61 research outputs found

    Effective Algorithms for Parametrizing Linear Control Systems over Ore Algebras

    Get PDF
    In this paper, we study linear control systems over Ore algebras. Within this mathematical framework, we can simultaneously deal with different classes of linear control systems such as time-varying systems of ordinary differential equations (ODEs), differential time-delay systems, underdetermined systems of partial differential equations (PDEs), multidimensional discrete systems, multidimensional convolutional codes etc. We give effective algorithms which check whether or not a linear control system over some Ore algebra is controllable, parametrizable, flat or Pi-free

    Exact linear modeling using Ore algebras

    Full text link
    Linear exact modeling is a problem coming from system identification: Given a set of observed trajectories, the goal is find a model (usually, a system of partial differential and/or difference equations) that explains the data as precisely as possible. The case of operators with constant coefficients is well studied and known in the systems theoretic literature, whereas the operators with varying coefficients were addressed only recently. This question can be tackled either using Gr\"obner bases for modules over Ore algebras or by following the ideas from differential algebra and computing in commutative rings. In this paper, we present algorithmic methods to compute "most powerful unfalsified models" (MPUM) and their counterparts with variable coefficients (VMPUM) for polynomial and polynomial-exponential signals. We also study the structural properties of the resulting models, discuss computer algebraic techniques behind algorithms and provide several examples

    Obstructions to Genericity in Study of Parametric Problems in Control Theory

    Full text link
    We investigate systems of equations, involving parameters from the point of view of both control theory and computer algebra. The equations might involve linear operators such as partial (q-)differentiation, (q-)shift, (q-)difference as well as more complicated ones, which act trivially on the parameters. Such a system can be identified algebraically with a certain left module over a non-commutative algebra, where the operators commute with the parameters. We develop, implement and use in practice the algorithm for revealing all the expressions in parameters, for which e.g. homological properties of a system differ from the generic properties. We use Groebner bases and Groebner basics in rings of solvable type as main tools. In particular, we demonstrate an optimized algorithm for computing the left inverse of a matrix over a ring of solvable type. We illustrate the article with interesting examples. In particular, we provide a complete solution to the "two pendula, mounted on a cart" problem from the classical book of Polderman and Willems, including the case, where the friction at the joints is essential . To the best of our knowledge, the latter example has not been solved before in a complete way.Comment: 20 page

    Recent progress in an algebraic analysis approach to linear systems

    Get PDF
    This paper addresses systems of linear functional equations from an algebraic point of view. We give an introduction to and an overview of recent work by a small group of people including the author of this article on effective methods which determine structural properties of such systems. We focus on parametrizability of the behavior, i.e., the set of solutions in an appropriate signal space, which is equivalent to controllability in many control-theoretic situations. Flatness of the linear system corresponds to the existence of an injective parametrization. Using an algebraic analysis approach, we associate with a linear system a module over a ring of operators. For systems of linear partial differential equations we choose a ring of differential operators, for multidimensional discrete linear systems a ring of shift operators, for linear differential time-delay systems a combination of those, etc. Rings of these kinds are Ore algebras, which admit Janet basis or Gröbner basis computations. Module theory and homological algebra can then be applied effectively to study a linear system via its system module, the interpretation depending on the duality between equations and solutions. In particular, the problem of computing bases of finitely generated free modules (i.e., of computing flat outputs for linear systems) is addressed for different kinds of algebras of operators, e.g., the Weyl algebras. Some work on computer algebra packages, which have been developed in this context, is summarized
    corecore