393 research outputs found

    Multifactorial Evolutionary Algorithm For Clustered Minimum Routing Cost Problem

    Full text link
    Minimum Routing Cost Clustered Tree Problem (CluMRCT) is applied in various fields in both theory and application. Because the CluMRCT is NP-Hard, the approximate approaches are suitable to find the solution for this problem. Recently, Multifactorial Evolutionary Algorithm (MFEA) has emerged as one of the most efficient approximation algorithms to deal with many different kinds of problems. Therefore, this paper studies to apply MFEA for solving CluMRCT problems. In the proposed MFEA, we focus on crossover and mutation operators which create a valid solution of CluMRCT problem in two levels: first level constructs spanning trees for graphs in clusters while the second level builds a spanning tree for connecting among clusters. To reduce the consuming resources, we will also introduce a new method of calculating the cost of CluMRCT solution. The proposed algorithm is experimented on numerous types of datasets. The experimental results demonstrate the effectiveness of the proposed algorithm, partially on large instance

    Optimizing and Reoptimizing: tackling static and dynamic combinatorial problems

    Get PDF
    As suggested by the title, in this thesis both static and dynamic problems of Operations Research will be addressed by either designing new procedures or adapting well-known algorithmic schemes. Specifically, the first part of the thesis is devoted to the discussion of three variants of the widely studied Shortest Path Problem, one of which is defined on dynamic graphs. Namely, first the Reoptimization of Shortest Paths in case of multiple and generic cost changes is dealt with an exact algorithm whose performance is compared with Dijkstra's label setting procedure in order to detect which approach has to be preferred. Secondly, the k-Color Shortest Path Problem is tackled. It is a recent problem, defined on an edge-constrained graph, for which a Dynamic Programming algorithm is proposed here; its performance is compared with the state of the art solution approach, namely a Branch & Bound procedure. Finally, the Resource Constrained Clustered Shortest Path Tree Problem is presented. It is a newly defined problem for which both a mathematical model and a Branch & Price procedure are detailed here. Moreover, the performance of this solution approach is compared with that of CPLEX solver. Furthermore, in the first part of the thesis, also the Path Planning in Urban Air Mobility, is discussed by considering both the definition of the Free-Space Maps and the computation of the trajectories. For the former purpose, three different but correlated discretization methods are described; as for the latter, a two steps resolution, offline and online, of the resulting shortest path problems is performed. In addition, it is checked whether the reoptimization algorithm can be used in the online step. In the second part of this thesis, the recently studied Additive Manufacturing Machine Scheduling Problem with not identical machines is presented. Specifically, a Reinforcement Learning Iterated Local Search meta-heuristic featuring a Q-learning Variable Neighbourhood Search is described to solve this problem and its performance is compared with the one of CPLEX solver. It is worthwhile mentioning that, for each of the proposed approaches, a thorough experimentation is performed and each Chapter is equipped with a detailed analysis of the results in order to appraise the performance of the method and to detect its limits

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    Traveling Salesman Problem

    Get PDF
    This book is a collection of current research in the application of evolutionary algorithms and other optimal algorithms to solving the TSP problem. It brings together researchers with applications in Artificial Immune Systems, Genetic Algorithms, Neural Networks and Differential Evolution Algorithm. Hybrid systems, like Fuzzy Maps, Chaotic Maps and Parallelized TSP are also presented. Most importantly, this book presents both theoretical as well as practical applications of TSP, which will be a vital tool for researchers and graduate entry students in the field of applied Mathematics, Computing Science and Engineering
    • …
    corecore