interfaces,
64:96–105, 2019.

[20] G. Avino et al. A MEC-based Extended Virtual Sensing for Automotive Services.
IEEE Transactions on Network and Service Management, 16(4):1450–1463, 2019.

[21] J.Baranda et al. Automated deployment and scaling of automotive safety services in
5G-Transformer. In IEEE Conf. on Network Function Virtualization and Software
Defined Networking, (NFV-SDN), pages 1–2, Nov. 2019.

[22] G. Avino et al. Support of Safety Services through Vehicular Communications:
The Intersection Collision Avoidance Use Case. In Procs of the IEEE International
Conf. of Electrical and Electronic Technologies for Automotive, pages 1–6, July
2018.

[23] M. Malinverno, G. Avino, C. Casetti, C. F. Chiasserini, F. Malandrino, and
S. Scarpina. Edge-Based Collision Avoidance for Vehicles and Vulnerable Users:
An Architecture Based on MECs. IEEE Vehicular Technology Magazine, 15(1):27
–35, 2019.

156 References

[24] P. A. Frangoudis, F. Giannone, A. Ksentini, and L. Valcarenghi. Orchestrating
Heterogeneous MEC-based Applications for Connected Vehicles. submitted to
Elsevier Computer Networks, 2020.

[25] Daniel Krajzewicz, Jakob Erdmann, Michael Behrisch, and Laura Bieker. Recent
development and applications of SUMO - Simulation of Urban MObility. Inter-
national Journal On Advances in Systems and Measurements, 5(3&4):128–138,
December 2012.

[26] W. Cerroni et al. Cross-layer Resource Orchestration for cloud service delivery: A
seamless SDN approach. Elsevier Computer Networks, 87:16 – 32, 2015.

[27] M. Irfan et al. SLA (Service Level Agreement) Driven Orchestration Based New
Methodology for Cloud Computing Services. In Future Optical Materials and
Circuit Design, volume 660 of Advanced Materials Research, pages 196–201. Trans
Tech Publications Ltd, 4 2013.

[28] Pankesh Patel, Ajith Ranabahu, and Amit P. Sheth. Service Level Agreement in
Cloud Computing. In Wright State University report, 2009.

[29] Jennings R. Verma D., Beigi M. Policy Based SLA Management in Enterprise
Networks. In Lecture Notes in Computer Science, 1995.

[30] F. Zulkernine, P. Martin, C. Craddock and K. Wilson. A Policy-Based Middleware
for Web Services SLA Negotiation. In IEEE International Conf. on Web Services
(ICWS), pages 1043–1050, July 2009.

[31] P Bhoj, S Singhal, and S Chutani. SLA Management in Federated Environments.
Elsevier Computer Networks, 35(1):5 – 24, 2001. Selected Topics in Network and
Systems Management.

[32] M. A. Rahim, I. U. Haq, H. Durad and E. Schikuta. Generalized SLA Enforcement
Framework Using Feedback Control System. In Procs of the IEEE International
Conf. on High-capacity Optical Networks and Enabling/Emerging Technologies
(HONET), Dec. 2015.

[33] O. Adamuz-Hinojosa, J. Ordonez-Lucena, P. Ameigeiras, J. J. Ramos-Munoz, D.
Lopez, and J. Folgueira. Automated Network Service Scaling in NFV: Concepts,
Mechanisms and Scaling Workflow. In IEEE Communications Magazine, volume 56,
pages 162–169, 2018.

[34] R. Mijumbi, S. Hasija, S. Davy, A. Davy, B. Jennings, R. Boutaba. Topology-aware
prediction of virtual network function resource requirements. IEEE Transactions
on Network and Service Management, 14(1):106–120, 2017.

[35] J. G. Herrera and J. F. Botero. Resource Allocation in NFV: A Comprehensive
Survey. IEEE Transactions on Network and Service Management, 13(3):518 – 532,
2016.

References 157

[36] A. Boubendir, F. Guillemin, S. Kerboeuf, B. Orlandi, F. Faucheux and J. Lafragette.
Network Slice Life-Cycle Management Towards Automation. In IFIP/IEEE Sym-
posium on Integrated Network and Service Management (IM), pages 709–711, April
2019.

[37] G. Xilouris et al. Towards autonomic policy-based network service deployment with
sla and monitoring. In 2018 IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN), pages 1–2, 2018.

[38] M. Bouzid, D. H. Luong, D. Kostadinov, Y. Jin, L. Maggi, A. Outtagarts, and
A. Aghasaryan. Cooperative ai-based e2e network slice scaling. In IEEE INFOCOM
2019 - IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), pages 959–960, 2019.

[39] J. Zhou, W. Zhao, and S. Chen. Dynamic network slice scaling assisted by prediction
in 5g network. IEEE Access, 8:133700–133712, 2020.

[40] H. Khalili et al. Network slicing-aware NFV orchestration for 5G service platforms.
In European Conference on Networks and Communications (EuCNC), pages 25–30,
2019.

[41] V. Q. Rodriguez, F. Guillemin, and A. Boubendir. 5G E2E Network Slicing
Management with ONAP. In 2020 23rd IEEE Conf. on Innovation in Clouds,
Internet and Networks and Workshops (ICIN), pages 87–94, Feb. 2020.

[42] H. Chergui and C. Verikoukis. Big data for 5g intelligent network slicing manage-
ment. IEEE Network, 34(4):56–61, 2020.

[43] M. Iannelli, M. R. Rahman, N. Choi, and L. Wang. Applying machine learning
to end-to-end slice sla decomposition. In 2020 6th IEEE Conference on Network
Softwarization (NetSoft), pages 92–99, 2020.

[44] H. Chergui and C. Verikoukis. Offline sla-constrained deep learning for 5g networks
reliable and dynamic end-to-end slicing. IEEE Journal on Selected Areas in
Communications, 38(2):350–360, 2020.

[45] B. Khodapanah, A. Awada, I. Viering, D. Oehmann, M. Simsek, and G. P. Fettweis.
Fulfillment of service level agreements via slice-aware radio resource management in
5g networks. In 2018 IEEE 87th Vehicular Technology Conference (VTC Spring),
pages 1–6, 2018.

[46] D. De Vleeschauwer, C. Papagianni, and A. Walid. Decomposing slas for network
slicing. IEEE Communications Letters, pages 1–1, 2020.

[47] A. Papageorgiou, A. Fernández-Fernández, L. Ochoa-Aday, M. S. Peláez, and
M. Shuaib Siddiqui. Sla management procedures in 5g slicing-based systems. In
2020 European Conference on Networks and Communications (EuCNC), pages
7–11, 2020.

[48] F. Fossati, S. Moretti, and S. Secci. Multi-resource allocation for network slicing
under service level agreements. In 2019 10th International Conference on Networks
of the Future (NoF), pages 48–53, 2019.

158 References

[49] P. Trakadas et. al. Comparison of Management and Orchestration Solutions for
the 5G Era. MDPI, J. Sens. Actuator Networks, 9(1):4, 2020.

[50] M. Touloupou, E. Kapassa, C. Symvoulidis, P. Stavrianos, and D. Kyriazis. An
Integrated SLA Management Framework in a 5G Environment. In 2019 22nd IEEE
Conf. on Innovation in Clouds, Internet and Networks and Workshops (ICIN),
pages 233–235, Feb. 2019.

[51] M. Fidler and V. Sander. A parameter based admission control for differentiated
services networks. Elsevier Computer Networks, 44:463––479, 2004.

[52] M. H. Ahmed. Call admission control in wireless networks: A comprehensive survey.
IEEE Communications Surveys Tutorials, 7(1):49–68, 2005.

[53] C. Jiang, H. Zhang, Y. Ren, Z. Han, K. Chen, and L. Hanzo. Machine learning
paradigms for next-generation wireless networks. IEEE Wireless Communications,
24(2):98–105, 2017.

[54] T. Miyazawa, M. Jibiki, V. P. Kafle, and H. Harai. Autonomic resource arbitration
and service-continuable network function migration along service function chains. In
NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium,
pages 1–9, 2018.

[55] C. Casetti et al. Arbitration among vertical services. In Procs. of the IEEE
29th Annual International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC), pages 153–157, Sep. 2018.

[56] J. Baranda et al. On the Integration of AI/ML-based scaling operations in the
5Growth platform. In Procs of the 6th IEEE Conference on Network Functions
Virtualization and Software Defined Networking (IEEE NFV-SDN 2020), 10-12
November 2020. IEEE, 2020.

[57] X. Li et al. 5Growth: An End-to-End Service Platform for Automated Deployment
and Management of Vertical Services over 5G Networks. IEEE Communications
Magazine, 59(3):84–90, March 2021.

[58] EU H2020 5G-PPP 5GROWTH project. 5G-enabled Growth in Vertical Industries.
Available at: http://5growth.eu/. [Online; Accessed: 21-September-2022].

[59] 5G-CLARITY project: Initial design of the SDN/NFV platform and identification
of target 5G-CLARITY ML algorithms. D4.1, 2020.

[60] ETSI. Zero-touch network and Service Management (ZSM); Reference Architecture.
Technical report, 2019.

[61] 3GPP. O-RAN Working Group 2: AI/ML workflow description and requirements.
Technical Report O-RAN.WG2.AIML, 2020.

[62] ETSI. GR NGP 011: Next Generation Protocols (NGP); E2E Network Slicing
Reference Framework and Information Model. 2018.

http://5growth.eu/

References 159

[63] 3GPP. 3GPP TS 28.530 v17.11.0 - 5G; Management and orchestration; Concepts,
use cases and requirements (Release 17). 2021.

[64] X. Li, F. Chiasserini, C. J. Mangues-Bafalluy, J. Baranda, G. Landi, B. Martini,
X. Costa-Perez, P. Puligheddu, and L. Valcarenghi. Automated service provisioning
and hierarchical SLA management in 5G systems. IEEE Trans. on Network and
System Management, 18(4):4669–4684, 2021.

[65] 3GPP. 3GPP TS 28.533 v16.7.0 - Technical Specification Group Services and
System Aspects; Management and orchestration; Architecture framework (Release
16). 2021.

[66] ETSI. NFV Release 2 Description. https://docbox.etsi.org/ISG/NFV/Open/
Other/ReleaseDocumentation/NFV(21)000023_NFV_Release_2_Description_
v1_12_0.pdf, [Accessed in December 2021].

[67] 3GPP. TS 28.536 v16.3.0 - Technical Specification Group Services and System
Aspects; Management and orchestration; Management services for communication
service assurance (Release 16). 2021.

[68] 3GPP. TS 23.288 v17.0.0 - Technical Specification Group Services and System
Aspects; Architecture enhancements for 5G System (5GS) to support network data
analytics services (Release 17). 2021.

[69] Michael J Neely, Eytan Modiano, and Chih-Ping Li. Fairness and optimal stochastic
control for heterogeneous networks. IEEE/ACM Trans. on Networking, 16(2):396–
409, 2008.

[70] Jing Bi, Zhiliang Zhu, Ruixiong Tian, and Qingbo Wang. Dynamic provisioning
modeling for virtualized multi-tier applications in cloud data center. In IEEE
CLOUD, pages 370–377, 2010.

[71] Satyam Agarwal, Francesco Malandrino, Carla Fabiana Chiasserini, and Swades
De. VNF placement and resource allocation for the support of vertical services in
5G networks. IEEE/ACM Trans. on Networking, 27(1):433–446, 2019.

[72] Jonathan Prados, Pablo Ameigeiras, Juan Jose Ramos-Munoz, Jorge Navarro-
Ortiz, Pilar Andres-Maldonado, and Juan M Lopez-Soler. Performance modeling of
softwarized network services based on queuing theory with experimental validation.
IEEE Trans. on Mobile Computing, 20(4):1558–1573, 2021.

[73] Jonathan Prados-Garzon, Juan J Ramos-Munoz, Pablo Ameigeiras, Pilar Andres-
Maldonado, and Juan M Lopez-Soler. Modeling and dimensioning of a virtualized
MME for 5G mobile networks. IEEE Trans. on Vehicular Technology, 66(5):4383–
4395, 2017.

[74] J. Baranda and et al. On the integration of AI/ML-based scaling operations in the
5Growth platform. In IEEE NFV-SDN, pages 105–109, 2020.

[75] 5G-Transformer. D1.1, Report on Vertical Requirements and Use Cases. Technical
Report, 2018.

https://docbox.etsi.org/ISG/NFV/Open/Other/ReleaseDocumentation/NFV(21)000023_NFV_Release_2_Description_v1_12_0.pdf
https://docbox.etsi.org/ISG/NFV/Open/Other/ReleaseDocumentation/NFV(21)000023_NFV_Release_2_Description_v1_12_0.pdf
https://docbox.etsi.org/ISG/NFV/Open/Other/ReleaseDocumentation/NFV(21)000023_NFV_Release_2_Description_v1_12_0.pdf

160 References

[76] M. Malinverno, J. Mangues, C. Casetti, C.F. Chiasserini, M. Requena, and
J. Baranda. An Edge-based Framework for Enhanced Road Safety of Connected
Cars. IEEE Access, March 2020, 8:58018–58031, March 2020.

[77] François Rameau, Hyowon Ha, Kyungdon Joo, Jinsoo Choi, Kibaek Park, and
In So Kweon. A real-time augmented reality system to see-through cars. IEEE
Trans. on Visualization and Computer Graphics, 22(11):2395–2404, 2016.

[78] Marco Rapelli, Claudio Casetti, and Giandomenico Gagliardi. Vehicular traffic
simulation in the city of turin from raw data. IEEE Trans. on Mobile Computing,
pages 1–1, 2021.

[79] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical
learning: data mining, inference and prediction. Springer, 2 edition, 2009.

[80] 5GROWTH. D2.3, Final Design and Evaluation of the innovations of the 5G
End-to-End Service Platform. Technical Report, 2021.

[81] Xenofon Foukas, Georgios Patounas, Ahmed Elmokashfi, and Mahesh K. Marina.
Network slicing in 5G: Survey and challenges. IEEE Communications Magazine,
55(5):94–100, 2017.

[82] Alcardo Alex Barakabitze, Arslan Ahmad, Rashid Mijumbi, and Andrew Hinesd.
5G network slicing using SDN and NFV: A survey of taxonomy, architectures and
future challenges. Computer Networks, 167, February 2020.

[83] Fadoua Debbabi, Rihab Jmal, Lamia Chaari Fourati, and Adlen Ksentini. Algorith-
mics and modeling aspects of network slicing in 5G and beyonds network: Survey.
IEEE Access, 8:162748–162762, 2020.

[84] Mohammed Chahbar, Gladys Diaz, Abdulhalim Dandoush, Christophe Cérin, and
Kamal Ghoumid. A comprehensive survey on the E2E 5G network slicing model.
IEEE Trans. on Network and Service Management, 18(1):49–62, 2021.

[85] Juliver Gil Herrera and Juan Felipe Botero. Resource allocation in NFV: A
comprehensive survey. IEEE Trans. on Network and Service Management, 13(3):518–
532, 2016.

[86] Hamzeh Khalili and et al. Network slicing-aware NFV orchestration for 5G service
platforms. In EuCNC, pages 25–30, 2019.

[87] David M. Gutierrez-Estevez, N. Dipietro, A. Dedomenico, M. Gramaglia, U. Elzur,
and Y. Wang. 5G-MoNArch use case for ETSI ENI: elastic resource management
and orchestration. In IEEE CSCN, pages 1–5, 2018.

[88] MATILDA project: Intelligent orchestration mechanisms. D3.2, 2020.

[89] MATILDA project: 5G-ready vertical applications orchestration. White paper, Dec.
2019.

[90] R. Bruschi, F. Davoli, C. Lombardo, and J. F. Pajo. Managing 5G network
slicing and edge computing with the MATILDA telecom layer platform. Computer
Networks, 194, July 2021.

References 161

[91] David M. Gutierrez-Estevez and et al. Artificial intelligence for elastic management
and orchestration of 5G networks. IEEE Wireless Communications, 26(5):134–141,
2019.

[92] Qiang Liu and Tao Han. VirtualEdge: Multi-domain resource orchestration and
virtualization in cellular edge computing. In IEEE ICDCS, pages 1051–1060, 2019.

[93] Fengsheng Wei, Gang Feng, Yao Sun, Yatong Wang, Shuang Qin, and Ying-Chang
Liang. Network slice reconfiguration by exploiting deep reinforcement learning with
large action space. IEEE Trans. on Network and Service Management, 17(4):2197–
2211, 2020.

[94] Ibrahim Afolabi, Jonathan Prados-Garzon, Miloud Bagaa, Tarik Taleb, and Pablo
Ameigeiras. Dynamic resource provisioning of a scalable E2E network slicing
orchestration system. IEEE Trans. on Mobile Computing, 19(11):2594–2608, 2020.

[95] Sabidur Rahman, Tanjila Ahmed, Minh Huynh, Massimo Tornatore, and Biswanath
Mukherjee. Auto-scaling network service chains using machine learning and negoti-
ation game. IEEE Trans. on Network and Service Management, 17(3):1322–1336,
2020.

[96] László Toka, Gergely Dobreff, Balázs Fodor, and Balázs Sonkoly. Machine learning-
based scaling management for Kubernetes edge clusters. IEEE Trans. on Network
and Service Management, 18(1):958–972, 2021.

[97] Hui Yu, Jiahai Yang, and Carol Fung. Fine-grained cloud resource provisioning
for virtual network function. IEEE Trans. on Network and Service Management,
17(3):1363–1376, 2020.

[98] Lianjie Cao, Puneet Sharma, Sonia Fahmy, and Vinay Saxena. ENVI: Elastic
resource flexing for network function virtualization. In USENIX HotCloud, Santa
Clara, CA, July 2017.

[99] H. Chergui and C. Verikoukis. Offline SLA-constrained deep learning for 5G
networks reliable and dynamic end-to-end slicing. IEEE Journal on Selected Areas
in Communications, 38(2):350–360, 2020.

[100] Dario Bega, Marco Gramaglia, Albert Banchs, Vincenzo Sciancalepore, Konstanti-
nos Samdanis, and Xavier Costa-Perez. Optimising 5G infrastructure markets:
The business of network slicing. In IEEE INFOCOM, pages 1–9, 2017.

[101] Bin Han, Vincenzo Sciancalepore, Xavier Costa-Pérez, Di Feng, and Hans D.
Schotten. Multiservice-based network slicing orchestration with impatient tenants.
IEEE Trans. on Wireless Communications, 19(7):5010–5024, 2020.

[102] Tulja Vamshi Kiran Buyakar, Harsh Agarwal, Bheemarjuna Reddy Tamma, and
A Antony Franklin. Resource allocation with admission control for GBR and delay
QoS in 5G network slices. In COMSNETS, pages 213–220, 2020.

162 References

[103] J. Baranda, J. Mangues-Bafalluy, E. Zeydan, C. Casetti, C. F. Chiasserini, M. Malin-
verno, C. Puligheddu, M. Groshev, C. Guimaraes, K. Tomakh, and O. Kolodiazhnyi.
Demo: AIML-as-a-Service for SLA management of a Digital Twin virtual network
service. In IEEE INFOCOM - Demo Session, 2021.

[104] J. G. Andrews and et al. What will 5G be? IEEE J. Sel. Areas Commun.,
32(6):1065–1082, June 2014.

[105] C. Wang and et al. Cellular architecture and key technologies for 5G wireless
communication networks. IEEE Commun. Mag., 52(2):122–130, Feb. 2014.

[106] T. O. Olwal, K. Djouani, and A. M. Kurien. A survey of resource management
toward 5G radio access networks. IEEE Commun. Surveys Tuts., 18(3):1656–1686,
2016.

[107] C. Liang and F. R. Yu. Wireless network virtualization: A survey, some research
issues and challenges. IEEE Commun. Surveys Tuts., 17(1):358–380, 2015.

[108] K. Tsagkaris, G. Poulios, P. Demestichas, A. Tall, Z. Altman, and C. Destré. An
open framework for programmable, self-managed radio access networks. IEEE
Commun. Mag., 53(7):154–161, 2015.

[109] Jose A. Ayala-Romero, Andres Garcia-Saavedra, Marco Gramaglia, Xavier Costa-
Perez, Albert Banchs, and Juan J. Alcaraz. VrAIn: a deep learning approach
tailoring computing and radio resources in virtualized RANs. In ACM MobiCom,
New York, NY, USA, 2019.

[110] Ericsson. 5G Radio Access. Ericsson Rev., 6:1–8, June 2014.

[111] Y. Fu, S. Wang, C. Wang, X. Hong, and S. McLaughlin. Artificial intelligence to
manage network traffic of 5G wireless networks. IEEE Netw., 32(6):58–64, 2018.

[112] F. Hussain, S. A. Hassan, R. Hussain, and E. Hossain. Machine learning for resource
management in cellular and IoT networks: Potentials, current solutions, and open
challenges. IEEE Commun. Surveys Tuts., 22(2):1251–1275, 2020.

[113] F. Tang, Y. Kawamoto, N. Kato, and J. Liu. Future intelligent and secure vehicular
network toward 6G: Machine-learning approaches. Proc. IEEE, 108(2):292–307,
2020.

[114] Z. Xiong, Y. Zhang, D. Niyato, R. Deng, P. Wang, and L. Wang. Deep reinforcement
learning for mobile 5G and beyond: Fundamentals, applications, and challenges.
IEEE Veh. Technol. Mag., 14(2):44–52, 2019.

[115] R. Zheng and C. Hua. Sequential learning and decision-making in wireless resource
management. Wireless Networks, 2016.

[116] 3GPP TS 23.501 V16.3.0 Technical Specification Group Services and System
Aspects; System Architecture for the 5G System (5GS); Stage 2, (Release 16) , 12
2019.

References 163

[117] A. Slivkins. Introduction to multi-armed bandits. Foundations and Trends in
Machine Learning, 12(1-2):1–286, 2019.

[118] B. Jang, M. Kim, G. Harerimana, and J. W. Kim. Q-learning algorithms: A
comprehensive classification and applications. IEEE Access, 7:133653–133667,
2019.

[119] R. Combes and A. Proutiere. Dynamic Rate and Channel Selection in Cognitive
Radio Systems. IEEE J. Sel. Areas Commun., 33(5):910–921, May 2015.

[120] R. Combes, J. Ok, A. Proutiere, D. Yun, and Y. Yi. Optimal Rate Sampling
in 802.11 Systems: Theory, Design, and Implementation. IEEE Trans. Mobile
Comput., 18(5):1145–1158, May 2019.

[121] H. Gupta, A. Eryilmaz, and R. Srikant. Low-complexity, Low-regret Link Rate
Selection in Rapidly-varying Wireless Channels. In IEEE Conf. Comput. Commun.,
pages 540–548, 2018.

[122] J. Ma, T. Nagatsuma, S. Kim, and M. Hasegawa. A machine-learning-based channel
assignment algorithm for IoT. In ICAIIC, pages 1–6, 2019.

[123] S. Hasegawa, S. Kim, Y. Shoji, and M. Hasegawa. Performance evaluation of
machine learning based channel selection algorithm implemented on IoT sensor
devices in coexisting IoT networks. In IEEE CCNC, pages 1–5, 2020.

[124] M. A. Qureshi and C. Tekin. Fast learning for dynamic resource allocation in
AI-enabled radio networks. IEEE Trans. Cogn. Commun. Netw., 6(1):95–110, 2020.

[125] M. El Helou and et al. A network-assisted approach for RAT selection in het-
erogeneous cellular networks. IEEE J. Sel. Areas Commun., 33(6):1055–1067,
2015.

[126] D. D. Nguyen, H. X. Nguyen, and L. B. White. Reinforcement learning with
network-assisted feedback for heterogeneous RAT selection. IEEE Trans. Wireless
Commun., 16(9):6062–6076, 2017.

[127] Y. Wei, R. Yu F. M. Song, and Z. Han. User scheduling and resource allocation
in HetNets with hybrid energy supply: An actor-critic reinforcement learning
approach. IEEE Trans. Wireless Commun., 17(1):680–692, 2018.

[128] N. Morozs, T. Clarke, and D. Grace. Heuristically accelerated reinforcement
learning for dynamic secondary spectrum sharing. IEEE Access, 3:2771–2783, 2015.

[129] V. Raj, I. Dias, T. Tholeti, and S. Kalyani. Spectrum access in cognitive radio
using a two-stage reinforcement learning approach. IEEE J. Sel. Topics Signal
Process., 12(1):20–34, 2018.

[130] I. Comşa and et al. Towards 5G: A reinforcement learning-based scheduling solution
for data traffic management. IEEE Trans. Netw. Service Manag., 15(4):1661–1675,
2018.

164 References

[131] I. Coms,a, R. Trestian, G. Muntean, and G. Ghinea. 5MART: A 5G SMART
scheduling framework for optimizing QoS through reinforcement learning. IEEE
Trans. Netw. Service Manag., 17(2):1110–1124, 2020.

[132] Y. Zhou, F. Tang, Y. Kawamoto, and N. Kato. Reinforcement learning-based
radio resource control in 5G vehicular network. IEEE Wireless Commun. Lett.,
9(5):611–614, 2020.

[133] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari. Deep reinforcement learning
for dynamic multichannel access in wireless networks. IEEE Trans. Cogn. Commun.
Netw., 4(2):257–265, 2018.

[134] O. Naparstek and K. Cohen. Deep multi-user reinforcement learning for distributed
dynamic spectrum access. IEEE Trans. Wireless Commun., 18(1):310–323, 2019.

[135] C. Zhong, Z. Lu, M. C. Gursoy, and S. Velipasalar. A deep actor-critic reinforcement
learning framework for dynamic multichannel access. IEEE Trans. Cogn. Commun.
Netw., 5(4):1125–1139, Nov. 2019.

[136] L. Zhang, J. Tan, Y. Liang, G. Feng, and D. Niyato. Deep reinforcement learning-
based modulation and coding scheme selection in cognitive heterogeneous networks.
IEEE Trans. Wireless Commun., 18(6):3281–3294, 2019.

[137] X. Li, J. Fang, W. Cheng, H. Duan, Z. Chen, and H. Li. Intelligent power control
for spectrum sharing in cognitive radios: A deep reinforcement learning approach.
IEEE Access, 6:25463–25473, 2018.

[138] Y. S. Nasir and D. Guo. Multi-agent deep reinforcement learning for dynamic power
allocation in wireless networks. IEEE J. Sel. Areas Commun., 37(10):2239–2250,
2019.

[139] S. Gyawali, Y. Qian, and R. Q. Hu. Resource allocation in vehicular communications
using graph and deep reinforcement learning. In IEEE GLOBECOM, pages 1–6,
Dec. 2019.

[140] X. Chen and et al. Age of information aware radio resource management in
vehicular networks: A proactive deep reinforcement learning perspective. IEEE
Trans. Wireless Commun., 19(4):2268–2281, 2020.

[141] H. Ye, G. Y. Li, and B. F. Juang. Deep reinforcement learning based resource
allocation for V2V communications. IEEE Trans. Veh. Technol., 68(4):3163–3173,
2019.

[142] X. Zhang, M. Peng, S. Yan, and Y. Sun. Deep reinforcement learning based mode
selection and resource allocation for cellular V2X communications. IEEE Internet
Things J., pages 1–1, Dec. 2019.

[143] S. Tripath, C. Puligheddu, and C.F. Chiasserini. An RL approach to radio resource
management in heterogeneous virtual RANs. In IEEE/IFIP WONS, 2021.

[144] 5G mobile transport platform for verticals. 5G PPP H2020 5G-TRANSFORMER
Project, 2019.

References 165

[145] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, USA, 1998.

[146] Alexander A. Sherstov and Peter Stone. Function approximation via tile coding:
Automating parameter choice. In Jean-Daniel Zucker and Lorenza Saitta, editors,
Abstraction, Reformulation and Approximation, pages 194–205, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

[147] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Combining convergence and
diversity in evolutionary multiobjective optimization. Evolutionary Computation,
10(3):263–282, 2002.

[148] Ismael Gomez-Miguelez and et al. SrsLTE: an open-source platform for LTE
evolution and experimentation. In ACM WiNTECH, page 25–32, 2016.

[149] Bastian Bloessl, Michele Segata, Christoph Sommer, and Falko Dressler. Perfor-
mance assessment of IEEE 802.11p with an open source SDR-based prototype.
IEEE Trans. Mobile Comput., 17(5):1162–1175, May 2018.

[150] Lihong Li, Wei Chu, J. Langford, and R. Schapire. A Contextual-bandit Approach
to Personalized News Article Recommendation. In ACM WWW, 2010.

[151] Andres Garcia-Saavedra and Xavier Costa-Pérez. O-RAN: Disrupting the virtual-
ized RAN ecosystem. IEEE Communications Standards Magazine, 5(4):96–103,
2021.

[152] Open RAN Alliance. O-RAN: Towards an Open and Smart RAN. White Paper,
2018.

[153] Cisco, Rakuten, Altiostar. Reimagining the End-to-End Mobile Network in the 5G
Era. White Paper, 2019.

[154] Samsung. Virtualized Radio Access Network: Architecture, Key technologies and
Benefits. Technical Report, 2019.

[155] Intel. vRAN: The Next Step in Network Transformation. White Paper, 2017.

[156] Gines Garcia-Aviles et al. Nuberu: Reliable ran virtualization in shared platforms. In
Proceedings of the 27th Annual International Conference on Mobile Computing and
Networking, MobiCom ’21, page 749–761, New York, NY, USA, 2021. Association
for Computing Machinery.

[157] Nokia. The edge cloud: An agile foundation to support advanced new services.
White Paper, 2018.

[158] Andres Garcia-Saavedra, George Iosifidis, Xavier Costa-Perez, and Douglas J Leith.
Joint optimization of edge computing architectures and radio access networks.
IEEE Journal on Selected Areas in Communications, 36(11):2433–2443, 2018.

[159] Jose A. Ayala-Romero, Andres Garcia-Saavedra, Marco Gramaglia, Xavier Costa-
Perez, Albert Banchs, and Juan J. Alcaraz. vrAIn: Deep learning based orchestra-
tion for computing and radio resources in vRANs. IEEE Transactions on Mobile
Computing, pages 1–1, 2020.

166 References

[160] Jose A. Ayala-Romero et al. EdgeBOL: automating energy-savings for mobile edge
AI. In Proceedings of the 17th International Conference on emerging Networking
EXperiments and Technologies, pages 397–410, 2021.

[161] Jose A. Ayala-Romero et al. Bayesian online learning for energy-aware resource
orchestration in virtualized RANs. In IEEE INFOCOM 2021-IEEE Conference on
Computer Communications, pages 1–10. IEEE, 2021.

[162] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent,
reinforcement learning for autonomous driving. arXiv preprint arXiv:1610.03295,
2016.

[163] S. Arora, P. A. Frangoudis, and A. Ksentini. Exposing radio network information
in a mec-in-nfv environment: the rnisaas concept. In 2019 IEEE Conference on
Network Softwarization (NetSoft), pages 306–310, 2019.

[164] G. Avino, P. Bande, P. A. Frangoudis, C. Vitale, C. Casetti, C. F. Chiasserini,
K. Gebru, A. Ksentini, and G. Zennaro. A MEC-based extended virtual sensing
for automotive services. IEEE Transactions on Network and Service Management,
16(4):1450–1463, 2019.

[165] Ismael Gomez-Miguelez, Andres Garcia-Saavedra, Paul D Sutton, Pablo Serrano,
Cristina Cano, and Doug J Leith. srsLTE: An open-source platform for LTE
evolution and experimentation. In Proceedings of the Tenth ACM International
Workshop on Wireless Network Testbeds, Experimental Evaluation, and Characteri-
zation, pages 25–32, 2016.

[166] Zhi Li, Anne Aaron, Ioannis Katsavounidis, Anush Moorthy, and Megha Manohara.
Toward a practical perceptual video quality metric. The Netflix Tech Blog, 6(2),
2016.

[167] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark
Watson. A buffer-based approach to rate adaptation: Evidence from a large video
streaming service. In Proceedings of the 2014 ACM conference on SIGCOMM,
pages 187–198, 2014.

[168] Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-
agent control using deep reinforcement learning. In International Conference on
Autonomous Agents and Multiagent Systems, pages 66–83. Springer, 2017.

[169] S. Pasteris, S. Wang, M. Herbster, and T. He. Service placement with provable
guarantees in heterogeneous edge computing systems. In IEEE INFOCOM, pages
514–522, 2019.

[170] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas. Joint service
placement and request routing in multi-cell mobile edge computing networks. In
IEEE INFOCOM, pages 10–18, 2019.

[171] X. Ma, A. Zhou, S. Zhang, and S. Wang. Cooperative service caching and workload
scheduling in mobile edge computing. In IEEE INFOCOM, pages 2076–2085, 2020.

References 167

[172] F. Wang, C. Zhang, F. wang, J. Liu, Y. Zhu, H. Pang, and L. Sun. Intelligent
edge-assisted crowdcast with deep reinforcement learning for personalized qoe. In
IEEE INFOCOM, pages 910–918, 2019.

[173] Q. Liu, S. Huang, J. Opadere, and T. Han. An edge network orchestrator for
mobile augmented reality. In IEEE INFOCOM, pages 756–764, 2018.

[174] C. Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, and M. Xiao. Joint configuration
adaptation and bandwidth allocation for edge-based real-time video analytics. In
IEEE INFOCOM, pages 257–266, 2020.

[175] Y. He, J. Ren, G. Yu, and Y. Cai. Optimizing the learning performance in
mobile augmented reality systems with CNN. IEEE Transactions on Wireless
Communications, 19(8):5333–5344, 2020.

[176] Sharda Tripathi, Corrado Puligheddu, Carla Fabiana Chiasserini, and Federico
Mungari. A context-aware radio resource management in heterogeneous virtual
rans. volume 8, pages 321–334, 2022.

[177] Luca Baldesi, Francesco Restuccia, and Tommaso Melodia. Charm: Nextg spectrum
sharing through data-driven real-time o-ran dynamic control. In IEEE INFOCOM
2022-IEEE Conference on Computer Communications, 2022.

[178] S. Tripathi, C. Puligheddu, S. Pramanik, A. Garcia-Saavedra, and C. F. Chiasserini.
VERA: Resource orchestration for virtualized services at the edge. In 2022 IEEE
International Conference on Communications (ICC), 2022.

[179] O-RAN Working Group 1. Use cases analysis report. Technical report, O-RAN
Alliance, October 2022.

[180] Salvatore D’Oro, Leonardo Bonati, Michele Polese, and Tommaso Melodia. Orches-
tran: Network automation through orchestrated intelligence in the open ran. In
IEEE INFOCOM 2022 - IEEE Conference on Computer Communications, pages
270–279, 2022.

[181] Salvatore D’Oro, Michele Polese, Leonardo Bonati, Hai Cheng, and Tommaso
Melodia. dapps: Distributed applications for real-time inference and control in
o-ran. IEEE Communications Magazine, 60(11):52–58, 2022.

[182] O-RAN Working Group 2. Ai/ml workflow description and requirements. Technical
report, O-RAN Alliance, October 2021.

