418 research outputs found

    Millimeter-wave Wireless LAN and its Extension toward 5G Heterogeneous Networks

    Full text link
    Millimeter-wave (mmw) frequency bands, especially 60 GHz unlicensed band, are considered as a promising solution for gigabit short range wireless communication systems. IEEE standard 802.11ad, also known as WiGig, is standardized for the usage of the 60 GHz unlicensed band for wireless local area networks (WLANs). By using this mmw WLAN, multi-Gbps rate can be achieved to support bandwidth-intensive multimedia applications. Exhaustive search along with beamforming (BF) is usually used to overcome 60 GHz channel propagation loss and accomplish data transmissions in such mmw WLANs. Because of its short range transmission with a high susceptibility to path blocking, multiple number of mmw access points (APs) should be used to fully cover a typical target environment for future high capacity multi-Gbps WLANs. Therefore, coordination among mmw APs is highly needed to overcome packet collisions resulting from un-coordinated exhaustive search BF and to increase the total capacity of mmw WLANs. In this paper, we firstly give the current status of mmw WLANs with our developed WiGig AP prototype. Then, we highlight the great need for coordinated transmissions among mmw APs as a key enabler for future high capacity mmw WLANs. Two different types of coordinated mmw WLAN architecture are introduced. One is the distributed antenna type architecture to realize centralized coordination, while the other is an autonomous coordination with the assistance of legacy Wi-Fi signaling. Moreover, two heterogeneous network (HetNet) architectures are also introduced to efficiently extend the coordinated mmw WLANs to be used for future 5th Generation (5G) cellular networks.Comment: 18 pages, 24 figures, accepted, invited paper

    Advanced Technologies Enabling Unlicensed Spectrum Utilization in Cellular Networks

    Get PDF
    As the rapid progress and pleasant experience of Internet-based services, there is an increasing demand for high data rate in wireless communications systems. Unlicensed spectrum utilization in Long Term Evolution (LTE) networks is a promising technique to meet the massive traffic demand. There are two effective methods to use unlicensed bands for delivering LTE traffic. One is offloading LTE traffic toWi-Fi. An alternative method is LTE-unlicensed (LTE-U), which aims to directly use LTE protocols and infrastructures over the unlicensed spectrum. It has also been pointed out that addressing the above two methods simultaneously could further improve the system performance. However, how to avoid severe performance degradation of the Wi-Fi network is a challenging issue of utilizing unlicensed spectrum in LTE networks. Specifically, first, the inter-system spectrum sharing, or, more specifically, the coexistence of LTE andWi-Fi in the same unlicensed spectrum is the major challenge of implementing LTE-U. Second, to use the LTE and Wi-Fi integration approach, mobile operators have to manage two disparate networks in licensed and unlicensed spectrum. Third, optimization for joint data offloading to Wi-Fi and LTE-U in multi- cell scenarios poses more challenges because inter-cell interference must be addressed. This thesis focuses on solving problems related to these challenges. First, the effect of bursty traffic in an LTE and Wi-Fi aggregation (LWA)-enabled network has been investigated. To enhance resource efficiency, the Wi-Fi access point (AP) is designed to operate in both the native mode and the LWA mode simultaneously. Specifically, the LWA-modeWi-Fi AP cooperates with the LTE base station (BS) to transmit bearers to the LWA user, which aggregates packets from both LTE and Wi-Fi. The native-mode Wi-Fi AP transmits Wi-Fi packets to those native Wi-Fi users that are not with LWA capability. This thesis proposes a priority-based Wi-Fi transmission scheme with congestion control and studied the throughput of the native Wi-Fi network, as well as the LWA user delay when the native Wi-Fi user is under heavy traffic conditions. The results provide fundamental insights in the throughput and delay behavior of the considered network. Second, the above work has been extended to larger topologies. A stochastic geometry model has been used to model and analyze the performance of an MPTCP Proxy-based LWA network with intra-tier and cross-tier dependence. Under the considered network model and the activation conditions of LWA-mode Wi-Fi, this thesis has obtained three approximations for the density of active LWA-mode Wi-Fi APs through different approaches. Tractable analysis is provided for the downlink (DL) performance evaluation of large-scale LWA networks. The impact of different parameters on the network performance have been analyzed, validating the significant gain of using LWA in terms of boosted data rate and improved spectrum reuse. Third, this thesis also takes a significant step of analyzing joint multi-cell LTE-U and Wi-Fi network, while taking into account different LTE-U and Wi-Fi inter-working schemes. In particular, two technologies enabling data offloading from LTE to Wi-Fi are considered, including LWA and Wi-Fi offloading in the context of the power gain-based user offloading scheme. The LTE cells in this work are subject to load-coupling due to inter-cell interference. New system frameworks for maximizing the demand scaling factor for all users in both Wi-Fi and multi-cell LTE networks have been proposed. The potential of networks is explored in achieving optimal capacity with arbitrary topologies, accounting for both resource limits and inter-cell interference. Theoretical analyses have been proposed for the proposed optimization problems, resulting in algorithms that achieve global optimality. Numerical results show the algorithms’ effectiveness and benefits of joint use of data offloading and the direct use of LTE over the unlicensed band. All the derived results in this thesis have been validated by Monte Carlo simulations in Matlab, and the conclusions observed from the results can provide guidelines for the future unlicensed spectrum utilization in LTE networks

    A Comprehensive Survey of the Tactile Internet: State of the art and Research Directions

    Get PDF
    The Internet has made several giant leaps over the years, from a fixed to a mobile Internet, then to the Internet of Things, and now to a Tactile Internet. The Tactile Internet goes far beyond data, audio and video delivery over fixed and mobile networks, and even beyond allowing communication and collaboration among things. It is expected to enable haptic communication and allow skill set delivery over networks. Some examples of potential applications are tele-surgery, vehicle fleets, augmented reality and industrial process automation. Several papers already cover many of the Tactile Internet-related concepts and technologies, such as haptic codecs, applications, and supporting technologies. However, none of them offers a comprehensive survey of the Tactile Internet, including its architectures and algorithms. Furthermore, none of them provides a systematic and critical review of the existing solutions. To address these lacunae, we provide a comprehensive survey of the architectures and algorithms proposed to date for the Tactile Internet. In addition, we critically review them using a well-defined set of requirements and discuss some of the lessons learned as well as the most promising research directions

    Towards edge robotics: the progress from cloud-based robotic systems to intelligent and context-aware robotic services

    Get PDF
    Current robotic systems handle a different range of applications such as video surveillance, delivery of goods, cleaning, material handling, assembly, painting, or pick and place services. These systems have been embraced not only by the general population but also by the vertical industries to help them in performing daily activities. Traditionally, the robotic systems have been deployed in standalone robots that were exclusively dedicated to performing a specific task such as cleaning the floor in indoor environments. In recent years, cloud providers started to offer their infrastructures to robotic systems for offloading some of the robot’s functions. This ultimate form of the distributed robotic system was first introduced 10 years ago as cloud robotics and nowadays a lot of robotic solutions are appearing in this form. As a result, standalone robots became software-enhanced objects with increased reconfigurability as well as decreased complexity and cost. Moreover, by offloading the heavy processing from the robot to the cloud, it is easier to share services and information from various robots or agents to achieve better cooperation and coordination. Cloud robotics is suitable for human-scale responsive and delay-tolerant robotic functionalities (e.g., monitoring, predictive maintenance). However, there is a whole set of real-time robotic applications (e.g., remote control, motion planning, autonomous navigation) that can not be executed with cloud robotics solutions, mainly because cloud facilities traditionally reside far away from the robots. While the cloud providers can ensure certain performance in their infrastructure, very little can be ensured in the network between the robots and the cloud, especially in the last hop where wireless radio access networks are involved. Over the last years advances in edge computing, fog computing, 5G NR, network slicing, Network Function Virtualization (NFV), and network orchestration are stimulating the interest of the industrial sector to satisfy the stringent and real-time requirements of their applications. Robotic systems are a key piece in the industrial digital transformation and their benefits are very well studied in the literature. However, designing and implementing a robotic system that integrates all the emerging technologies and meets the connectivity requirements (e.g., latency, reliability) is an ambitious task. This thesis studies the integration of modern Information andCommunication Technologies (ICTs) in robotic systems and proposes some robotic enhancements that tackle the real-time constraints of robotic services. To evaluate the performance of the proposed enhancements, this thesis departs from the design and prototype implementation of an edge native robotic system that embodies the concepts of edge computing, fog computing, orchestration, and virtualization. The proposed edge robotics system serves to represent two exemplary robotic applications. In particular, autonomous navigation of mobile robots and remote-control of robot manipulator where the end-to-end robotic system is distributed between the robots and the edge server. The open-source prototype implementation of the designed edge native robotic system resulted in the creation of two real-world testbeds that are used in this thesis as a baseline scenario for the evaluation of new innovative solutions in robotic systems. After detailing the design and prototype implementation of the end-to-end edge native robotic system, this thesis proposes several enhancements that can be offered to robotic systems by adapting the concept of edge computing via the Multi-Access Edge Computing (MEC) framework. First, it proposes exemplary network context-aware enhancements in which the real-time information about robot connectivity and location can be used to dynamically adapt the end-to-end system behavior to the actual status of the communication (e.g., radio channel). Three different exemplary context-aware enhancements are proposed that aim to optimize the end-to-end edge native robotic system. Later, the thesis studies the capability of the edge native robotic system to offer potential savings by means of computation offloading for robot manipulators in different deployment configurations. Further, the impact of different wireless channels (e.g., 5G, 4G andWi-Fi) to support the data exchange between a robot manipulator and its remote controller are assessed. In the following part of the thesis, the focus is set on how orchestration solutions can support mobile robot systems to make high quality decisions. The application of OKpi as an orchestration algorithm and DLT-based federation are studied to meet the KPIs that autonomously controlledmobile robots have in order to provide uninterrupted connectivity over the radio access network. The elaborated solutions present high compatibility with the designed edge robotics system where the robot driving range is extended without any interruption of the end-to-end edge robotics service. While the DLT-based federation extends the robot driving range by deploying access point extension on top of external domain infrastructure, OKpi selects the most suitable access point and computing resource in the cloud-to-thing continuum in order to fulfill the latency requirements of autonomously controlled mobile robots. To conclude the thesis the focus is set on how robotic systems can improve their performance by leveraging Artificial Intelligence (AI) and Machine Learning (ML) algorithms to generate smart decisions. To do so, the edge native robotic system is presented as a true embodiment of a Cyber-Physical System (CPS) in Industry 4.0, showing the mission of AI in such concept. It presents the key enabling technologies of the edge robotic system such as edge, fog, and 5G, where the physical processes are integrated with computing and network domains. The role of AI in each technology domain is identified by analyzing a set of AI agents at the application and infrastructure level. In the last part of the thesis, the movement prediction is selected to study the feasibility of applying a forecast-based recovery mechanism for real-time remote control of robotic manipulators (FoReCo) that uses ML to infer lost commands caused by interference in the wireless channel. The obtained results are showcasing the its potential in simulation and real-world experimentation.Programa de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Karl Holger.- Secretario: Joerg Widmer.- Vocal: Claudio Cicconett

    Mobile data and computation offloading in mobile cloud computing

    Get PDF
    Le trafic mobile augmente considérablement en raison de la popularité des appareils mobiles et des applications mobiles. Le déchargement de données mobiles est une solution permettant de réduire la congestion du réseau cellulaire. Le déchargement de calcul mobile peut déplacer les tâches de calcul d'appareils mobiles vers le cloud. Dans cette thèse, nous étudions d'abord le problème du déchargement de données mobiles dans l'architecture du cloud computing mobile. Afin de minimiser les coûts de transmission des données, nous formulons le processus de déchargement des données sous la forme d'un processus de décision de Markov à horizon fini. Nous proposons deux algorithmes de déchargement des données pour un coût minimal. Ensuite, nous considérons un marché sur lequel un opérateur de réseau mobile peut vendre de la bande passante à des utilisateurs mobiles. Nous formulons ce problème sous la forme d'une enchère comportant plusieurs éléments afin de maximiser les bénéfices de l'opérateur de réseau mobile. Nous proposons un algorithme d'optimisation robuste et deux algorithmes itératifs pour résoudre ce problème. Enfin, nous nous concentrons sur les problèmes d'équilibrage de charge afin de minimiser la latence du déchargement des calculs. Nous formulons ce problème comme un jeu de population. Nous proposons deux algorithmes d'équilibrage de la charge de travail basés sur la dynamique évolutive et des protocoles de révision. Les résultats de la simulation montrent l'efficacité et la robustesse des méthodes proposées.Global mobile traffic is increasing dramatically due to the popularity of smart mobile devices and data hungry mobile applications. Mobile data offloading is considered as a promising solution to alleviate congestion in cellular network. Mobile computation offloading can move computation intensive tasks and large data storage from mobile devices to cloud. In this thesis, we first study mobile data offloading problem under the architecture of mobile cloud computing. In order to minimize the overall cost for data delivery, we formulate the data offloading process, as a finite horizon Markov decision process, and we propose two data offloading algorithms to achieve minimal communication cost. Then, we consider a mobile data offloading market where mobile network operator can sell bandwidth to mobile users. We formulate this problem as a multi-item auction in order to maximize the profit of mobile network operator. We propose one robust optimization algorithm and two iterative algorithms to solve this problem. Finally, we investigate computation offloading problem in mobile edge computing. We focus on workload balancing problems to minimize the transmission latency and computation latency of computation offloading. We formulate this problem as a population game, in order to analyze the aggregate offloading decisions, and we propose two workload balancing algorithms based on evolutionary dynamics and revision protocols. Simulation results show the efficiency and robustness of our proposed methods

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    • …
    corecore