27,603 research outputs found

    A new framework for electricity price forecasting via multi-head self-attention and CNN-based techniques in the competitive electricity market

    Get PDF
    Due to recent technical improvements, the smart grid has become a feasible platform for electricity market participants to successfully regulate their bidding process based on demand-side management (DSM) perspectives. At this level, practical design, implementation, and assessment of numerous demand response mechanisms and robust short-term price forecasting development in day-ahead transactions are all critical. The accuracy and effectiveness of the day-ahead price forecasting process are crucial concerns in a deregulated market. In this market, the reason for low accuracy is the limitation of electricity generation compared to the electricity demand variations. Hence, this study proposes a suitable technique for forecasting electricity prices using a multi-head self-attention and Convolutional Neural networks (CNN) based approach. Further, this study develops a feature selection technique using mutual information (MI) and neural networks (NN) to choose suitable input variable subsets significantly affecting electricity price predictions simultaneously. The combination of MI and NN reduces the number of input features used in the model, thereby decreasing the computational complexity of the NN. The actual data sets from the Ontario electricity market in 2020 are acquired to verify the simulation results. Finally, the simulation results proved the efficiency of the proposed method by demonstrating increased accuracy by attaining the lowest average value for MAPE and RMSE with a value of 1.75% and 0.0085, respectively, and compared to results obtained by recent computational intelligence approaches. By attaining accurate electricity price results, the significance of this study can be summed up as aiding the electricity industry's operators in administering effective energy management, efficient resource allocation, and informed decision-making.© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Recent Development in Electricity Price Forecasting Based on Computational Intelligence Techniques in Deregulated Power Market

    Get PDF
    The development of artificial intelligence (AI) based techniques for electricity price forecasting (EPF) provides essential information to electricity market participants and managers because of its greater handling capability of complex input and output relationships. Therefore, this research investigates and analyzes the performance of different optimization methods in the training phase of artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) for the accuracy enhancement of EPF. In this work, a multi-objective optimization-based feature selection technique with the capability of eliminating non-linear and interacting features is implemented to create an efficient day-ahead price forecasting. In the beginning, the multi-objective binary backtracking search algorithm (MOBBSA)-based feature selection technique is used to examine various combinations of input variables to choose the suitable feature subsets, which minimizes, simultaneously, both the number of features and the estimation error. In the later phase, the selected features are transferred into the machine learning-based techniques to map the input variables to the output in order to forecast the electricity price. Furthermore, to increase the forecasting accuracy, a backtracking search algorithm (BSA) is applied as an efficient evolutionary search algorithm in the learning procedure of the ANFIS approach. The performance of the forecasting methods for the Queensland power market in the year 2018, which is well-known as the most competitive market in the world, is investigated and compared to show the superiority of the proposed methods over other selected methods.© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    An efficient framework for short-term electricity price forecasting in deregulated power market

    Get PDF
    It is widely acknowledged that electricity price forecasting become an essential factor in operational activities, planning, and scheduling for the participant in the price-setting market, nowadays. Nevertheless, electricity price became a complex signal due to its non-stationary, non-linearity, and time-variant behavior. Consequently, a variety of artificial intelligence techniques are proposed to provide an efficient method for short-term electricity price forecasting. BSA as the recent augmentation of optimization technique, yield the potential of searching a closed-form solution in mathematical modeling with a higher probability, obviating the necessity to comprehend the correlations between variables. Concurrently, this study also developed a feature selection technique, to select the input variables subsets that have a substantial implication on forecasting of electricity price, based on a combination of mutual information (MI) and SVM. For the verification of simulation results, actual data sets from the Ontario energy market in the year 2020 covering various weather seasons are acquired. Finally, the obtained results demonstrate the feasibility of the proposed strategy through improved preciseness in comparison with the distinctive methods.©2021 Institute of Electrical and Electronics Engineers. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/This research has been supported by University of Vaasa under Profi4/WP2 project with the financial support provided by the Academy of Finland.fi=vertaisarvioitu|en=peerReviewed
    corecore