3,002 research outputs found

    Nonlinear time-warping made simple: a step-by-step tutorial on underwater acoustic modal separation with a single hydrophone

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bonnel, J., Thode, A., Wright, D., & Chapman, R. Nonlinear time-warping made simple: a step-by-step tutorial on underwater acoustic modal separation with a single hydrophone. The Journal of the Acoustical Society of America, 147(3), (2020): 1897, doi:10.1121/10.0000937.Classical ocean acoustic experiments involve the use of synchronized arrays of sensors. However, the need to cover large areas and/or the use of small robotic platforms has evoked interest in single-hydrophone processing methods for localizing a source or characterizing the propagation environment. One such processing method is “warping,” a non-linear, physics-based signal processing tool dedicated to decomposing multipath features of low-frequency transient signals (frequency f  1 km). Since its introduction to the underwater acoustics community in 2010, warping has been adopted in the ocean acoustics literature, mostly as a pre-processing method for single receiver geoacoustic inversion. Warping also has potential applications in other specialties, including bioacoustics; however, the technique can be daunting to many potential users unfamiliar with its intricacies. Consequently, this tutorial article covers basic warping theory, presents simulation examples, and provides practical experimental strategies. Accompanying supplementary material provides matlab code and simulated and experimental datasets for easy implementation of warping on both impulsive and frequency-modulated signals from both biotic and man-made sources. This combined material should provide interested readers with user-friendly resources for implementing warping methods into their own research.This work was supported by the Office of Naval Research (Task Force Ocean, project N00014-19-1-2627) and by the North Pacific Research Board (project 1810). Original warping developments were supported by the French Delegation Generale de l'Armement

    Human response to aircraft noise

    Get PDF
    The human auditory system and the perception of sound are discussed. The major concentration is on the annnoyance response and methods for relating the physical characteristics of sound to those psychosociological attributes associated with human response. Results selected from the extensive laboratory and field research conducted on human response to aircraft noise over the past several decades are presented along with discussions of the methodology commonly used in conducting that research. Finally, some of the more common criteria, regulations, and recommended practices for the control or limitation of aircraft noise are examined in light of the research findings on human response

    Clustering Inverse Beamforming and multi-domain acoustic imaging approaches for vehicles NVH

    Get PDF
    Il rumore percepito all’interno della cabina di un veicolo è un aspetto molto rilevante nella valutazione della sua qualità complessiva. Metodi sperimentali di acoustic imaging, quali beamforming e olografia acustica, sono usati per identificare le principali sorgenti che contribuiscono alla rumorosità percepita all’interno del veicolo. L’obiettivo della tesi proposta è di fornire strumenti per effettuare dettagliate analisi quantitative tramite tali tecniche, ad oggi relegate alle fasi di studio preliminare, proponendo un approccio modulare che si avvale di analisi dei fenomeni vibro-acustici nel dominio della frequenza, del tempo e dell’angolo di rotazione degli elementi rotanti tipicamente presenti in un veicolo. Ciò permette di ridurre tempi e costi della progettazione, garantendo, al contempo, una maggiore qualità del pacchetto vibro-acustico. L’innovativo paradigma proposto prevede l’uso combinato di algoritmi di pre- e post- processing con tecniche inverse di acoustic imaging per lo studio di rilevanti problematiche quali l’identificazione di sorgenti sonore esterne o interne all’abitacolo e del rumore prodotto da dispositivi rotanti. Principale elemento innovativo della tesi è la tecnica denominata Clustering Inverse Beamforming. Essa si basa su un approccio statistico che permette di incrementare l’accuratezza (range dinamico, localizzazione e quantificazione) di una immagine acustica tramite la combinazione di soluzioni, del medesimo problema inverso, ottenute considerando diversi sotto-campioni dell’informazione sperimentale disponibile, variando, in questo modo, in maniera casuale la sua formulazione matematica. Tale procedimento garantisce la ricostruzione nel dominio della frequenza e del tempo delle sorgenti sonore identificate. Un metodo innovativo è stato inoltre proposto per la ricostruzione, ove necessario, di sorgenti sonore nel dominio dell’angolo. I metodi proposti sono stati supportati da argomentazioni teoriche e validazioni sperimentali su scala accademica e industriale.The interior sound perceived in vehicle cabins is a very important attribute for the user. Experimental acoustic imaging methods such as beamforming and Near-field Acoustic Holography are used in vehicles noise and vibration studies because they are capable of identifying the noise sources contributing to the overall noise perceived inside the cabin. However these techniques are often relegated to the troubleshooting phase, thus requiring additional experiments for more detailed NVH analyses. It is therefore desirable that such methods evolve towards more refined solutions capable of providing a larger and more detailed information. This thesis proposes a modular and multi-domain approach involving direct and inverse acoustic imaging techniques for providing quantitative and accurate results in frequency, time and angle domain, thus targeting three relevant types of problems in vehicles NVH: identification of exterior sources affecting interior noise, interior noise source identification, analysis of noise sources produced by rotating machines. The core finding of this thesis is represented by a novel inverse acoustic imaging method named Clustering Inverse Beamforming (CIB). The method grounds on a statistical processing based on an Equivalent Source Method formulation. In this way, an accurate localization, a reliable ranking of the identified sources in frequency domain and their separation into uncorrelated phenomena is obtained. CIB is also exploited in this work for allowing the reconstruction of the time evolution of the sources sought. Finally a methodology for decomposing the acoustic image of the sound field generated by a rotating machine as a function of the angular evolution of the machine shaft is proposed. This set of findings aims at contributing to the advent of a new paradigm of acoustic imaging applications in vehicles NVH, supporting all the stages of the vehicle design with time-saving and cost-efficient experimental techniques. The proposed innovative approaches are validated on several simulated and real experiments

    Locating and extracting acoustic and neural signals

    Get PDF
    This dissertation presents innovate methodologies for locating, extracting, and separating multiple incoherent sound sources in three-dimensional (3D) space; and applications of the time reversal (TR) algorithm to pinpoint the hyper active neural activities inside the brain auditory structure that are correlated to the tinnitus pathology. Specifically, an acoustic modeling based method is developed for locating arbitrary and incoherent sound sources in 3D space in real time by using a minimal number of microphones, and the Point Source Separation (PSS) method is developed for extracting target signals from directly measured mixed signals. Combining these two approaches leads to a novel technology known as Blind Sources Localization and Separation (BSLS) that enables one to locate multiple incoherent sound signals in 3D space and separate original individual sources simultaneously, based on the directly measured mixed signals. These technologies have been validated through numerical simulations and experiments conducted in various non-ideal environments where there are non-negligible, unspecified sound reflections and reverberation as well as interferences from random background noise. Another innovation presented in this dissertation is concerned with applications of the TR algorithm to pinpoint the exact locations of hyper-active neurons in the brain auditory structure that are directly correlated to the tinnitus perception. Benchmark tests conducted on normal rats have confirmed the localization results provided by the TR algorithm. Results demonstrate that the spatial resolution of this source localization can be as high as the micrometer level. This high precision localization may lead to a paradigm shift in tinnitus diagnosis, which may in turn produce a more cost-effective treatment for tinnitus than any of the existing ones

    Control of quantum phenomena: Past, present, and future

    Full text link
    Quantum control is concerned with active manipulation of physical and chemical processes on the atomic and molecular scale. This work presents a perspective of progress in the field of control over quantum phenomena, tracing the evolution of theoretical concepts and experimental methods from early developments to the most recent advances. The current experimental successes would be impossible without the development of intense femtosecond laser sources and pulse shapers. The two most critical theoretical insights were (1) realizing that ultrafast atomic and molecular dynamics can be controlled via manipulation of quantum interferences and (2) understanding that optimally shaped ultrafast laser pulses are the most effective means for producing the desired quantum interference patterns in the controlled system. Finally, these theoretical and experimental advances were brought together by the crucial concept of adaptive feedback control, which is a laboratory procedure employing measurement-driven, closed-loop optimization to identify the best shapes of femtosecond laser control pulses for steering quantum dynamics towards the desired objective. Optimization in adaptive feedback control experiments is guided by a learning algorithm, with stochastic methods proving to be especially effective. Adaptive feedback control of quantum phenomena has found numerous applications in many areas of the physical and chemical sciences, and this paper reviews the extensive experiments. Other subjects discussed include quantum optimal control theory, quantum control landscapes, the role of theoretical control designs in experimental realizations, and real-time quantum feedback control. The paper concludes with a prospective of open research directions that are likely to attract significant attention in the future.Comment: Review article, final version (significantly updated), 76 pages, accepted for publication in New J. Phys. (Focus issue: Quantum control
    corecore