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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

Sound sources localization, extraction, and separation have always been topics of interest 

in the engineering research for decades, yet they still face significant challenges. There are many 

cases in practice where the locations of sound sources are highly desired. For example, soldiers 

in a battle field want to know the directions and distances of explosions and gun shots; police 

officers monitoring the traffic conditions need to locate accidents as soon as they happen; 

intelligence agents try to track and trace a suspect or moving vehicle in a crowded area; 

engineers hope to find the precise location of the noise sources so as to eliminate or reduce noise 

emission, etc. At the same time, extraction of target source and separation of sources are also 

important such as in extracting a target voice from overall noisy signals for homeland security, 

separating specific signals in order to detect abnormalities in monitoring machinery health , 

analyzing biomedical signal [1] in EEG [2-4] and fMRI [5-7], and removing noise involved in  

the signals measured  on a factory floor for in-line and end-of-line product quality control. In all 

these applications, we use multiple sensors, usually microphones or electrodes, to measure the 

overall signals at various positions, process the data, and perform source localization, extraction, 

and separation in presence of various unknown interfering signals and random background noise.  

For sound source localization, three algorithms are presently being used, which include 

triangulation [8-34], beamforming [35-69], and time reversal (TR) [70-97]. Each method has its 

pros and cons. Triangulation has the longest history among these three methods, and requires a 

small number of microphones. The main limitation of triangulation alone is that the accuracy of 
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source localization is highly dependent on the signal to noise ratio (SNR). Therefore, it is more 

applicable for the cases [10, 14, 24, 26, 33, 34] where SNR is high. Besides, traditional 

triangulation usually covers an area of radius up to 1.5 microphone spacing [31], which is not 

enough for many applications. 

Beamforming is another popular method to locate sound sources that has been 

productized and used in the manufacturing industry. Beamforming is suitable for impulsive, 

broadband and high frequency sound waves, and can give a general idea of the distribution of 

sound sources in the target area [51-53, 67, 69]. However, the number of microphones required 

in beamforming algorithm is relatively high, which makes the device costly. Moreover, the 

spatial resolution of beamforming is no better than one wavelength of the acoustic signal [62], 

and its lower frequency limit is determined by the overall diameter of the microphone array.  A 

beamforming system can obtain the directions of the target sound sources but not their ranges. It 

can find the ranges of the sound sources only when the matched-field method [98] is used 

simultaneously. TR can accurately locate the sound sources even in the presence of background 

noises, especially when the microphones surround the target sources [73-75]. However, the TR 

algorithm relies on spatial scanning, which is time consuming. Therefore, it is impossible for TR 

to produce real time source localization.  

The present dissertation aims at developing an innovative model based methodology for 

sound sources localization in three-dimensional (3D) space in real time. In particular, the 

hardware based on the proposed method should be portable, affordable, and easy to use, and the 

results be displayed in real time. To this end, the number of microphones required in the new 

method must be minimal. Moreover, it must be able to handle a wide variety of sound sources, 
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including broad- and narrow-band, random, continuous, and impulsive signals, and cover a large 

frequency range. 

The second aim of this dissertation is to develop new ways to separate sound sources. 

The existing sound sources separation technologies include Computational Auditory Scene 

Analysis (CASA) [99-104] and Blind Source Separation (BSS) [2, 3, 5, 105-113]. CASA is 

mainly used for speech recognition and music segregation [104], while BSS
 
 can be used for a 

much wider ranges of applications than CASA does. A good example of BSS applications is the 

cocktail party problem [114, 115], where one desires to separate a target signal, for example, the 

voice of a particular person from the overall signals. Several algorithms have been developed [7, 

108, 109, 112, 113, 116-129] for the BSS algorithms, depending on specific types of sound 

sources, yet none of them are applicable to all types of signals.  

In this dissertation, a model based source separation algorithm called point source 

separation (PSS) is developed, which enables one to separate mixtures of any type of time 

domain signals that cannot be accomplished by any previous separation methods. Moreover, PSS 

can work together with the proposed source localization method and become a truly blind 

sources localization and separation (BSLS), which can separate sound signals as well as locate 

their precise positions in space. Experimental validations of the proposed source localization 

method, PSS, and BSLS are conducted in the Acoustics, Vibration, and Noise Control (AVNC) 

laboratory Machine Shop, auditorium room, and hall way inside the Engineering Development 

Center.   

The final aim of this dissertation is to apply TR algorithms to locate hyper-active neurons 

inside the brain auditory structure that are directly related to tinnitus perception. Currently, 

tinnitus is analyzed based on the neural activities measured by using electrodes arrays implanted 
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inside the brain. The spatial resolution of the measured data is very low and therefore, diagnosis 

of tinnitus is not very reliable. This dissertation shows that by processing the data measured by 

electrode arrays using TR algorithm, it is possible to significantly enhance the accuracy and 

spatial resolution of neural network activities in a very cost-effective manner. The spatial 

resolution in locating neuron activities can be down to the micrometer level. Validations of using 

TR algorithm to locate hyper-active neurons are conducted jointly with the Auditory Prosthesis 

Research Laboratory (APRL), led by Dr. Zhang in the School of Medicine at Wayne State 

University. 

1.2 Literature review 

In this section the existing research works reported in the areas of sound source 

localization, sources separation, and de-noising methodologies as well as the background 

information on neuron source localization are presented.  

1.2.1 Sound sources localization 

As mentioned in the Introduction, there are currently three methodologies developed for 

the sound source localization problem, namely, triangulation, beamforming, and time reversal 

algorithms. These methodologies are reviewed below. 

1.2.1 (a) Triangulation 

Triangulation is based on the assumption that the source radiates signals to all directions 

and sound waves travel along straight lines with a constant speed in a free field [8-10]. 

Depending on the relative positions of a source and sensor, there is a time delay as the sound 

signal travels from the source to sensor, which is called time of arrival (TOA). Since the speed of 
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sound is constant, TOA is equal to the distance between the source and sensor divided by the 

speed of sound.  Consequently, by measuring TOA the distances from the source to the sensor 

can be calculated. When there are enough sensors, namely, at least N+1 sensors for an N-

dimensional space, source localization using triangulation becomes a geometry problem.  

Figure 1.1 shows an example of the geometry distribution of the sensors and  sources 

discussed in Tobias’ paper [10]. Here a point source is indicated by a red dot in a two 

dimensional space. Three sensors, namely, Ch.1, 2, and 3 as indicated by blue, green, and black 

squares in the figure, respectively, are located on the same plane as that of the source. Suppose 

that TOAs from the source to three sensors are specified. The distances from the source to the 

sensors can be calculated by multiplying them to the speed of sound. However, as there is no 

knowledge of the position of the source a priori, the number of possible locations of the source is 

infinite. For example, for the sensor marked as Ch.1, the source distance r1 calculated based on 

TOA can be anywhere along the blue circle of radius r1 (see Figure 1.1). Similarly, for sensors 

marked as Ch.2 and 3, the source distances r2 and r3 calculated based on TOA can be anywhere 

along the green and black circles of radii r2 and r3, respectively. These three circles only share 

one particular point on the plane, which is the location of the sound source. In this way, the 

precise location of the source can be determined.  

In many cases, however, TOA cannot be obtained directly. Thus the time difference of 

arrival (TDOA) is used to solve the localization problem. Instead of measuring the time delay 

from the source to any sensor, the time delay between one sensor to another is measured. Since 

the distances among individual sensors are specified a priori, the source position can be 

determined in terms of the sensor positions and relative TDOAs. For example, in Figure 1.1, if 

Ch.1 is  considered as the reference, then r2 and r3 can be rewritten as r2=r1+ct12 and 
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r3=r1+ct13, where c is the speed of sound, t12 and t13 indicate the TDOAs from Ch.2 to Ch.1 

and Ch,3 to Ch.1, respectively. The geometric position of the source can now be determined 

once t12 and t13 are measured and the relative positions of Ch.1, Ch.2, and Ch.3 are specified. 

There are some improved triangulation algorithms that attempt to define the direction of arrival 

(DOA) first and find the crossing point of multiple directions [26, 27], while others uses more 

sensors than the minimum number required together with complicate equations to improve the 

accuracy of localization results [32, 33].  

 

Figure 1.1 Source localization by using the triangulation method. The red dot indicates the source position, 

and the blue, green, and black squares show three sensors positions, respectively. Blue, green, and black 

circles indicate the possible source locations with respect to three sensors, and the intersection of these 

circles is the correct source position. 

Generally speaking, the triangulation method is simple and easy to understand. The 

number of microphones required in this method is relatively small. Mathematically, at least N+1 

sensors are required to locate a sound source in an N-dimensional space. For example, if the 

source is restricted on a two dimensional (2D) plane, then three sensors on the same plane as the 
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source are needed to locate the source; and if the source is in three dimensional (3D) space, four 

sensors that are not on the same plane are needed to determine the source location.  

The key to a successful source localization using triangulation is to find the correct TOAs 

or TDOAs. Errors in measuring TOAs and TDOAs can significantly affect the accuracy of 

source [130]. The presences of sound reflections and reverberation, and interferences by 

background noises can cause significant errors in the estimation of TOAs and TDOAs. A lot of 

research has been conducted on developing various algorithms to calculate the time delay [130-

154], which aims at reducing the errors in estimating TOA or TDOA in a non-ideal environment. 

One of the algorithms is to find the time delay by using the criterion of maximum-likelihood 

(ML) [142, 143, 146, 151], which is effective especially when the sound signals are impulsive. 

Knapp and Carter suggested the use of generalized cross-correlation (GCC) algorithm [131] to 

estimate time delays. This concept is widely used today, and various algorithms [135, 139, 141, 

145, 148, 153] based on GCC have been developed.  

Although the accuracy in estimating TOA and TDOA can be improved by these 

algorithms, the accuracy in source localization using triangulation alone is still highly dependent 

on the signal to noise ratio (SNR), which is greatly affected by the test environment. In general, 

triangulation is effective with a high SNR. Thus in practice, it is usually used in the 

environments where high SNR can be achieved or guaranteed. For example, triangulation is 

often used in detecting acoustic emission at high frequencies [10, 34, 97] and ultrasonic sound 

localization [26, 70-72]. This is because the background noise levels at high frequencies are 

usually very low, so SNR is very high, making triangulation an effective source localization 

method. Triangulation is also used to locate the sources that emit impulsive signals because the 

frequency contents of impulses are very high[31].Error analysis [11, 12, 16] for triangulation 
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algorithm has been conducted and their results show that the source detection range using 

traditional triangulation algorithm is quite limited.   

1.2.1 (b) Beamforming  

Beamforming is based on the delay and sum technique to locate sound sources [62]. The 

number of microphones required for beamforming is much higher than that in triangulation, and 

they are usually mounted on a 2D plane. The underlying principle of beamforming is to adjust 

the time delays in individual microphone channels systematically until they are all in phase. This 

is equivalent to rotating the microphone array until the incident sound wave arrives at all 

microphones simultaneously. When this happens, the microphone array is facing the source. So 

beamforming alone can only determine the bearing of a source, but not its range. Most 

beamforming employs a planar microphone array for convenience, though Meyer has tested a set 

of microphones located in a circular shape [47]. Beamforming is commonly used in industry to 

locate undesirable machine noise, for example, locating noise leakage from a vehicle [51-53]. It 

has also been used for underwater acoustics [63]. Beamforming has several limitations, as 

Dougherty described, its spatial resolution is no better than one wavelength of the sound wave 

emitted by the source [62]. This means that beamforming cannot be used to locate sound sources 

emitting low frequency sounds. Moreover, since beamforming requires many sensors, it is 

usually very costly. Note that beamforming can be used to extract source information with only 

two microphones. Its extraction is based on an assumption that the source is exactly in front of 

the microphone array, and all signals from other directions are treated as noise. In other word, it 

has very strict requirements on the microphone configuration and the source direction. This 

technology has been tested on hearing aid equipment to extract the target source’s information 

and to de-noise the surrounding noise [37, 38, 43]. Kompis and Dillier have also pointed out that 
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adding adaptive beamforming processing technology to the directional microphones can further 

improve the de-noising effect [39, 45, 46].  

1.2.1 (c) Time reversal  

TR is a computation algorithm that does not need to consider the time delay or phases of 

the signals. The procedure of this method is very simple: reverse the signals measured at each 

sensor, play it back, and combine the reversed signals at every point in space. In this way, a peak 

is automatically formed at the source location. The TR method can achieve very high spatial 

resolution, depending on the sampling rate and scanning step size. Moreover, it is not restricted 

by SNR and the impacts of a test environment. Accordingly, it is very advantageous to use the 

TR algorithm to locate a source, especially when SNR is low. TR is effective when the actual 

sound sources are surrounded by measurement sensors. When the sources are not enclosed by the 

sensors, errors in source localization can be very large,  although the bearing of the source may 

still be correct [71].  

The main disadvantage of TR is that numerical computations are much more time 

consuming than the other two methodologies. This is because TR needs to scan every point in 

space to find the source. Nevertheless, TR is still very popular in various applications such as the 

locating sources underwater [78] or non-homogeneous or layered media [76, 82, 83, 85, 90, 92, 

97], detection of electromagnetic, ultrasonic waves, and telecommunication [88, 91, 92]. 

Moreover, TR is not affected by the interferences of background noise, and the reverberation in 

the environment can be modeled in its algorithm, it is also widely used in noise and complex 

environment [80, 81, 89]. 
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1.2.2 Sound sources separation methodologies 

Currently, there are several methodologies for the sound separation proposes. One of 

them is CASA. It mimics the human auditory system and is popular in speech recognition and 

music segregation [101]. Another family of technologies, known as BSS, enables one to make 

blind guesses of the original signals with only the mixed signals on hand [105-107]. Several 

algorithms have been developed for BSS such as Principal Components Analysis (PCA) [129, 

155], Independent Component Analysis (ICA) [2, 5], Non-negative Matrix Factorization (NMF) 

[113, 119, 124, 125, 128], Stationary Subspace Analysis (SSA) [126], etc. These methods 

employ specified properties of the target signals as the conditions to get the solutions, thus they 

are only applicable to some particular types of sounds. What is more, all the algorithms 

mentioned above are limited to separating and estimating the original signals in time domain, but 

none of them can provide a solution in space domain, namely, distinguish the relative 

contributions from individual sources located at different positions in space.  

1.2.3 Signal decomposition and de-noising 

Signal decomposition and de-noising is another challenging topic. Some popular 

methodologies for signal decomposition and de-noising include the short-time Fourier transforms 

(STFT) [156, 157] and Wavelet Transform (WT) [158-160]. The basic idea of STFT is to 

analyze transient or non-stationary signals such as human voices over a very short time period, 

over which the signals are relatively stationary, and then assemble all individual analyses 

together to display the time variance of the signals. The concept of STFT is realized by applying 

a window function on the original signal, thus extracting a short period of time of the signals and 

then performing the Fourier transform. In this way, STFT provides the frequency contents of the 
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signals over time history. Note that the resolution in either time or frequency domain may be 

compromised. In other words, applying a very short window may produce very high resolution in 

time, but very low resolution in frequency. On the other hand, applying a long window tends to 

improve the resolution in frequency, but at the cost of decreasing resolution in time.   

Unlike STFT, WT enables one to decompose a target signal with vert high accuracy and 

resolution in both time and frequency domains. Such a goal is accomplished by using a wavelet 

that enables one to use different scales to best approximate different features of a target signal in 

both time and frequency domains. There are various types of mother wavelets such as Haar, 

Mexican hat, Daubechies, etc., from which all other wavelets can be generated by shifting and 

scaling the mother wavelets. In this way, WT can handle some special cases that STFT cannot, 

such as analyzing a sharp peak in the time domain signal.  

However, both STFT and WT can be used to de-noise a target signal by adding 

thresholds on the transform coefficients, so that the undesired components in the frequency 

domain can be removed. 

1.2.4 Application to neuron source localization 

Tinnitus (i.e., ringing in the ear) is a phantom sound that occurs in the absence of external 

acoustic stimulations, and is a highly prevalent health problem that affects roughly 10 – 15% of 

the adult population [161] and 33% of elderly population [162]. Chronic tinnitus has a significant 

adverse impact on patient quality of life [163-165]. Due to its complex mechanism and origin, 

tinnitus is still not fully understood and its treatment strategies are very limited. A major 

contributing factor is the lack of effective tools to measure and analyze the neural network 

signals such as spontaneous or stimulus-driven signals, which are often contaminated by a 

variety of interfering signals.  
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Current technologies for measuring the neural network activities in the brain auditory 

system are mainly based on multichannel electrode array, together with some rudimentary signal 

processing techniques such as averaging, low-, high- and band-pass filters, pruning, and 

thresholding. These methods are ad hoc in nature and ineffective in suppressing interfering 

signals, and background noise. Note that all direct measurements depict the neural activities at 

electrode tip positions, and the data gathered at individual electrodes are susceptible to 

interference of the neural activities in the entire neighborhood. Moreover, the neural network 

activities are contaminated by interfering physiological signals resulting from breathing and 

blood circulation and non-biological signals from electronic signals instruments and background 

acoustic signals. These erroneous data may distort the measured pictures of the neural network 

activities in the brain auditory structure and lead to incorrect conclusions. 

For example, when a 32-channel electrode array is used to measure the neural network 

activities, only the time histories at the tips of individual electrodes are recorded. Since the actual 

neural network activities may not coincide with the tips of electrodes and since no information is 

available in between the tips of electrodes, the spatial resolution of localization of the neural 

activities is limited by the spacing between individual electrodes. Oftentimes, interpolation is 

used to connect these discrete points to yield tonotopic maps [166-168] to show neural network 

activities on certain frequency bands. The difficulties with this approach are that: 1) the spatial 

resolution of such a tonotopic map is limited by shank and electrode spacing; 2) the high 

intensities measured at any electrode may not represent the true location of an active neuron 

because the measured signals may be susceptible to interferences by other neurons in the 

neighborhood; and 3) the input data can be contaminated by a variety of physiology and non-

physiology signals. Therefore, one cannot rely on the directly measured data to analyze the 
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etiology of tinnitus, and a more accurate and reliable methodology is needed to gain a better 

understanding the fundamental mechanisms underlying tinnitus.  

1.3 Goals and objectives of the dissertation 

The literature review presented in Section 1.2 indicates that there is a great need to have 

new technologies that will enable one to locate arbitrary sound sources in 3D space in real time, 

to extract target information from directly measured data, to separate and locate sound sources in 

3D space simultaneously, and to develop more effective methods to diagnose and treat tinnitus. 

This dissertation aims at addressing these issues by: 

1) Developing  acoustic modeling based method to locate arbitrarily time-dependent 

acoustic in 3D space in real time; 

2) Developing PSS method to separate target signals from any mixed data, given the source 

locations; 

3) Developing BSLS method to separate source information and locate sources in 3D space 

simultaneously; and 

4) Applying TR algorithm to pinpoint the exact locations of hyper-active neural activities 

inside the brain auditory structure that are directly correlated to the tinnitus perception. 

1.4 Significance and Impact of the dissertation 

A successful completion of this dissertation is expected to have significant impacts in a 

number of fields ranging from the manufacturing industries, homeland security, defense industry, 

medical diagnosis and applications, etc. Specifically, the proposed technologies will help the 

Intelligence Community to gather and analyze intelligence, the Homeland Security to monitor 
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target suspects, the companies that want to identify noise sources and conduct in-line and end-of-

line products quality control testing. In particular, the proposed technology for locating hyper-

active neurons inside the brain auditory structure may lead to a paradigm shift in diagnosing and 

treating tinnitus and other neurological disorders.  

 



15 

 

  

 

CHAPTER 2 

SOUND SOURCE LOCALIZATION 

2.1 Acoustic model based triangulation 

Unlike the traditional triangulation, the sources localization method in this dissertation is 

based on acoustic modeling. Specifically, it assumes that sound is generated by a point source in 

a free field, and the amplitude of the sound wave follows the law of spherical spreading [171]. 

Accordingly, TDOAs of the sound signals at the measurement points depend on the relative 

distances between the source and microphones, and the amplitude of the sound decays inversely 

proportional to the distance. For the simplest case that only one source is considered, the sound 

pressure at measurement point can be expressed as:  

    , ,
1 1rctf
r

p                                                      (2.1) 

where the letter p indicates the sound pressure at time t at geometric location    , ,r  in polar 

coordinates, r is the distance between the measurement and the source location, θ andφare the 

polar and azimuthal angle of the measurement position with regard to the source. The letter c 

indicates the speed of sound, which is related to the sound travel media and the temperature of 

the environment. The supposed media in this dissertation is air, thus according to the Laplace’s 

adiabatic assumption for idea gas [172], the speed of sound c can be calculated by the following 

equation:  

 CTc 6.0331
                                                        

 (2.2) 

where TC is the value of temperature in Celsius.  
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Assuming that M microphones are employed in the prototype device of sound source 

localization, one can derive a general equation that governs the distance from the source to the 

microphone in terms of TOA as follows: 

isis tcr                                                              (2.3) 

where the subscript i indicates the i
th

 microphone, s indicates the source, and ris is the distance 

between the i
th

 microphone and the sound source. tis is the TOA of measurement due to the time 

concern of the signal traveling in the media.  

Similarly, TOA of the j
th

 microphone can be written as: 

jsjs tcr 
                                                           

 (2.4) 

Using the Equation (2.4) minus Equation (2.3), thus 

 
isjsisjs ttcrr                                                 (2.5) 

This can be further simplified as: 

jiisjs tcrr                                                          (2.6) 

In Equation (2.6) tji is TDOA between the j
th

 and i
th

 microphone and can be obtained by 

analyzing the measured signals at these two microphones. The details of the estimation of TDOA 

are discussed in the next section. The distances rjs and ris are in terms of the locations of the 

sources and the microphones, while the microphone locations are known in advance. Therefore 

the only unknown in Equation (2.6) is the location of the source. 

To determine the position of the point source in 3D space, the values of (x, y, z) in 

Cartesian coordinates, which are three unknowns, should be calculated. Three equations in the 

format of Equation (2.6) are required to get a unique solution, where at least four microphones 

should be employed. As introduced in Chapter 1, this dissertation aims at find the sound source 
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localization with minimum number of microphones, therefore the number of microphone M is 

firstly set as four in the basic model. The microphone setup is shown in Figure (2.1), the red dot 

shows the location of the point source, and the four blue rectangles indicates the positions of 

microphones.  

 

Figure 2.1 Basic modeling of localization method. The red dot indicates the position of point source in 

space. Four blue rectangles, Channel # 1, 2, 3, and 4, show the positions of microphones.  

Note that one can place the microphones anywhere in 3D space as long as not on the 

same plane. That is because the algorithm of this acoustic model based triangulation has no 

restrict on the position of measurement; however, if all the four microphones are on the same 

plane, the microphone setup reduces to a two-dimensional setup, thus the system is lack of the 

information of the third dimension in space and it cannot successfully give the 3D sound source 

location. With the microphone setup defined in Figure 2.1, the equation set of solving the 

location of the source can be written as: 















4114

3113

2112

tcrr

tcrr

tcrr

ss

ss

ss

                                                       (2.7) 
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It obvious that microphone Channel #1 is involved in all these three equations in 

Equation (2.7). In this case, it is considered as the reference microphone, and the three equations 

are built up based on TDOA of microphone Channel #2, 3, and 4 to Channel #1. As the 

microphone positions are known in advance when the positions of microphone determined, 

inserting the value of the microphones position into Equation (2.7), the equation set can be 

rewritten as: 

           

           

           














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    (2.8) 

The number subscribes after x, y, and z indicates the index number of the microphones, 

while the subscribe s indicates the source. Solving Equation (2.8), one can get one pair of unique 

solutions of the (x, y, z) value of the sound source.  In some of the cases, the two solutions are 

repeated roots. However, in most of the cases, one of the solutions is the correct answer while the 

other is a ghost image. Selection of the correct one from the pair of solutions is necessary. The 

method of selection uses the characteristics of the decaying amplitude of the sound sources, and 

will be discussed in the next section.  

2.2 3D sound source localization algorithm using a four-microphone set 

As shown in above section, the basic acoustic model of the newly developed source 

localization method is simply and easy to understand. However, besides the estimation of 

TDOAs and the solving of Equation (2.8), some pre-processing and post-analyzing procedures 

are needed in the methodology, and a flowchart of these procedures is shown in Figure 2.2.  
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The localization of the microphones are supposed to be known in advance, in the form of 

(x, y, z) in Cartesian coordinates. The measured time-domain signals at four microphones are 

firstly be pre-processed thus the value of SNR are increased, followed by estimating of TDOA of 

the microphones to the reference one, and then contribute all the known values into Equation 

(2.8) to get a pair of source localization solution. Finally, the correct result of the source location 

is selected with the help of the amplitude of the measured signals.   

 

Figure 2.2 Flowchart of the basic sound source localization method. 

2.2.1 Signal pre-processing  

The first step after the measurement of incident signals is to apply pre-processing to the 

data at all channels. The goal of signal pre-processing is to increase SNR of the input data, 

therefore increase the accuracy of the results.  As discussed above in the literature review, 

TDOA estimation is highly depends on the value SNR of the measurements. Therefore, 

increasing SNR with signal pre-processing methodologies can improve the accuracy of TDOA 
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estimation, and further has a positive impact on the final sound source localization results. Two 

methodologies are utilized in this dissertation, namely, windowing and filtering. 

2.2.1 (a) Windowing signal pre-processing 

The windowing signal pre-processing is utilized when the target sound sources are non-

stationary sources, especially when the amplitude of the target source fluctuating significantly or 

a peak values happens during a short period of time, for example, impulse signals. In these cases, 

we assume that the measured signals are the mixtures of the target transient signal and long 

lasting background noises with relative small amplitude. Therefore the measurements at some of 

the time segments consist of no contribution of the target signal, but only the backgrounds. These 

segments are interfering signals, and should be eliminated by window function. 

Although the time domain signals at microphones have time delays among each other, the 

window should be synchronized, and as Channel #1 is usually used as the reference microphone, 

a rectangular window centered at the peak index of Channel #1 is applied to the time domain 

signals at all channels. After the windowing processing, the loudest part in the time domain 

signals are remained, and all the other parts are zeroed. In this way, SNR of the input 

measurement signals can be effectively increased.  

Figure 2.3 (a) shows an example of signal at measurement point which is generated 

numerically. It the mixture of a man’ shouting lasting only about 0.25 second, which is 

performing as the target signal, and a stationary battle background. The total measurement length 

is unity second, and SNR in Figure 2.3 (a) is zero, which means that if counting along the whole 

unity second, the contributions of the target and the background signals are the same. During the 

windowing procedure, the system automatically detects that the highest peak is at 0.4 second, 

and then the window function is applied to the input signal centered at the 0.4 second. The 
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window length is pre-determined by the program and is set as 0.3 second. Figure 2.3 (b) shows 

the signal after the windowing signal pre-processing. Only the highest part of the signal is 

remained and all the other indexes are zeroed. SNR of the signal after windowing is increased to 

5.0 dB.  

 

         (a) Original signal                                                         (b) Windowed signal 

Figure 2.3 Time domain signals before and after windowing. (a) Original signal. It is a mixture of a man’s 

shouting happens at around 0.4 second and background noise lasting for whole unity second. SNR of this 

signal is zero. Red line indicates the shape of rectangular window with 0.3 second length. (b) Windowed 

signal. All the values outside the window are zeroed, and SNR is increased to 5.0 dB. 

2.2.1 (b) Filtering signal pre-processing 

Filtering signal pre-processing shares the similar idea with that of the windowing pre-

processing though windowing selects the measurement signals on time domain, while the 

filtering is on frequency domain. Filtering is utilized when the dominated frequency band of the 

target signal is known in advance. For example, in one case, the octave band spectrum of the 

input measurement signal is shown in Figure 2.4(a). Assume that we know in advance that the 

target source is dominated in the frequency band 90 to 180 Hz, thus a filter can be applied to the 

input signal, select the target frequency band, and eliminate the contribution of other frequencies. 

SNR of the target source of the particular band is larger than those gained from the signals at 
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overall frequency bands. Note that the target frequency band is not necessary be the one with the 

highest amplitude, but should be the one in which the target source is dominant.  

 

              (a) Spectrum of original signal                                      (b) Spectrum of filtered signal 

Figure 2.4 Spectrum of signals before and after filtering. (a) Spectrum of original signal. (b) Spectrum of 

filtered signal. The filtering was applied on the octave band centered at 125 Hz. The contribution of the 

frequencies beyond the target band is eliminated. 

In most cases, the dominate frequency band of the target signal is unknown. Moreover, 

there might be multiple sound sources in the environment. Therefore, the filtering of the input 

signals is no longer restricted on one frequency band but multiple bands. One can find out the 

frequency bands one by one, process the filtered signals in every frequency band, and multiple 

sound source locations are obtained corresponding to each band. Note that some the localization 

results at different frequency bands may be the same, or they may be very close, because it is 

possible that one source is dominate in multiple frequency bands.  

2.2.1 (c) Mixture of windowing and filtering 

As discussed above, windowing processing can remove the interference of the 

background noise on time domain, and filtering can reduce the contribution of the un-interested 

frequency bands. Moreover, the pre-processing of windowing and filtering can be both used 

during the pre-processing procedure.  



23 

 

  

 

Figure 2.5 (a) shows the case when a man’s 0.25 second shouting is in a continuous white 

noise background. To demonstrate the characteristics of the measured signal in time and 

frequency domain, spectrogram of the signal is shown in Figure 2.5 (a). A blue rectangle is used 

to point out the area where representing the man’s voice. SNR of the measured data is   3.9 dB. 

The pre-processing of the input data consists of two steps. Firstly, it is obvious that the target 

signal is transient, thus the windowing function can be used to select the 0.3 second when the 

peak happens, and SNR is increased to 0.4 dB. Next, as the spectrogram has shown that the 

target signal is dominant in the octave band 700 – 1400 Hz, a filter can be applied to the selected 

signal. In the end, SNR becomes 5.0 dB, and the processed data is shown in Figure 2.5 (b). Note 

that the black area in Figure 2.5 (b) indicates that the amplitude is zero.  

 

     (a) Spectrogram of original signal                      (b) Spectrogram of pre-processed signals 

Figure 2.5 Spectrogram of signals before and after windowing and filtering. (a) Spectrogram of directly 

original signal. SNR is  3.9 dB. (b) Spectrogram of pre-processed signal.  The signal outside the window 

function is zeroed, and the frequency distribution beyond the filtering frequency is eliminated. SNR is 

increased to 5.0 dB.  
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2.2.2 TDOA estimation 

As discussed in the literature review, the cross correlation method is commonly used in 

the estimation of TDOA and TOA. In this dissertation, it is also employed to estimate of TDOA 

among microphones. Assume time domain signals x(t) and y(t) are observed at two measurement 

positions. The cross correlation of these two signals Rxy(t) can be expressed as: 

         




   dtyxtytxtRxy                                        (2.9) 

where the symbol “ ” indicate the complex conjugate.  

Figure 2.6 gives an example of the cross correlation result among two microphones. 

Figure 2.6 (a) and (b) are two time domain signals measured at Channel #1 and #2, and Channel 

#1 is taken as the reference. Figure 2.6(c) demonstrates the cross correlation result. The peak at 

the time instant  0.1 second is significant, which shows that TDOA of Channel #2 regarding to 

Channel #1 is  0.1 second, in other words, Channel #2 receives original signal from the sound 

source 0.1 second earlier than Channel #1 does.  

 

      (a)  Time domain signal at Channel #1              (b) Time domain signal at Channel #2          
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(c) Cross correlation graph 

Figure 2.6 TDOA estimation between two channels. (a)  Time domain signal at Channel #1. (b) Time 

domain signal at Channel #2. (c) Cross correlation graph. The peak in cross correlation results has  0.1 

second offset, which indicates TDOA of Channel #2 regarding to Channel #1 is  0.1 second.         

In practice, the environment is non-ideal and inferring background noise can strongly 

affect the cross correlation results, therefore fluctuation or random peaks may happen in the 

cross correlation graphs. Thus a window besides zero with a fixed width is usually applied on the 

cross correlation result to ensure the TDOA estimation is reasonable, and the window width is 

determined by the microphone spacing as: 











c

d
L 2                                                                (2.10) 

Here d is the microphone spacing, c is speed of sound, and L is the width of the window 

applied on the time array of the cross correlation result. Only peaks inside the window can be 

considered as TDOA between the two microphones. For example, if the microphone spacing is 

0.7 meter and the speed of sound is 340 m/s, then the window width 0041.0
340

7.0
2 








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second. In other word, once the microphone configuration is defined, the range of the possible 

TDOA is determined. In this case, when microphone spacing is 0.7 meter, the possibly maximal 

and minimal TDOA is 0.00205 and -0.00205 second, respectively. All the other TDOA result 

outside this range are caused by non-ideal environment and should be ignored.   

The cross correlation method is applicable to most of the sound types, including transient, 

continuous, broadband, and narrowband sounds. However, it cannot be used in the cases of a 

single frequency and its multiple frequencies, because the peaks in cross correlation results for 

these cases are neither significant nor reliable. One example is a sinusoidal wave with frequency 

equals to 10 Hz (See Figure 2.7). It can be seen from Figure 2.7 (a) and (b), when the actual 

TDOA between Channel # 1 and 2 is 0.1 second, which is one period of the sinusoidal wave, the 

time domain signals at these two microphones are exactly the same. Therefore the TDOA 

solution by cross correlation method is zero, as Figure 2.7(c) shows. Fortunately, the single 

frequency’s case is very rare in the real world environment. 

   

      (a)  Time domain signal at Channel #1              (b) Time domain signal at Channel #2          
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(c) Cross correlation graph 

Figure 2.7 TDOA estimation between two sinusoidal signals. (a)  Time domain signal at Channel #1. (b) 

Time domain signal at Channel #2. Channel #2 performs the same as Channel #1, although there is 0.1 

second delay at Channel #2. (c) Cross correlation graph. The peak in cross correlation results is at zero.          

2.2.3 Triangulation solutions 

Inserting the TDOA estimation and positions of four microphones into Equation (8), the 

double roots solutions for the triangulation equations can be obtained. Rearrange the left and the 

right part of Equation (2.8), the equation set can be rewritten as: 
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Squaring both side of Equation (2.9) and simplifying the equation, the equations become: 
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To further simplify the equations above, one can utilize some single variables to indicate 

a long term polynomials, which are determined in advance as follows: 
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Therefore, Equation (2.10) can be rewritten as: 
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Solving Equation (2.12) yields: 
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Note that in some cases, the roots of (x, y, z) are complex numbers which have non-zero 

imaginary parts. That is mainly caused by the error during the estimation of TDOA and the 

calculation error, thus all the imaginary parts in the roots should be zeroed.  
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2.2.4 Selection of final results 

As seen in Equation (2.13), there are two roots or solutions for the source location, but 

only one of them leads to the correct location of the source, while the other is a ghost image. 

There are three possible cases of the roots distribution in space: two roots are repeated; two roots 

are on opposite direction to the microphone set; two roots are on the same direction but at 

different ranges.   

For the case that two roots are the same, the location of the sound source can be defined 

by selecting any of the roots. 

For the case that the two roots are located at opposite direction regarding the microphone 

set, the correct solution can be selected by recheck the TDOA estimation between the 

microphones which are nearest and farthest to the source. The algorithm consists of three steps:  

1) Choose one of the roots from the solution set, and find out the nearest and farthest 

microphone to this root.  

2) Take the nearest microphone as the reference, and calculate the TDOA of the 

farthest microphone regarding to the nearest one. 

3) Check the value of this TDOA. If the source solution is the true location of the 

source, the signal should arrive at the nearest microphone earlier than the farthest one, the 

TDOA value obtained in the 2
nd

 step should be positive.  Therefore if the TDOA value is 

positive, the source root used in the first step is the correct one. On the other hand, if the 

TDOA is negative, the root is ghost image. 

Take Figure 2.8 (a) for an example, TDOA between any two microphones is dependent 

on the measurement signals, and is fixed. Assume it is known that TDOA of Channel #4 

regarding to Channel #2 is positive, namely, t42 > 0, and consequently, t24 < 0. For the root on 
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the left, the nearest microphone is Channel #2 and the farthest one is Channel #4, their TDOA 

t42 is positive, which means that the source reaches Channel #2 earlier than Channel #4, thus the 

root on the left of the microphone set is the correct solution of sound source localization. On the 

other hand,  when testing the root on the right, its nearest microphone is Channel #4 and farthest 

is Channel #2. Their TDOA t24 is negative. Therefore the root on the right is the ghost image.  

 

(a) Two roots are at the opposite direction to the microphone set 

 

(a) Two roots are at the same direction to the microphone set, but at different range 

Figure 2.8 Two possible case of the roots distribution in space when they are not repeated 
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For the case that two roots are located at the same direction but different ranges, as 

Figure 2.8 (b) shows, the correct sound source location can be selected with the information from 

the amplitude of the measured data. An empirical formulation is developed to evaluate error of 

the amplitude decay rates of the two roots: 
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where rnearest and rfarthest are the distances from the root to the nearest and farthest microphones, 

and prms,nearest and p rms,farthest are the corresponding root mean square value of the amplitude. The 

main ideal of Equation (14) is to compare the decay rate of the amplitude calculated by two ways: 

one is based on the average of distances between the source and the four microphones, the other 

is based on the difference between the nearest and the farthest microphones. For the correct 

source location in an ideal environment, the decay rates obtained by these two ways should be 

the same. However, in the real cases, considering the error during TDOA estimation and 

calculation, the root with smaller errordecay value is selected as the correct solution.  

2.3 Impact of various parameters on source localization algorithm 

To get a better understanding of the acoustic model in this localization method, impacts 

of various parameters are tested in to evaluate the characteristics of the acoustic model based 

sound source localization methodology. During the numerical simulation, different types of 

sound signals are tested, such as human voices, truck noise, chopper sound, machine noise, etc. 

The positions of the microphones are fixed at (0.5, 0, 0), (0, 0.5, 0), (0, 0, -0.5), and (0, 0, 0.5). 
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The positions of the sound sources are chosen arbitrarily, and the mixed signals at four 

microphones are generated numerically obeying the spherical spreading law. With the mixed 

signals and the position of the microphones, the computer program follows the flowchart in 

Figure 2.2 and output the final locations of the sound sources. 

To evaluate the accuracy of the sound source localization, error of localization result is 

defined as follows: 
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(2.15) 

where r is the calculated vector result the source, and rbenchmark is the benchmark position of the 

sound source. 

2.3.1 Impact of frequency 

Figure 2.9 shows the impact of frequency on the sound source localization results. The 

horizontal coordinate indicates the frequency of the sources, and is expressed in octave bands. 

The vertical coordinate is the error of localization in percentage. It is obvious that the curves of 

errors at various SNR are almost flat, which means the accuracy of the result is independent of 

frequency. 

 

Figure 2.9 Impact of frequency on localization accuracy. 
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2.3.2 Impact of source range 

Figure 2.10 demonstrates the impact of source range. The microphone spacing is fixed as 

mentioned above, and the source is set at various source ranges. The localization error increases 

with the source range. However, it can be seen from the figure that even if SNR is as low as zero 

dB, which means that the amplitude of the target signal is the same as that of the background 

noise, the error of the source localization can be still controlled less than 1%. Moreover, as the 

limitation on source range is influenced by the microphone spacing, one can always increase the 

microphone spacing to gain a large source range with satisfactory accuracy. 

 

Figure 2.10 Impact of source range on localization accuracy. 

2.3.3 Impact of SNR 

It is found in the numerical simulation that SNR is the major impact on the accuracy of 

the sound source localization results. As Figure 2.11 shows, the error reduces when SNR 

increases.  
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Figure 2.11 Impact of SNR on localization accuracy. 

2.3.4 Impact of microphone spacing 

To test the impact of microphone spacing, four channels are placed at various distances 

from 0.1 meter to unity meter. For the cases when SNR is equal to five or ten, the impact of the 

microphone spacing is small. But when SNR is zero, the impact of microphone spacing is 

obvious, and error decreases when microphone spacing increases.  

 

Figure 2.12 Impact of microphone spacing on localization accuracy.  
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2.3.5 Impact of frequency on spatial resolution 

As discussed in the literature review, the spatial resolution of beamforming technology is 

no better than one wavelength of the sound emitted by the target source, which makes it not 

applicable for many low-frequency cases. The spatial resolution of the newly proposed method is 

tested in this section.  

 

(a) 22  45 Hz                                                 (b) 90  180 Hz  

 

   (c) 710  1400 Hz                                              (b) 1400  2800 Hz  

Figure 2.13 Impact of spatial resolution on localization accuracy. (a), (b), (c), and (d) show the error 

distribution of source aiming at various frequency bands. The source is truck pass by noise, and the 

background is white noise. The errors by the four frequencies perform the same, which indicates that the 

spatial resolution is independent of the frequency.  
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Specifically, the target source was placed at (1, 0, 0) and the interfering source was at 

(1.5, 0, 0) in meters. So the relative distance was 0.5 m. Results show that the errors in source 

localization using the model based triangulation methodology is below 0.5% for frequencies 

ranging from 22 Hz to 2,800 Hz. In other words, this method can correctly locate the target 

source separated from an interfering source at a distance much shorter than the wavelength of the 

sound signal emitted by the source. This test indicates that the present method is basically 

independent of the frequency.   

2.4 Improved 3D sound source localization algorithm 

As discussed above, the error of sound source localization increases with source range. In 

this section, an improved 3D localization algorithm is introduced, which employs more than four 

microphones and can achieve higher accuracy and larger source range than the basic microphone 

set. 

Figure 2.14 gives a general idea of the tendency of the impact of the error on TDOA on 

the final source localization results in the four-microphone set. When the source range is small, 

in other words, the target source is near to the microphone set, the error on TDOA has a limited 

impact on the accuracy of localization. However, when the source is far away from the 

microphone set, a small amount of error on TDOA can cause a significant error on the final 

localization results. In this way, the error of localization increases with the source range, and the 

applicable source range coverage for a set of microphones with fixed microphone spacing is 

limited.  
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Figure 2.14 Impact of TDOA error on the localization accuracy. With a fixed value of error on TDOA, 

only a small value of localization happens when the source range is small, while it causes large error 

when the source range is large. 

To improve the accuracy and source range of the 3D sound source localization algorithm, 

more than four microphones can be utilized. In this way, the accuracy of the final result can be 

improved in two ways: firstly, when multiple microphones are used during measurements, 

redundancy check on TDOA estimation can be conducted to reduce the error on TDOA which 

influences the accuracy of source localization; secondly, more than four microphones can 

compose multiple four-microphone sets which lead to multiple source location solutions, 

therefore the final result can be gained by analyzing the distribution of those solutions and gain a 

better accuracy.  

Theoretically, a larger number of microphones can better improve the accuracy of the 

final results. However, using too many microphones increases the cost of device, and the 

calculation procedure becomes more complex which is time consuming. To keep the original 

intention of this dissertation, which is to develop a portable and cost effective technique to locate 

sound sources in real time, the number of microphone is extended to six, and an improved 3D 

sound source localization algorithm is developed.  
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The computer flow chart of six microphones is shown in Figure 2.15. To make the 

localization methodology flexible and applicable to most of the measurement cases, the designed 

program can switch between the basic model and the improved model, in which the basic model 

only uses the data from four microphones, while the improved model employs all the six 

microphones measurement. At the beginning of the program, the time domain signals are 

obtained at six microphones, and pre-processed by windowing and filtering procedures. Next, if 

high accuracy is desired, then data at all the six microphones are used and TDOA estimation 

between any two microphones is conducted, followed by a redundancy check on TDOAs. 

Subsequently, the improved TDOA values are submitted into six microphone units, each of them 

uses four out of the six microphones, therefore six solutions on the source location are obtained. 

Analyzing the six solutions leads to the final result of the source location. On the other hand, if 

only a brief view of the location of the source is required, one can select only four of six 

microphones, skip the redundancy check procedures, and output the source localization solution 

directly.   
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Figure 2.15 Computer flowchart for determining source locations. using a single unit of four microphones 

and M units that consist of N microphones. A single unit can locate sources in real time, but its accuracy 

may be compromised when the test environment is non-ideal; whereas using M units can improve the 

accuracy in source localization even in a non-ideal environment but its speed may be slowed down. 

2.4.1 Redundancy check on TDOA estimation 

Redundancy check can be conduct when multiple microphones are employed in the 

device, and it can reduce the random error of TDOA which are caused by the fluctuating 

backgrounds. Define the number of microphones in the measurement system is N, and TDOAs 

among microphones can form a matrix as: 
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(2.16)  

It is obvious that TDOA of any microphone with itself is zero, and tij=  tji, where 1  

i, j  N. Therefore, TDOA matrix can be simplified as: 
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(2.17)  

When multiple microphones are utilized in the improved model, TDOA estimation can be 

further checked with redundancy procedure; therefore the accuracy of the estimation on TDOA 

can be improved and has less negative impact on the accuracy of the final source localization 

results.  

The basic idea of the redundancy check on TDOA is that assume any TDOA between 

two microphones, for example, the i
th

 microphone and the j
th

 microphone, can be recalculated 

with the time domain signals of i
th

 microphone and the j
th

 microphone together with an additional 

k
th

 microphone. The equation can be obtained as: tij = ti  tj 
= ti  tk 

+ tk  tj 
= tik + tkj , where 

1  i, j, k  N, ti and tj are TOAs from the source to the i
th

 and j
th

 microphone, respectively. Note 

that the third microphone can be any one in the microphone array as long as it is not the i
th

 

microphone or the j
th

 microphone, thus for an N-microphone array, the redundancy check on 

TDOA on one pair of microphones can be hold for (N  2) times.  
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For example, N is determined as six in this dissertation. Therefore, when aiming at find 

the TDOA value between Channel #1 and #2, besides the directly measured TDOA of t12, direct 

with cross-correlation method on the time domain signals of Channel #1 and #2, the TDOA of 

t12 can also be achieved four other approaches, which are: 

t12, checked by Channel #3 = t13 + t32, 

t12, checked by Channel #4 = t14 + t42, 

t12, checked by Channel #5 = t15 + t52, and 

t12, checked by Channel #6 = t16 + t62. 

Taking average of these five values leads to a more accurate TDOA between Channel #1 

and #2, and the final averaged result can be expressed as: 
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(2.18) 

The general expression for TDOA between any two microphones in an N-microphone 

array is: 
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and TDOAs matrix after the redundancy check is: 
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where i, j = 1, 2, …, N, i < j, and k ≠ i. 

The redundancy check on TDOAs estimation matrix can reduce the random error on 

TDOAs caused by fluctuating background noise, and therefore improve the accuracy of the final 

source localization results.  

2.4.2 Multiple microphone set source localization algorithm 

Numerical simulation indicates that the major limitation of the sound source localization 

algorithm is that the source range coverage is restricted by the microphone spacing. In other 

word, with a fixed dimension of microphone arrangement, the source range coverage of 

localization is limited and the accuracy of the source locating results cannot be guaranteed when 

the source is out of the source range coverage, because the error on source location increases 

with the source range. This characteristic is caused by the algorithms of the acoustic model. As 

Figure 2.14 shows, the impact of error on TDOA estimation varies at different source range: 

when the target signal is at a larger source range, the error of TDOA has a stronger negative 

impact on the accuracy of source localization.  
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Another characteristic of the source localization methodology is that the DOA of the 

source to the four-microphone set is almost independent of the source range, and more reliable 

than the range detection in the results. Therefore, it is possible to locate a source more accurately 

by finding the intersection of two DOAs obtained by two microphone sets, as Figure 2.16 shows.  

 

 

Figure 2.16 Finding the intersection of the localization results by two four-microphone set. The red dot 

indicates the position of the source, and the blue and yellow rectangles stands for two four-microphone 

sets, which are Unit #1 and 2, respectively. The blue and yellow triangles are the directly measured source 

locations by the units, and the dashed dot lines are the DOA detected by them. Intersection of the two 

dashed dot lines is very near to the original source location.  

Theoretically, when there are N microphones in the array, maximal number of 
4

NCM   

microphone set can be gained. However, as the basic localization program should run once for 

each of the microphone set, using 
4

NCM   microphone units is time consuming. What is more, it 

is not necessary to employ all the available microphone sets to get an improved source location.  

One can chose any value of M, as long as 
4

NCM  . Six microphone sets are chosen among the 

six microphones in this dissertation.  

The procedure of the N-microphone array source localization algorithm has four steps:  
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1) Obtain the bearing angle lines of the sources in every four-microphone sets. 

2) Find out the intersection points of every two lines. If the two lines are skew lines, 

the point nearest to both of the lines can be treated as the intersection point. If the two 

lines are parallel, ignore this pair of lines and move forward to the next pair. 

3) Collect all the directly calculated sound source locations and the intersection 

points as the database of the source location. Analyze the distribution of them, and filter 

out the singular points which are far away from the convergence of the database and 

representing abnormal results. 

4) Take the special average of the rest points in the database. The averaged point is 

considered as the final result of the source localization. 

2.4.3 Numerical simulation results  

In the numerical simulation, the positions of six microphones are set as follows, with unit 

in meter.  

Channel #1: (-1.3856, 0.4000, 0), 

Channel #2: (0, 0, 0), 

Channel #3: (1.3856, 0.4000, 0), 

Channel #4: (-1.3856, 0.4000, 0.8000), 

Channel #5: (0, 0, 0.8000), and 

Channel #6: (1.3856, 0.4000, 0.8000). 

and the microphones chosen in each set are: 

Microphone set #1: Channel #2, #1, #3, and #4, 

Microphone set #2: Channel #2, #3, #1, and #5, 

Microphone set #3: Channel #2, #3, #1, and #6, 
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Microphone set #4: Channel #5, #1, #4, and #6, 

Microphone set #5: Channel #5, #2, #4, and #6, and 

Microphone set #6: Channel #5, #3, #4, and #6. 

The chosen of the microphones position and sets are based on the consideration of the 

dimension of the prototype device, and the microphone spacing approximately equal 0.8 meter. 

However, to get more general characteristics of the methodology, the results are plotted 

dimensionless. The source range, in terms of (,, h) are defined in terms of the source 

coordinates (x, y, z) and the microphone spacing d in meter. 

d

x
 , 

d

y
 , 

d

z
h                                                                   (2.21) 

Therefore, when the dimensionless source range (,, h) are determined, the source 

localization range in practice with unit meter changes with the microphone spacing.  

To estimate the error in cross-correlation, random generated values at a standard 

deviation 0.0001 with a zero mean is added to the precise value of the actual TDOAs. Next, the 

modified TDOA matrix, which has certain error, is used as the directly calculated cross-

correlation results of the six microphone measurement setup. Comparisons are conducted on the 

error distribution of the results by three different algorithms procedures, which are: 

1) Basic method: Select four out of the six microphones to calculate the sound 

source location. No redundancy method is employed, and TDOAs used in the localization 

algorithm are the directly measured ones by cross-correlation.   

2) Improved method without redundancy check: No redundancy check is conducted 

on TDOA matrix. Use all of the six microphones, analyze the calculated source locations 

gained by the six microphone sets, and get the final result.  
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3) Improved method with redundancy check: Firstly conduct redundancy check on 

TDOA matrix to get a new TDOA matrix. Then use the improved TDOAs in the six 

microphone sets to gain the six source location results. Analyze the six locations to get 

the final result.  

The distributions of the errors on the source localization by these three procedures are 

shown in Figure 2.17. The source ranges examined are six times of the microphone spacing at 

three heights: h = 1.25, h = 0 and h = 1.25. And each plot in Figure 2.17 is the average of the 

error distributions by 500 runs, in each run the error on TDOA is generated randomly.  

Figure 2.17 (a) to (c) show the error distribution of the results by the basic model. It is 

obvious that the localization is more effective when the source is in the front and back of the 

microphone array than when the source is at the sides of the array. When the source is in the 

front and back of the array, the error can be controlled less than 10%. However, when the source 

is located at either side of the array, the error can be as high as 100%; in other words, the source 

localization result is not reliable. This means that the accuracy of the sound source localization is 

related to the position of the source. Figure 2.17 (d) to (f) illustrate the error distribution of the 

results by the improved model without redundancy check. It is obvious that the accuracy of the 

source localization is highly improved comparing to that by the basic model, though the 

tendency of the impact of the source position still exists. Figure 2.17 (g) to (i) shows the error 

distribution of the results by the improved model with redundancy check. It can be seen that the 

results in this group have the best accuracy.  
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Figure 2.17 Numerical simulations of source localization results subject to random errors in TDOA 

estimations. The microphone array is indicated by black lines. (a), (b), and (c) show the error distribution 

results by using the basic model; (d), (e), and (f) indicate the error distribution results by using the 

improved model without redundancy checks; (g), (h), and (i) represent the error distribution results by 

using the improved model with redundancy checks. (a), (d), and (g) are over a horizontal plane at a 

dimensionless height of h = 1.25 respect to the origin of the coordinate system; (b), (e), and (h) are on a 

horizontal plate at h = 0; and 4(c), 4(f), and 4(i) are on a horizontal plane at h = 1.25. 

Table 1 demonstrates the average error of the three programs. Both the redundancy check 

on TDOA matrix and the multiple-microphone set algorithm can improve the accuracy of the 

sound source localization method. Moreover, the source range coverage of this six-microphone 
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setup is up to six times of the microphone spacing, which is much larger than those by any 

current methodologies mentioned in the literature review [31].  

Table 2.1. Average errors of source localizations by using three different algorithms in numerical 

simulation tests.   

Models Used h = 1.25 h = 0 h= 1.25 

Basic Model 21.33% 19.05% 19.32% 

Improved Model,  

without redundancy 
16.52% 18.95% 15.73% 

Improved Model,  

with redundancy 
6.74% 7.72% 5.75% 

 

Figure 2.17 also shows a tendency of the source localization that the error of the result is 

minimal when the source is in the front and back of the microphone array. Therefore as the 

microphone set device is portable designed, the best measurement condition is to let the 

microphone arrays facing the target signals. Figure 2.18 demonstrates the same data as Figure 

2.17 (h), but at a smaller scale, which is from zero to 3%. The errors in the area within the half 

circle are under 1.5%, and the area can be considered as the optimal measurement zone for this 

particular microphone array setup. Note that a different microphone configuration may lead to a 

different optimal zone.  
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Figure 2.18 Safe zone for locating sound sources using a six-microphone set with redundancy procedure 

in practice. The scale bar shows the percentage errors in source localization that varies from 0 to 3%. The 

half circle indicates the safe area within which the error is less than 1.5%. 
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CHAPTER 3 

EXPERIMENTAL VALICATION OF SOUND SOURCE LOCALIZATION 

To validate the proposed methodology for sound source localization, experimental 

validations are conducted with various real world sounds in several non-ideal environments. 

Three prototype devices are tested: orthogonal four-microphone setup, non-orthogonal four-

microphone setup, and six-microphone setup. The devices were tested in various environments, 

including the Acoustic, Vibration, and Noise Control Laboratory (AVNC Lab), Machine Shop, 

auditorium room, and the hall in the Building of Engineering, Wayne State University. Multiple 

types of sounds are used as the target sound sources and background noises in the experiments, 

some of them are real world sounds played through loudspeakers, such as machine noises, 

chopper sound, music, radio news, etc. The others are some real sound in the environments, such 

as people talk, clapping, sport gunshot firing, machine running noises, etc. The experimental 

validation has shown that both the basic model and the improved model can successfully locate 

multiple sound sources in none-ideal environments in 3D space, and the improved model with 

redundancy check has larger source range coverage and higher accuracy than the basic one.  

3.1 Experimental validation results for four-microphone set 

The four-microphone set devices were firstly validated in various environments with 

different types of sound sources.  Two prototype devices were tested in this section, namely, the 

orthogonal and non-orthogonal four-microphone set.  
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3.1.1 Experimental setup 

Two microphone configurations are built up to test the basic model of the sound sources 

localization method. The orthogonal four-microphone device, shown as Figure 3.1, consists of 

one thermometer, four B&K ½-inch condenser microphones, a NI-9162 carrier with NI-9234 

signal acquisition module from the National Instrument, and a web camera. The thermometer is 

used to measure the temperature in the environment, with which the speed of sound can be 

estimated in real time during sound source localization. The positions of the four microphones in 

Cartesian coordinates are (0.5, 0, 0), (0, 0.5, 0), (0, 0, -0.5), and (0, 0, 0.5) in meter, respectively. 

The web camera is attached at the origin of the coordinates, and it has two built-in motors thus it 

can pan and tilt to face the target source and capture the image of the sound sources in 3D space. 

During the source localization measurement, sound signals in time domain at four microphones 

are recorded and updated continuously. The program goes through the computer flow chart 

shown in Figure 2.2, and find out the source location. The Cartesian coordinates of the results is 

then transferred to the spherical coordinate to get the azimuth and inclination angles which 

corresponding to the panning and tilting angle of the built-in motors of the camera. Therefore the 

motors can rotate at the calculated panning and tilting angles, and make sure the target sound 

source is covered inside the image of the camera.  
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Figure 3.1 Prototype device for the orthogonal four-microphone set model. (a) This device consists of 

four microphones, a web camera, a thermometer, and the data acquisition systems. (b) NI-9234 signal 

acquisition module. (c) NI-9162 carrier.  

The non-orthogonal four-microphone device (Figure 3.2) uses the same thermometer, 

microphones, and signal conditioner, but utilized another microphone stand up and changes the 

positions of the microphones to approximately at four vertexes of a tetrahedron, which are (0, 

0.73, 0), (-0.2, 0.1 -0.35), (-0.2, 0.1, 0.35), and (0.4, 0.1, 0) in meter in Cartesian coordinates, 

respectively.  The microphone spacing of the second device is determined as 0.8 meter. The 

reason of changing the positions of the microphones is to build a tight frame thus the error of 

sound source localization is minimal and balanced in any direction. Moreover, the camera in this 

device is fixed at the origin and doesn’t move. This is based on the consideration that the 

movement of camera may cause the shake of the microphone stand up and change the position of 

the microphones during the measurements thus have negative impact on the accuracy of the final 

source localization results. This device can gain more reliable results of source locations though 

the camera cannot catch the image of the source when the source falls outside the viewing angle 

of the camera. Moreover, the information of the source locations can always be found in the top 

(a) Prototype device for orthogonal four-microphone set 

(b) NI-9234 signal acquisition module 

 

 

 

                    (c) NI-9162 carrier 
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view and front view in the programming screen, and the precise locations are updated as well. 

The computer flowchart of this device is the same as the first device, which are shown in Figure 

2.2.  

 

Figure 3.2 Prototype device for the non-orthogonal four-microphone set model. This device consists of 

four microphones, a web camera, and the data acquisition systems which is the same as Figure 3.1 (b) and 

(c). 

The following experimental results in section 3.1.2 and 3.1.3 are from the screen captured 

by the orthogonal four-microphone device, while all the other results are from the non-

orthogonal four-microphone device. 

3.1.2 Case 1: Locating one sound source  

Figure 3.3 demonstrates the screen captured during the real time sound source 

localization.  A yellow crosshair is overlaid on the image captured by the camera to show the 

location of the target sound source. A precise location of the source in terms of Cartesian 

coordinates (x, y, z) is updated automatically in real time above the camera image. The two 

graphs below the camera image show the time domain signals and sound pressure level by 
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octave frequency bands at Channel #1. Two color maps on the right side of the image, namely, 

the front view and the top view, show the precise location of the source in 3D space and the 

sound pressure level in the environment. In Figure 3.3, the loudspeaker on the table is playing a 

typical party crowd sound, the time domain signals are recorded and updated every unity second, 

and overall frequency bands are considered. The four-microphone set can successfully locate the 

position of the sound source, which is the dominate sound in the environment, and the precise 

location of the loudspeaker is given above the image in the screen, as (4.87,  0.97, 0.97) in 

meter. 

 

Figure 3.3 Experimental validations of the four-microphone set model. Experiments were conducted 

inside the hall way of Engineering Building. The yellow crosshair indicates the source location, and the 

precise location in the Cartesian coordinates (x, y, z) in meters that are shown above the image.  

 

 



56 

 

 

 

3.1.3 Case 2: Locating multiple incoherent sound sources 

Figure 3.4 demonstrates the cases of locating multiple incoherent sound sources.  The 

yellow crosshair shows the position of the target source, and the red crosshair indicates another 

source existing in the environment. Although only the coordinates of the target source indicated 

by yellow crosshairs are shown in the text bar above the image of the camera, the precise 

locations of the two sources are obtained, and the crosshairs point out the location of both 

sources simultaneously.  

Figure 3.4 (a) and (b) shows the experimental results in the hall in the Engineering 

Building. One of the loudspeakers is considered as the target source and playing party crowd 

sound, while the other loudspeaker playing white noise as background noise. Figure 3.4 (a) 

shows the case when the two sources are next to each other, and Figure 3.4 (b) shows the case 

that the two sources have off-set in source range. The four-microphone device can successfully 

locate both sources. Figure 3.4 (c) and (d) are the localization results of the same sound sources 

but in a different environment in the AVNC Lab. The device can also locate both of the sources, 

which means that the device is applicable for various none-ideal environments. 
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Figure 3.4 Experimental validations of locating multiple sound sources by the four-microphone set. 

Experiments were conducted inside the hall way and AVNC Lab in the Engineering Building. The yellow 

and red crosshairs indicate the source locations. 

3.2 Error analysis and Empirical modeling for source localization 

 To further understand the underlying characteristics of the acoustic model based 

localization algorithm, error analysis was conducted on the localization experimental results by 

the non-orthogonal four-microphone set. The error of the results consists of two parts, the biased 

and random error. The error distribution is discussed in this section, and two semi-empirical 

models are developed to improve the accuracy of the results.  

   (c) Locate two sources in a small room                (d) Locate two tonal sounds in a small room  

 

 (b) Locate two sources in a hall  

                        (b) Locate two sources in a hall  

 

 

      (a) Locate two sources in a hall                                   (b) Locate two sources in a hall  

                        (b) Locate two sources in a hall  
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3.2.1 Error analysis of experimental results 

The error in source localization is defined in Equation (2.15). A systematic test was 

conducted in the auditorium room in the Building of Engineering. Various sound sources were 

placed at 200 different positions around the four-microphone set. The distribution of the source 

positions covers 360 degree horizontally, three different heights, and the source range is up to 

five meters range.  

Benchmark locations of the sources were measured by 3D sonic digitizer model 5230XL, 

which is a localization device employing the ultrasonic technologies. The 3D sonic digitizer has 

an ultrasonic gun and a receiver set. One can pinpoint the target with the ultrasonic gun and 

generate ultrasonic sound with it. The receiver recognizes the sounds generated by its producer 

thus can find out the geometry position in 3D space of the target. During the measurement of the 

benchmark location, the ultrasonic gun pinpointed at the center of the loudspeakers or other 

sound sources, generated ultrasonic sound, and the position can be obtained by the 3D sonic 

digitizer program. For an object within a radius of 4 meters, the error margin of this 3D sonic 

digitizer is ±2.5mm. As the localization error of the 3D digitizer is much less than the expected 

error of the present approach, the location gained by 3D digitizer can be considered as 

benchmark position. 

Once the benchmark locations are obtained, the localization errors of the four-

microphone can be calculated using Equation (2.15). The results of the systematic test have 

shown that the accuracy of the localization result is almost independent of the sound type of the 

source, and the error of the source localization can be considered as two parts: the random and 

biased error.  



59 

 

 

 

Figure 3.5 illustrates the 100 times calculated results by the localization methodology 

when the loudspeaker is placed at one of the contour positions in the systematic test. In this case, 

the position of the loudspeaker is at (1.88,  0.20, 0.15) in Cartesian coordinates in meter, called 

benchmark position, which is indicated by red dot in Figure 3.5, and it was playing white noise 

continuously. The four-microphone system gather the time domain signals measured at each 

channel every 0.5 second, take the 0.5 second data as the input of the source localization 

algorithm, and therefore calculate the precise location of the target sound source. The position of 

the 100 estimated results by the localization algorithm are indicated by blue circles in Figure 3.5, 

and a mean value of the 100 results was calculated and expressed by a black triangle.  It can be 

seen from Figure 3.5 that the distribution of the calculated results concentrates tightly around the 

mean value, and the distance from any single calculated result to the mean value is much smaller 

than that from the mean value to the benchmark position.  

 

Figure 3.5 Localization results on one of the points. The source was placed at (1.88, 0.20, 0.15) in meter. 

Circles indicate 100 calculated source localization results, red dot indicates the benchmark location 

obtained by the 3D sonic digitizer, and the triangular is the mean of 100 calculated results. 
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The distribution of the sound source localization in this case can be demonstrated more 

clearly in the PDF contour of the source range distribution in Figure 3.6. The benchmark source 

range is indicated by the blue line, which is 1.8992 m from the origin. The mean value is at 

1.7322 m, and the error of the mean value respect to the benchmark position is 8.8%, which 

indicates the biased error. On the other hand, the random error can be presented by the standard 

deviation of the source localization results, which is 
2
 = 6.76  10

6
 m

2
. It is obvious that the 

biased error is the dominate one, and the value of the random error is much smaller than the 

biased error and can be ignored.  

 

Figure 3.6 Normal distribution of the calculated source localization results at an arbitrarily selected point 

in space. A loudspeaker playing white noise was placed at (1.88, -0.20, 0.15) meter. The benchmark 

source range is 1.8992 meter, the mean source range based on 100 calculations is 1.7322 meter; and the 

variance of the calculated results is 6.76  10
6

 m
2
. 

3.2.1 (a) Biased error 

The error distributions of the 200 points in the systematic test show the same tendency as 

the particular case demonstrated in Figure 3.5 and 3.6. Therefore it can be concluded that the 



61 

 

 

 

biased error is the dominate one in the localization method, and the effort on analyzing and 

reducing the biased error can significantly improve the accuracy of the final results. 

Comparing to the numerical simulation errors which are very small, the errors in the 

experimental validation are relatively high. This is reasonable because there are sound 

reverberation, reflection, and interferences of background noises in the none-ideal environment 

in the real world tests, while the numerical simulation is generated in an ideal environment, in 

which only the direct sound waves radiated from the sources is considered in free field.  

The none-ideal environment has a negative impact on the accuracy of the TDOA 

estimation, because the sound reverberation, reflection, and background noise distort the 

waveforms of the sounds radiating in the field, thus the measured time domain signals has certain 

error comparing to the numerically mixed signals. The distortion of the waves brings the error in 

the cross-correlation calculation, thus reduce the accuracy of the TDOA estimation. As discussed 

in Chapter 2, the final result of the sound source localization is in terms of the TDOA, thus the 

error on TDOA has a direct effect on the accuracy of the localization results. The experimental 

results have shown that for the cases in which the error on TDOA is smaller than the others, the 

accuracy of the source localization result is relatively higher than the others. As the numerical 

model of sound source localization doesn’t account the sound reverberation, reflection, and 

background noise, the environment in real world is different from the one in the modeling. 

Therefore the errors are biased. 

3.2.1 (b) Random error 

The random error are basically caused by the fluctuation of the sources and background 

noises, and the experimental results of the 200 points have shown the same tendency that the 

random error in the source localization methodology is much smaller than to the biased error. 



62 

 

 

 

More experiments have conducted with various measurement lengths, and the results show that 

the random error reduces when the length of the time domain signals increases. This is because 

the TDOA results is obtained by the cross-correlation graph, and the influences of the fluctuating 

in time domain signals on the cross-correlation results can be averaged out and eliminate if  

longer signals are accounted.  

Figure 3.7 demonstrates the relation of the signal measurement length and the random 

error. The record length of the signal is varying from 0.1 to unity second, and the sound source 

location is calculated 100 times with each record length. The random error is represented by the 

variance 2
 of the 100 calculated source ranges in m

2
. It is obvious from Figure 3.7 that the 

variance 2
 reduces linearly with the increasing of the record length. Therefore, increasing the 

record length of the measurement signals can effectively reduce the random error of the 

localization results, and location results gained by longer record length are more stable than 

those by short record length. However, the real-time running characteristics of the localization 

algorithm may not be guaranteed if the record length is long, and the cross-correlation 

calculation of longer recorded signals may cause computer system problem due to the memory 

limitation of the computer. Therefore, a middle value of the record length should be selected to 

maintain both the efficiency and the accuracy of sound source localization. Based on the results 

in the experimental validation, a record length 0.5 second is selected for the sound source 

localization.  
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Figure 3.7 Impact of the measurement record length on the random error. The measurement record length 

was chosen from 0.1 second to one second. Results show that the random error decreases when the 

measurement record length increases. 

3.2.2 Empirical modeling  

As discussed in the Section 3.2.1, the error of the sound source localization consists of 

two parts, the biased error and the random error. The biased error is the dominate one, and it is 

caused by the sound reverberation, reflection, and background noises in the non-ideal 

environment. However, it is extremely difficult to improve the numerical modeling of sound 

source localization by accounting the sound reverberation, reflection and background noises in 

the environment, because the environment for each particular case is different and the 

background noise is unpredictable.  

However, on the other hand, it is possible to generate empirical modeling to modify the 

localization results and eliminate the error. Therefore, in this section, we aim at use two different 

methodologies to build up semi-empirical models for particular non-ideal environment, and 

therefore reduce the error. In other words, when facing a new environment, one can always use a 

group of directly measured source locations and their corresponding benchmark positions to find 

a set of semi-empirical model, which concludes the information of this particular environment. 

Once the semi-empirical model is built up, one can add the model to the original sound source 
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localization algorithm, and use them to locate any source in this environment with a more 

accurate result than before. The procedure of finding the semi-empirical model is called 

“calibration” of this particular environment. The calibration procedure is simple and practical, 

and it can be used without any prior knowledge of the background noise and the environment, 

such as the room size, furniture, materials of the wall, etc., which may affect the sound 

reverberation and reflection.  

As discussed in Section 3.2.1, the random error are much smaller than the biased one and 

can be ignored, the calibration of the environment only focus on eliminate the biased error. For 

each of the 200 points in the auditorium room during the experimental validation, the random 

error are eliminated by taking averaging of 100 times results along time domain signals, and 

every set of signals is 0.5 second long. Next, the 200 points results are used to evaluate the 

feasibility of the procedure of the environment calibration and evaluate the source localization 

results calibrated by the semi-empirical models.   

The 200 points are separated randomly to two groups of data, each has 100 points. The 

first group is called the training group, and it is used to calibrate the environment of auditorium 

room and build the semi-empirical model; the second group is called testing group. Once the 

semi-empirical model is obtained, they are applied to the testing group, in which the 100 points 

are totally different from the 100 points in the training group. The calibrated locations with the 

semi-empirical model in the testing group are compared with the directly measured source 

locations as well as the benchmark positions; therefore the efficiency of the empirical modeling 

is evaluated. 

In this dissertation, the semi-empirical model is generated by two different methodologies, 

one is Least Square (LS) method, and the other is ANFIS method.  

http://www.iciba.com/feasibility/
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3.2.2 (a) Empirical modeling using Least Square (LS) method 

LS method attempts to compute the optimal polynomial curve which is best fitting with 

the input data and the benchmark data. It is a commonly used methodology for the development 

of empirical simulation [171-176]. In the case in this dissertation, the input data of the LS 

method are the directly calculated sound source locations in the training group, while the 

benchmark data are their corresponding benchmark positions. The goal of the LS method is to 

find the optimal polynomials which are in terms of the input data, and the values of the 

polynomials are nearest to the benchmark data.  

For a general LS method, assume there are N set of input data, and N set of corresponding 

benchmark output. The order of the polynomials is j, and the position in 3D space concludes 

three variables in the Cartesian coordinates, which are the value on the x, y, and z axes. The non-

zero terms in the polynomials in the LS model can be calculated as Nj = (j + 1)
3
. The LS 

formulation is expressed as: 

      NNNN jj
rAR   33                                                  (3.1) 

The matrix [r] consists of the N set of input data which are the three variables directly 

measured in the source localization method and the products with up to the j
th

 order of them, thus 

it has Nj rows and N columns. The matrix [R] is the output data of the LS method, which are N 

set of data, and each set has three variables indicating the values on the x, y, and z axes, thus it 

consists of three rows and N columns.  The matrix [A] is the parameter matrix to be determined 

in the calibration procedure. 

As mentioned above, the goal of the LS method is to find the best fitting matrix [A] 

which can produce the matrix [R] optimal to the benchmark output. Therefore the Equation (3.1) 

can specified to used in the training group,  
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      NN

tr

NN

tr

jj
rAR   33                                             (3.2) 

Here the superscript “tr” means that the data is from the training group. The benchmark 

output [R
tr

B] is known, and it can be formatted as the same dimension as the matrix [R
tr
]. Thus 

one can find the matrix [A] by attempting the minimal value of the L2 norm of the two matrixes 

[R
tr
] and [R

tr
B]: 

   
2

33 N

tr

N

tr

B RR


min                                               (3.3) 

Insert Equation (3.1) into Equation (3.2), thus 

     
2

33 NN

tr

NN

tr

B
jj

rAR


min                                         (3.4) 

Take the partial differential of Equation (3.3) respect to [A]: 

      0
2

33





 NN

tr

NN

tr

B

ij
jj

rAR
A

                                   (3.5) 

and  

      NN

tr

NN

tr

B jj
rAR 

 33                                            (3.6) 

Thus [A] can be calculated as follows: 

           1

33



 
T

NN

tr

NN

trT

NN

tr

N

tr

BN jjjj
rrrRA                           (3.7) 

Once the matrix [A] is determined, it can be used in the general equation of the LS 

method shown in Equation (3.1) to calibrate any input data and a set of optimal output data can 

be obtained. 

Here matrix [A] is gained in Equation (3.5), [r] can be any set of input data, and the [R] is 

the corresponding output which is calibrated by the LS method. In this dissertation, Equation 



67 

 

 

 

(3.6) is further applied to the testing group to validate the efficiency of the empirical modeling, 

and the calibrated results are compared with the benchmark positions in the next section.  

Another parameter need to be defined in this model is the order of the polynomials. As 

the relation between the input and output of the model is unknown, the order can be freely 

chosen in the semi-empirical model. A low order number may not be enough to describe the 

relation between the input and output thus the optimal fitting curve cannot be achieved. After the 

observation of the data gathered in the experimental validation, it can be found that the relation 

between the input and benchmark in this case is more complex than a linear function, thus the 

order number should be larger than one. On the other hand, a high order can find the parameter 

matrix [A] which fits the training group perfectly, but fail to calibrate the localization results in 

the testing group. As a compromise, the 2
nd

 order is chosen in this semi-empirical model. Hence 

j=2, and Nj = (2 + 1)
3
 = 27. The Equation (3.5) can be rewritten as: 

           1

2727273273



 
T

N

tr

N

trT

N

tr

N

tr

B rrrRA                                   (3.8) 

where 

   

272721

2272221

1271211

27



























NNNN

T

N

trr

,,,

,,,

,,,















                                    (3.9) 

Each row in the matrix [r
tr
] gives the coordinates value and their products up to the 2

nd
 

order of one point in the training group.  For example, the i
th

 row in matrix includes 27 items, 

namely, α1,i, α2,i, α3,i,…, α27,i,  and they indicate the information of the i
th

 point (xi, yi, zi ) in the 

database.  

11 i, , 
ii x,2 , 

ii y,3 , 
ii z,4 , 

iii ,,, 325   , 
iii ,,, 426   , 

iii ,,, 437   , 2

28 ii ,,   , 2

39 ii ,,   , 2

410 ii ,,   , 

iiii ,,,, 43211   , 
iii ,,, 3

2

212   , 
iii ,,, 4

2

213   , 2

3214 iii ,,,   , 
iii ,,, 4

2

315   , 2

4216 iii ,,,   , 2

4317 iii ,,,   , 

2

3

2

218 iii ,,,   , 2

4

2

219 iii ,,,   , 2

4

2

320 iii ,,,   , 
iiii ,,,, 43

2

221    , 
iiii ,,,, 4

2

3222   , 2

43223 iiii ,,,,   , 

2

4

2

3224 iiii ,,,,   , 2

43

2

225 iiii ,,,,   , 
iiii ,,,, 4

2

3

2

226   , 2

4

2

3

2

227 iiii ,,,,                                                     (3.10)                                                                                               
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Similarly,  tr

BR can be written as 

     

NN

N

N

N

tr

BR















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
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

















                                        (3.11)                                                                                    
 

and  the i
th

 row in matrix  tr

BR indicates the three coordinates of benchmark source location.  

B

ii x,1 , B

ii y,2 , B

ii z,3                                             (3.12) 

3.2.2 (b) Empirical modeling using ANFIS 

Another method used to generate the semi-empirical model is the ANFIS system. The 

ANFIS method employs the concept of fuzzy logic, which is widely used in machine controls 

and other applicable problems [177-191]. It estimates the judgment of human operator, thus no 

longer only use “true” or “false”, but “partially true” to define the contribution of any input data.  

And it shares the idea with the LS method that each of the output elements is affected by all the 

input data, but the underlying algorithm is more complex than the polynomial functions used in 

the LS method.  

Similar to the environment calibration procedure by the LS method, the ANFIS use the 

three variables (x, y, z) of the directly calculated positions in the training group as the input of the 

model, and their corresponding benchmark positions are considered as the target of the output.  

As we assume that the values on the three coordinates influence each other, therefore 

totally three ANFIS models are generated, the inputs of the three models are all the directly 

calculated three coordinates of the source position, while the outputs of are the calibrated x, y, 

and z value respectively. The procedures of generating any of these three semi-empirical model 

and find out the parameters have several steps: 
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1) First, define the structure of the ANFIS system, which consists of the input 

membership functions (MF), type of rules, and output MFs (shown in Figure 3.8). The 

variables at the input MFs are the directly measured data by the original source 

localization algorithm, the values of these membership functions are forwarded to the 

rules.  There are three types of rules: “and”, “not”, and “or”. All the rules in this ANFIS 

system are set as “and” rules. The output MFs are in terms of the results from the rules, 

and combining of their value leads to the final result of the calibration model, which is 

desired to be the benchmark position. 

2) Substitute the directly measured data in the training group to the input MFs and 

take one of the coordinates of benchmark position (for example, the x axis) as the target 

output value of the ANFIS system. 

3) Conduct the Least Square as well as the back propagation algorithm to estimate 

all the unknown parameters in the MFs.  

4) Package the ANFIS system structure and all the value of parameters determined 

in the last step as the semi-empirical model for further use. 

In practice, the ANFIS structure and the determination of the parameters can be 

conducted with the help of Matlab Fuzzy Toolbox. [192]. Figure 3.8 gives an example of the 

ANFIS structure of the semi-empirical model for calibrating the x-axis of the sound source 

location. The inputs of this structure are the Cartesian coordinates (x, y, z) of the directly 

calculated sound source location, and are indicated by three black dots on the left column. 

Totally nine input MFs are employed, three for each input, and they are expressed by white dots, 

listing at the second column on the left. 27 rules were utilized, and they are indicated by the blue 

dots in Figure 3.8. The output MFs are located right to the rules, and combination of the output 
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of these MFs leads to the final calibrated result value of the x-axis, which are suppose to be as 

close as possible to the benchmark.  

All the MFs selected in this structure are the generalized bell-shaped MF (GBELL MF), 

and relations of its input variable and output value can be expressed as [192]: 

 
22

1

3

321

1

1
 ,,;

a

GBELLMF

GBELLMFGBELLMF

a

ainput
aaainputfoutput






             
(3.13) 

 

where inputGBELLMF is the value of input variable which is obtained from the last step in the 

flowchart, and outputGBELLMF is the output value. a1, a2 and a3 are three parameters and need to 

be determined in the training procedure.  

 

Figure 3.8 ANFIS Model Structure for calibrate x-axis of the source location. The input of this ANFIS 

model consists of three element, which are x, y and z-axis of the directly measure results. The output of 

this model is the calibrated x-axis value. 
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The ANFIS structures for the values in y and z coordinates are similar to the x one. And 

once all the parameters of the x, y, and z ANFIS structures are determined, the training procedure 

is finished and the semi-empirical model is ready to be used, and it can calibrate any directly 

measured sound source location and obtain the calibrated location with its error reduced.  

Both of the LS and ANFIS semi-empirical models are developed to calibrate the directly 

measured sound source location, and aim at eliminate the bias error occurs on the locations, 

which are caused by the non-ideal environment. The parameters in these two models are 

determined using a large amount of data in the training group, including the directly measured 

sound source locations and their benchmark positions. The goal of training procedure is to find 

the parameters with which the models can calibrate the sound sources and the outputs are closest 

to the benchmark position. Once the parameters are obtained, they are packaged into the models 

thus the semi-empirical models can be further used at any directly measured location and gives a 

calibrated one with better accuracy. To check the effectiveness of the semi-empirical models, a 

different group of data, called the testing group, is applied to the models, and the directly 

measured locations and the calibrated locations are compared to the benchmark in this group to 

see if the calibrated ones have higher accuracy than the directly measured ones.  

3.2.3 Experimental validations of empirical models 

Figure 3.9 illustrates the comparisons of three types of results in the testing group: the 

directly measured sound source locations and the calibrated locations by LS and ANFIS method, 

respectively. As introduced in Chapter 2, the error and source range is influenced by the 

microphone spacing. The larger microphone spacing is, the more accurate source location is 

gained and larger source range can be reached. This is reasonable because when the microphone 

spacing increase, the TDOAs increases accordingly, thus when a same amount of error value 
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happens in the TDOA estimation, its contribution to the TDOA decreases, thus the impact on the 

source localization results is eliminated. In this section, the ratio of the source range and 

microphone spacing is also used in Figure 3.9, namely, dimensionless parameters, , and h are 

presented instead of the Cartesian coordinates x, y, and z in meter, where  = x/d,  = y/d, and h = 

z/d, d indicates the microphone spacing. Once the dimensionless source range is analyzed, one 

can always change the microphone spacing to get a matching source range as desired.  

As it is difficult to demonstrate the error in a three-dimensional space, Figure 3.9 chooses 

to plot the top view of the error in layers. Each layer has a specific height h, and covers a 12  

10 area in horizontal plane. Figure 3.9 (a), (b), and (c) show the results at h= − 0.36; Figure 3.9 

(d), (e), and (f) are at h= 0.21; and Figure 3.9 (g), (h), and (i) are at h=0.7.  

Results show that the errors of the directly measured source locations can be as high as 

10% inside the testing area, and only about half area can keep the error under 1%, as shown in 

Figure 3.9. Errors of calibrated locations by either of the two methods are reduced as expected. 

In particular, the errors of the calibrated locations can be controlled under 2% when h= − 0.36 

and 0.21, and under 3% when h = 0.7. Moreover, for h= − 0.36, 0.21, and 0.7, the percentage of 

the calibrated point with an error less than 1% in the testing group are 78%, 85%, and 60%.  

What is more, the calibrated results by the LS and ANFIS methods are similar to each 

other. The error distributions in three heights look the same, and the statistical similarity of the 

results provided by LS and ANFIS is 99.57%. This indicates that the two semi-empirical models 

have the same effect on the directly measured source locations, though their underlying 

algorithms are different.  
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Figure 3.9 Comparison of the results without calibration, with LS calibration and ANFIS calibration. The 

source was places on a plane at h = 0.36 in (a), (b), and (c); at h = 0.21 in (d), (e), and (f); and h = 0.7 in 

(g), (h), and (i). (a), (d) and (g) show the error of results without calibration, the errors in some of the area 

are as high as 10%. (b), (e), and (h) show the error of the results after LS calibration. (c), (f), and (i) show 

the error of the results after ANFIS calibration. 

Table 3.1 gives the error averages and the programing time for the original approach and 

the calibrated results by two methods. The average error of the directly measured results are as 

high as 2.77%, and those by LS and ANFIS calibration are reduced to 0.59% and 0.45%, 

respectively.  

(a)  h=-0.36, w/o calibration   (b) h= − 0.36, Calibrated by LS   (c) h= − 0.36, Calibrated by ANFIS  

 

   (d)  h=0.21, w/o calibration      (e) h=0.21, Calibrated by LS     (f) h=0.21, Calibrated by ANFIS  

 

   (g)  h=0.7, w/o calibration        (h) h=0.7, Calibrated by LS     (i) h=0.7, Calibrated by ANFIS  
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Table 3.1. Summary of the spatial-averaged errors for the original approach vs. those of the LS and 

ANFIS based semi-empirical models. 

 Original Approach After LS Correction 
After ANFIS 

Correction 

Spatial-averaged Error 2.77% 0.59% 0.45% 

Model build-up time 0 
0.003443 

(second) 

3  (seconds) by using 

Matlab Fuzzy Toolbox 

Processing time T 
T+3.7273e-007 

(second) 

T+6.7127e-004 

(second) 

 

When with the data of the training group, the time cost for building up the semi-empirical 

modal by LS is 0.003443 second, and that for ANFIS is about three seconds. Numerically, the 

model build-up time of building ANFIS semi-empirical model is 1000 times longer than that of 

LS. However, both of the build-up time is short and acceptable.  

Assume T is the processing time of localization algorithm, which includes signal pre-

processing, the estimation of TDOAs, solving equations to get a pair of solutions, and selection 

of the correct solution as the directly measured source location. The time T is dependent on the 

type and length of the sounds, the signal pre-processing setup, speed of the computer processor, 

etc. As T only counts the time consuming of the localization algorithm, thus is unconcerned in 

the calibration procedure, and the three columns share the same value of T.  The processing time 

to gain a  LS calibrated location is T+3.7273e-007 second, which means that the time cost to get 

a calibrated result with a directly measured location in hand is 3.7273e-007 second, while that 

for the ANFIS is 6.7127e-004 second, which is 1000 times longer than that by LS. Nevertheless, 

both processing time mentioned above are short enough to be ignored, and adding the calibration 

procedure doesn’t influence the real-time characteristic of the localization method.   

The information of the source range coverage can also be observed in Figure 3.9. For the 

localization results without calibration, the source range can cover  from negative unity to 

seven, and  from negative three to three, any source range extends this coverage cannot have its 
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accuracy guaranteed, namely, the results are not reliable. The source range coverage after 

calibration are increased to an area of 12  10, where any source falls inside negative six to six 

in  and negative three to seven in can be correctly located with the error controlled under 2%.  

It is emphasized that these two semi-empirical models are designed to calibrate the sound 

source locations measured in the auditorium room in the Engineering Building in Wayne State 

University, where the data of training group were gathered. They may not be applicable to other 

environment. When the environment is changed, it is better to conduct the experiment first to get 

a group of training data thus the parameters in the semi-empirical models can be optimal 

determined. For the tests conducted in this example, the procedure of gathering data, which 

insists of the training and testing group, cost about four to five hours, though one can take less 

points in the training group in various cases thus the time of experiment can be shorted.  

3.3 Experimental validation for six-microphone set   

The improved model with redundancy check is also tested in the experiments. The 

experimental setup consists of one thermometer, six B&K quarter-inch condenser microphones, 

8-Channel Dynamic Signal Acquisition Module NI-4472 inside Carrier PXI-1033 from the 

National Instrument, and a web camera.  Similar to the four microphone setup, the thermometer 

is used to measure the environment temperature thus the speed of sound can be estimated, and 

the web camera captures the images in real time and can give the operator the information of the 

sound sources. The six microphones are located at the same positions introduced in the 

numerical simulation in Chapter 2, which are (-1.3856, 0.4000, 0), (0, 0, 0), (1.3856, 0.4000, 0), 

(-1.3856, 0.4000, 0.8000), (0, 0, 0.8000), and (1.3856, 0.4000, 0.8000) in meter in the Cartesian 

coordinates.  
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Figure 3.10 Prototype device for the six-microphone set model. (a) This device consists of six 

microphones, a web camera, a thermometer, and the data acquisition systems. (b) NI-4472 signal 

acquisition module. (c) PXI-1033 carrier.  

Multiple types of sound sources and environment were tested to validate the localization 

by the six microphone setup. And the experimental results have shown that the characteristics of 

the results by this setup coincide with the numerical simulation. The capability of localization is 

stronger when the sources is located in the optimal zone, the accuracy is better than that of four 

microphone set. Most importantly, the source range coverage of the six microphone setup is 

larger than that by four microphone set; therefore it is not necessarily conduct the calibration 

procedure, but still can locate a sound source which is far away from the device.  

Figure 3.11 demonstrates a group of screen prints in the test. In Figure 3.11 (a) and (b), 

two loudspeakers were playing noises dominating at different frequency bands in the hall of the 

Engineering Building in Wayne State University. One source is lower than 2000 Hz, while the 

other is higher than 5000 Hz. The locations of the two sources are indicated by yellow and red 

(a) Prototype device for six-microphone set 

(b) NI-4472 signal acquisition module 

 

 

 

                    

                 (c) PXI-1033 carrier 
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crosshairs, respectively. The six microphone set can locate both of them even they are next to 

each other.  

 

 
 

 

Figure 3.11 Experimental validations of locating multiple sound sources by the six-microphone set. 

Experiments were conducted inside the hall way and Machine Shop in the Engineering Building. The 

yellow and red crosshairs indicate the source locations. 

Figure 3.11 (c) and (d) show the sound source localization in the Machine Shop in the 

Engineering Building, which is a noisy environment. Figure 3.11 (c) illustrate the case of 

locating the airflow noise from a hose, and Figure 3.11 (d) shows the program locating the noise 

from a cutting machine. Sources can also be detected and located in Machine Shop, as indicated 

by the yellow crosshairs and the (x, y, z) coordinates above them. 

(a) Sounds from two speakers separated at certain distance        (b) Sounds from two speakers next to each other  

 

                          (c) Airflow noise from a hose                                (d) Noise from an operating cutting machine  
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Figure 3.12 and 3.13 are also snapshots from the running program. The images at the top 

right corner of the figures are recorded by another camera as a benchmark. In this test, the 

program is designed to automatically switch between the image overlapped by the crosshair 

indicating the location, as shown in Figure 3.12, and the top view of the source path in space, as 

shown in Figure 3.13. The effectiveness of the localization is demonstrated not only the direction 

by overlapping the crosshair on the camera image, but also the source ranges by the top view. 

The yellow dots in the top view in Figure 3.13 tell the walking path. Some of the yellow dots are 

at the bottom of the top view, which has source ranges about six times as the microphone spacing. 

Note that the in this test no calibrated procedures were hold, and the program can still cover a 

large source range.  
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Figure 3.12 Experimental validations of tracking and tracing sound source by the six-microphone set 

(Camera View). Experiments were conducted inside the hall way in the Engineering Building. The yellow 

crosshair indicates the source location. 

 

Figure 3.13 Experimental validations of tracking and tracing sound source by the six-microphone set 

(Top View). Experiments were conducted inside the hall way in the Engineering Building. The yellow 

dots indicate the location history of the sources, which reconstruct the path of the travelling source.  
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CHAPTER 4 

SOUND SOURCES SEPARATION 

This chapter is concerned with the development and validation of PSS for sound sources 

separation. 

4.1 Theory of Point Source Separation (PSS) 

Similar to the sound source localization algorithm introduced in Chapter 2, PSS assumes 

that sounds are radiated from point sources in free field. In addition, PSS requires the 

information of time domain signals at each microphone as well as the locations of the sources 

and microphones as its input. With this information, PSS can separate the signals at individual 

sources, regardless of their types. Theoretically, PSS can handle any mixed sounds as long as the 

number of measurement channels is equal to or larger than that of sound sources. However, an 

ideal free field does not exist in practice and sound reflection and reverberation may affect the 

accuracy of PSS results. 

In this Chapter, N point sources and M microphones are used in numerical simulations. 

The vectors xn and xm are used to denote the positions of the n
th

 source and m
th

 microphone in 3D 

space, respectively, where 1 ≤ m ≤ M, 1 ≤ n ≤ N, and N ≤ M. Rnm indicates the distance from the 

n
th

 source to the m
th

 microphone. Therefore, the acoustic pressure at the m
th

 microphone is the 

sum of the acoustic pressures emitted by N sources that can be expressed as: 

  













N

n nm

nm
n

m
R

c

R
txs

txp
1

,

,                                                  (4.1) 
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where s(xn, t – Rnm/c) represents the source strength of the n
th

 source and t – Rnm/c implies the 

retarded time. Note that PSS is based on an assumption of a causal process. So p is identically 

zero when t < 0.  

On the other hand, the Fourier transform of the time domain signal at the m
th 

microphone 

p(xm,t) can be expressed as: 

   



0

dtetxpxP ti

mm

 ,, ,                                           (4.2) 

and its inverse Fourier transform is given by: 

   




 


 dexPtxp ti

mm ,,
2

1
                                       (4.3) 

Substituting Equation (4.1) into (4.2) yields the Fourier transform of the signal at the m
th

 

measurement point: 

    



















N

n

ti

n

nm

jkR
ti

N

n nm

nm
n

m dtetxs
R

e
dte

R

c

R
txs

xP
nm

1 00 1

 ,

,

, ,       (4.4) 

where

 

 
nm

jkR

nm
R

e
xxG

nm

;  is known as the free-space Green’s function [169], and the Fourier 

transformation of the n
th

 source is    



0

dtetxsxS ti

nn

 ,,

 

, (1 ≤ n ≤ N). Thus Equation (4.4) can 

be rewritten as 

     



N

n

nnmm xSxxGxP
1

 ,;, .                             (4.5) 

The positions of the sources and microphones are known, thus P(xm,ω) and G(xm│xn; ω) 

can be calculated, and the unknown source strength S(xn,ω) can be determined. Once this is done, 
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the desired source signal s(xn, t) can be obtained by taking an inverse Fourier transformation (see 

Equation (4.3)).  

Equation (4.5) can be generalized using the following matrix form: 

        
11 


NnNMnmMm xSxxGxP  ,;,                            (4.6) 

Note that the transfer matrix   
NMnm xxG


; is not a square matrix. Accordingly, 

{S(xn,ω)}N×1 must be solved by taking a pseudo inversion of Equation (4.6),  

        
1

†

1 


MmMNmnNn xPxxGxS  ,;,                         (4.7) 

where the symbol “†” indicates the pseudo inversion of a matrix, and  

            











MNmnNMnmMNmnMNmn xxGxxGxxGxxG  ;;;;
1†

   (4.8) 

where the symbol “*” in Equation (4.8) means the conjugate transposition of a matrix. 

Note that Equation (4.7) is an explicit solution when the number of sources N is equal to 

the number of microphones M; and a least-square solution when M > N. The n
th

 row on the left 

side of Equation (4.7) is the Fourier transformation of the time domain signal at the n
th

 source, 

which can be expressed as: 

      



N

n

mmnn xPxxGxS
1

†  ,;,                               (4.9) 

The acoustic signal of the n
th

 source can now be obtained by taking the inverse Fourier 

transform of Equation (4.9). 

          







N

n

mmn

N

n

mmnn Mmttxptxxgtdttxptxxgtxs
1

†

1

†  2 1 ,,,,,;,;,        

(4.10) 
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where the temporal free-space Green’s function    




 


 dexxGtxxg ti

mnmn ;;
††

2

1
. 

For example, consider the case where there are two sources and four microphones in a 

free field, thus N = 2 and M = 4. The source strengths are α(xsource1) and β(xsource2), respectively. 

Then the acoustic pressures at the four channels are:  

 
   

2 source ~ 1ch 

2 source ~ 1ch 
2 

1 source ~ 1ch 

1 source ~ 1ch 
1 

1ch 
R

c

R
tx

R

c

R
tx

txp
sourcesource 


























,         (4.11a) 

 
   

2 source ~ 2ch 

2 source ~ 2ch 
2 

1 source ~ 2ch 

1 source ~ 2ch 
1 
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R

c
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tx
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c
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
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
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
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
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,        (4.11b) 
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2 

1 source ~ 3ch 

1 source ~ 3ch 
1 
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R
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 
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R

c
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sourcesource 




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


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















,        (4.11d) 

Given the time domain signals at the four microphones and the positions of the sources 

and microphones, we can use PSS to separate individual source signals. The procedures of PSS 

are as follows. 

1) Calculate the Fourier transformed matrix of the signals at four microphones: 
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2) Find the free-space Green’s functions needed for PSS: 
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3) Since N = 2 and M = 4, Equation (4.7) can be simplified to: 
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where the Fourier transformed measurement signals and the Green function matrix are 

from the first and second steps from Equation (4.12) and (4.13).  

The solution of Equation (4.15) is: 
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4) Applying the inverse Fourier transform to each row of Equation (4.16), we can 

reconstruct the individual source signals as: 

     
 

   txde
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
,   (4.17b) 

Theoretically, PSS can reconstruct the exact acoustic source signals, and separation is 

independent of the types of signals. However, the number of the microphones should be equal to 

or larger than the number of sources. Note that there is no limitation on the configuration of 

microphones.  

4.2 Theory of ICA 

To examine the effectiveness of source separation using the PSS algorithm, the separated 

signals are compared with those provided by a completely different blind source separation 

algorithm known as ICA. The reason for choosing ICA as the benchmark algorithm is because its 

code is available on line [193]. ICA is an existing methodology employing the concept of 

statistics analyzing and used to solve the BSS problems. It supposes that any observation is a 

linearly mixture of the independent variables. In the particular case of sound source separation, 

the measured signals are considered as the mixtures of the sources, which are independent of 

each other. Moreover, the time delay caused by the wave propagation is assumed small enough 

to be ignored. Therefore a matrix can be used to describe the relation of the source signals and 

the measurements.  
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which can be rewritten as: 

        
11 


NnNMmnMm tstatp                                 (4.19) 

in which 1 ≤ m ≤ M, 1 ≤ n ≤ N, and N ≤ M. 

In Equation (4.19), {pm(t)}M×1 indicates the measured signals at the M microphones, with 

m=1, 2, …, M,  {sn(t)}N×1 is the source signals at N sources, and the matrix [amn(t)]M×N is the 

weighting matrix which specifies the contribution parameters of each source to the measurement 

points. BSS assumes that neither the information of the individual sources nor the weighting 

matrix is available, thus there are two unknowns in Equation (4.19). Theoretically, a unique 

solution cannot be obtained when two unknowns exist in one equation, and infinite sets of the 

solutions of the signal arrays {sn(t)}N×1 and the weighting matrix [amn(t)]M×N exist. However, the 

ICA algorithm assumes that the target signals are non-Gaussian statistically independent sounds, 

and utilizes this characteristic to attempt the most reasonable solution of Equation (4.19). In 

other words, the programming of ICA is actually the procedure of finding a set of solution where 

the solved target signals have the maximum non-Gaussianity. In this way, ICA can estimate the 

best solution of both the single arrays {sn(t)}N×1 and the weighting matrix [amn(t)]M×N , when the 

information of the mixed signals {pm(t)}M×1  is the only input information. 

Because of the concept of ICA mentioned above, one of the characteristics of the ICA 

results is that the separation results may vary every time the program runs on the same input data. 
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The estimated source signals and their orders are non-predictable and different in every 

calculation. And if only one time calculation is applied on the mixed signals, the separated 

results are not guaranteed be the optimal one, therefore the ICA program is desired to run 

multiple times, and one need to pick up the best solution among all the separation results. 

Another characteristic of the ICA results is that the amplitudes of the separated signals are not 

inevitably be the same as the original source signals though their shapes are similar. This is 

because ICA only tries to attempt the best set of non-Gaussian and statistically independent 

solutions, which may not necessarily be the actual sound sources. Thus ICA is not reconstructing 

the original sources, but to estimate a reasonable solution which may represent the sources. In 

this way the amplitude of the ICA results and the original sources are different. However, the 

shape of the time domain signals remains similar.  

The ICA algorithm used in this paper is the fast ICA program package “FastICA for 

Matlab 7.x and 6.x Version 2.5” [193]. 

The only input information for ICA is the measurement at the microphones, while PSS 

requires the relative positions of the microphones and the sources as well as the measured mixed 

signals. However, the PSS can work along with the sound source localization program discussed 

in Chapter 2. Therefore the source position can be obtained by processing the mixed signals and 

taken as the input for PSS. The details of the combination of sound source localization and PSS 

will be demonstrated in next chapter.   

In this section, numerical simulation is conducted to evaluate the separation effects of 

PSS and ICA. The mixed signals were firstly estimated at each microphones, and the estimation 

procedure take the time delay and amplitude decay into account. Next, the mixed signals and the 
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relative position of the sources regarding to the microphones are considered as known input data 

for both PSS and ICA. And the separated signals by both methods were compared. 

4.3 Comparisons of PSS and ICA 

Various real world signals were used as the source signals in the numerical simulation, 

such as human voices, harp music, chopper sounds, battle field sounds, etc. The mixed signals 

were estimated at the microphone position, and taken as the input for PSS and ICA, and the 

separation results were compared to the original sound sources.  

To valid the effectiveness of separation, similarity of the separated and the original 

signals are studied by calculating the correlation coefficient  nss x
0 ,  between the original sound 

source  jn txs ,0  and the separated ones  jn txs ,  at the n
th

 sound source. The correlation 

coefficient of two signals can be calculated with the time domain arrays, with 
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         

     nsns

J

j

jnjnjnjn

nss
xStxStJ

txstxstxstxs

x

0

0 1

1

00

 









,,,,

,                          (4.20) 

where the subscript n specifies the order of the sound source, j is the index number of the array in 

time domain, 1  j  J.  A bar over  jn txs ,  or  jn txs ,0 indicates the mean value of the array is 

used.  ns xSt  and  ns xSt
0

 are the standard deviation of  jn txs ,  and  jn txs ,0 , respectively, and 

can be expressed as: 

      
2

11

1







J

j

jnjnns txstxs
J

xSt ,,                                 (4.21a) 

      
2

1

00
1

1
0 







J

j

jnjnns txstxs
J

xSt ,,                              (4.21b) 



89 

 

 

 

The value of correlation coefficient between two arrays can be from 100% to +100%, 

with 100% indicating that the two arrays have the same amplitude but opposite phase, and +100% 

for two arrays which are exactly the same.  In this dissertation, the correlation coefficient is 

utilized to evaluate the similarities between the separated signal and the original one, therefore 

the range of the correlation coefficient  nss x
0 ,  is from zero to +100%. A relatively larger 

correlation coefficient indicates that the separated signal is more close to the original sound 

source signal, and the separation is more effective. A correlation coefficient approaching to unity 

means that the separated signal is the same as the original signal. 

As introduced above, the ICA algorithm ignores the time delay at the measurement point 

and the separated signals are estimated with the amplitudes not necessarily equal to the original 

signals. Therefore a pre-processing procedure on the separated results of ICA is added before the 

calculation of the correlation coefficient. The procedure consists of three steps. First, find out the 

time delay between the separated signal and the original signal by using the cross-correlation 

method. Second, synchronize these two arrays with zero padding. Third, normalized these two 

arrays thus their amplitudes are at the same level. After the pre-processing procedure, the 

contributions in the correlation coefficient caused by the time delay problem and the different 

level of amplitude of the two signals no long exist. And Equation (4.20) can be applied to the 

two signal arrays.  

On the other hand, the PSS algorithm obtains the unique solution of the sound sources, 

thus the separated signals by PSS have the same time instance and amplitude as the original 

signals. Equation (4.20) can be directly applied to the source signal and the separated signal.  

There are no restriction on the positions of the sources, and in this dissertation, two 

sources were set at (0, 0, 1) and (2, 0, 0) in meter in the Cartesian coordinate, respectively. Four 
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microphones were located at (0.50, 0, 0), (0, 0.50, 0), (0, 0, 0.50) and (0, 0, 0.50) in meter, and 

this set of microphones are considered as orthogonal configuration. Another non-orthogonal 

microphone configuration was also tested in the simulation, and the impact of the microphone 

positions on the separation will be discussed later in this chapter.  

The measurements were estimated at the microphone positions, and ICA and PSS were 

used to separate sound signals, respectively. Three cases were tested in the simulation, and in 

each case two real world signals with same amplitude were employed as the sound sources: 

1) Case 1: woman’s and man’s voice, 

2) Case 2: woman’s voice and chopper sound, and 

3) Case 3: woman’s voice and harp music. 

4.3.1 Case 1: Separation of mixed woman’s and man’s voices 

Figure 4.1 shows a sample of the mixed signals in Case 1 and the separation results by 

PSS and ICA. Figure 4.1 (a) demonstrates the measurement at the Channel #1 among the four 

microphones, which is a mixed signal containing the woman’s and man’s voice. Figure 4.1 (b) 

and (c) show the separated woman’s and man’s voice, respectively. Figure 4.1 (d) and (c) show 

the results obtained by ICA. Note that ICA cannot achieve a specific order of the separated 

signals. In various running of the ICA program, some of the solutions have the woman’s voice 

come out first, while the others take the man’s voice as the first signal. The order of the separated 

signals by ICA is reordered manually thus it matches that of the original signal, therefore the 

comparison of the results can be easily conducted. From the information shown in Figure 4.1, 

both of the methods can successfully separate the two sound signals. Moreover, the correlation 

coefficients of these two set of results were calculated. The separated woman’s and man’s voice 

by PSS have the correlation coefficients equal to 99% and 98.29% corresponding to their 
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benchmark signals, respectively; and those for the results of ICA are 91.8% and 82.24%, 

respectively.  

 

(a) Mixed signals (woman’s and man’s voices) 

 

               (b) Separated woman’s voice using PSS      (c) Separated man’s voice using PSS 

          

              (d) Separated woman’s voice using ICA       (e) Separated man’s voice using ICA 

Figure 4.1 Separation of woman’s and man’s voices with an orthogonal array of microphones. (a) Mixed 

signals of woman’s and man’s voices measured at Mic. #1. (b) Separated woman’s voice using PSS; (c) 

Separated man’s voice using PSS; (d) Separated woman’s voice using ICA; and (e) Separated man’s 

voice using by ICA. 
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4.3.2 Case 2: Separation of mixed woman’s voice and chopper sound 

Figure 4.2 illustrates the separation in Case 2, where the woman’s voice and chopper 

sound were used as the sound source signals. In this case, both methods can also separate the two 

signals. The correlation coefficients for the separated woman’s voice and chopper sound by PSS 

are 98.97% and 99.25%, respectively; and those obtained by ICA are 93.2% and 81.58%, 

respectively. 

 

 

 

(a) Mixed signals (woman’s voice and chopper sound) 

      

             (b) Separated woman’s voice using PSS       (c) Separated chopper sound using PSS 
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             (d) Separated woman’s voice using ICA        (e) Separated chopper sound using ICA 

Figure 4.2 Separation of woman voice and chopper sound with an orthogonal array of microphones. (a) 

Mixed signal of woman’s voice and chopper sound measured at Mic. #1. (b) Separated woman’s voice by 

using PSS; (c) Separated chopper sound by using PSS; (d) Separated woman’s voice by using ICA; and (e) 

Separated chopper sound by using ICA. 

 

4.3.3 Case 3: Separation of mixed woman’s voice and harp music 

Figure 4.3 shows the results in Case 3. Similarly, the correlation coefficients of the 

separated woman’s voice and harp music by using PSS are 99.01% and 98.74%, respectively; 

and those by ICA are 92.73% and 69.83%, respectively. 

 
(a) Mixed signals (woman’s voice and harp music sound) 
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      (b) Separated woman’s voice using PSS           (c) Separated harp music sound using PSS 

         
      (d) Separated woman’s voice using ICA           (e) Separated harp music sound using ICA 

Figure 4.3 Separation of woman’s voice and harp music sound with an orthogonal array of micro-phones. 

(a) Mixed signals of woman’s voice and harp sound measured at Mic. #1. (b) Separated woman’s voice 

by using PSS; (c) Separated harp sound by using PSS; (d) Separated woman’s voice by using ICA; and (e) 

Separated harp sound by using ICA. 

 

Comparing the separated results by PSS and ICA, the ICA results have distortions in 

amplitudes as well as phases. This is more obvious in the separated results of chopper sound and 

the harp music, and the correlation coefficients of these two results are also lower than the others. 

In contrast, the results by PSS have no distortions on amplitude or phase, and have higher 

correlation coefficients than those by ICA, which means PSS can better separate the mixed 

signals.  

The results are understandable based on underlying principles of PSS and ICA. PSS 

employs the mixed signals as well as a known transfer matrix, which is composed by free-space 

Green’s function working on each source and microphones.  Equation (4.7) only has one 

unknown, thus the source signals can be uniquely determined. The numerical model of PSS 
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considered the time delay and amplitude decay happens during the wave propagation, and the 

separated signals are reconstructed and theoretically should be the same as the original source 

signals. On the other hand, ICA has two unknowns in its numerical model, as Equation (4.19) 

shows, and it is impossible to get a unique solution of both the source signals and the weighting 

matrix, but rather estimate an optimal solution which has the ratio or relative amplitudes of the 

source signals.  The solution of ICA has not the same amplitude or phase as the original signal, 

though its amplitudes may indicate the general idea of the source signals.  

The advantage of PSS is that it can reconstruct the original sound signals in both the 

amplitude and the phase at each individual source location as long as their positions are known in 

advance. However, the locations of the sources may not be available or be determined correctly 

in practice. In these cases ICA can be used to separate the mixed signals and give an estimation 

of the source signals, though there is no information about how these sources are distributed in 

space, the order of the sources may vary every time the ICA program runs, and even sometimes 

the separation may not be successful.  

Besides the separation effect, the processing time of these two methods was also tested in 

simulation. PSS operates faster than ICA in general. Take the processing time in Case 1 for an 

example, PSS used 3.29 second while ICA requires 5.81 second to get the results. The time cost 

in the other cases shows the similar tendency as Case 1. 

4.4 Impact of various parameters on sources separation using PSS and ICA 

The impacts of various parameters, including the microphone configuration, the number 

of microphones, sound source type, and the SNR, are discussed in this section for a better 

understanding of PSS and ICA.  
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4.4.1 Impact of microphone configuration 

In last section, an orthogonal microphone set (See Figure 4.4 (a)) was used in space 

collecting the mixed signals to validate the separation effectiveness of PSS and ICA. In this 

section, another microphone configuration, which put the microphones at four arbitrarily selected 

positions in space, is employed and called non-orthogonal set.  The Cartesian coordinates of the 

non-orthogonal microphone set are (0.3, 0.73, 0.02), (0.09, 0.16, 0.33), (0.33, 0.14, 0.14), 

(0.34, 0.34, 0) in meter, as shown in Figure 4.4 (b). The separation results by two methods on 

two microphone sets were compared and the impact of the positions of microphones is discussed.  

                

(a)  Orthogonal array of microphones              (b) Non-orthogonal array of microphones 

Figure 4.4 Microphone configurations. (a) Orthogonal configuration with microphones mounted at (0.50, 

0, 0), (0, 0.50, 0), (0, 0, 0.50) and (0, 0, 0.50) in meter. (b) Non-orthogonal configuration with 

microphones placed at (0.3, 0.73, 0.02), (0.09, 0.16, 0.33), (0.33, 0.14, 0.14), (0.34, 0.34, 0) in meter. 

Similar to the last section, three cases of mixed signals were chosen in the test of the non-

orthogonal configuration. The mixed signals were estimated at the positions of the microphones, 

and then be used as the input for the PSS and ICA algorithm.  

Figure 4.5 illustrates the separation results in Case 2 of both methods with a non-

orthogonal microphone configuration. Figure 4.5 (a) shows mixed signal at the Channel #1. 

Figure 4.5 (b) and (c) show the separated woman’s voice and chopper sound obtained by PSS, 

which have correlation coefficients equal to 94.94% and 96.15%, respectively. The separation by 

Mic1 

Mic2 

Mic3 

Mic4 

Mic1 

Mic2 

Mic3 

Mic4 
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PSS with non-orthogonal set is successful though the correlation coefficients are a little less than 

those obtained by orthogonal set. Figure 4.5 (d) and (e) demonstrate the separation results with 

by ICA. It is obvious that the separation is not complete, especially for the separated woman’s 

voice shown in Figure 4.5 (d), the background chopper can be also seen along the time domain 

signal. The correlation coefficients for the results by ICA are 76.8% and 76.9%, respectively, 

which are much less than those by the orthogonal set. The separation by ICA in this case is 

successful yet not clear.  

Table 4.1 gives a summarization of the values of correlation coefficients in the three 

signal mixture case with orthogonal and non-orthogonal microphone sets. The separation 

effectiveness of PSS is better than ICA in general. The PSS can separate all the mixed signals 

listed in the table and keep the correlation coefficients above 90%. However, the results by PSS 

also indicate that the separation on the mixed signals at non-orthogonal set is less effective than 

those on orthogonal set. This tendency is much more significant when ICA is utilized for sound 

separation. ICA can successfully separate signals when orthogonal microphone set is used. 

However, when non-orthogonal set is used, for the case that woman’s and chopper sound are 

mixed, the separation by ICA is not clear or complete (See Figure 4.5). For the cases of the 

woman’s and man’s voice mixture and the woman’s voice and harp music mixture, the 

correlation coefficients of the results by ICA are even below 50%, which mean the separations 

are not successful.  
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(a) Mixed signals (woman’s voice and chopper sound) 

         

            (b) Separated woman’s voice using PSS       (c) Separated chopper sound using PSS 

           

            (d) Separated woman’s voice using ICA      (e) Separated chopper sound using ICA 

Figure 4.5 Separation of woman’s voice and chopper sound with a non-orthogonal array of micro-phones. 

(a) Mixed signals of woman’s voice and chopper sound measured at Mic. #1. (b) Separated woman’s 

voice by using PSS; (c) Separated chopper sound by using PSS; (d) Separated woman’s voice by using 

ICA; and (e) Separated chopper sound by using ICA. 
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Table 4.1. Comparisons of the correlation coefficients under different microphone configurations. 

 
 
    

     for PSS  
    

     for ICA 

1
st
 Source 2

nd
 Source 1

st
 Source 2

nd
 Source 

 

Orthogonal 

Microphone 

Array 

Woman’s voice vs. Man’s voice 99.00% 98.29% 91.80% 82.24% 

Woman’s voice vs. Chopper sound 98.97% 99.25% 93.20% 81.58% 

Woman’s voice vs. Music sound 99.01% 98.74% 92.73% 69.83% 

 

Non-orthogonal 

Microphone 

Array 

Woman’s voice vs. Man’s voice 95.17% 90.09% 48.12% 24.37% 

Woman’s voice vs. Chopper sound 94.94% 96.15% 76.80% 76.90% 

Woman’s voice vs. Music sound 95.19% 92.54% 44.28% 42.64% 

4.4.2 Impact of number of microphones 

The impact of microphone number is also interested in the sound separation problems. 

Because of the underlying theory of PSS and ICA, both methods require that the number of 

microphone be equal or larger than the number of sources. In the study in this dissertation, two 

sources are mixed in each test case, thus at least two microphones are needed to separate the 

sounds. In this section, the impact of the microphone number on the separation effectiveness is 

tested by using the measurement of mixed woman’s voice and chopper sound at two to four 

microphones in the orthogonal set. When the number of microphone is defined as two, only the 

mixed signals at Channel #1 and #2 are used; if one decides to use three microphones, 

measurements at Channel #1, #2, and #3 are selected; and all the four channels are used when the 

microphone number is set as four.  

Table 4.2 illustrates the correlation coefficients of the separated signals using different 

number of microphones by two methods. The results show that the separation effectiveness is 

independent of the number of microphones, and there is no advantageous of using more 

microphones than only employing the minimum number of microphones. Hence there is no need 
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to increase the number of microphones, and the microphone number equal to the source number 

is enough for sound separation by PSS and ICA. 

Table 4.2. Correlation coefficients of sources separation using different numbers of microphones. 

 
     

     for PSS      
     for ICA 

1
st
 Source 2

nd
 Source 1

st
 Source 2

nd
 Source 

Two Microphones 99.04% 96.98% 96.1% 82.06% 

Three Microphones 99.65% 98.40% 95.79% 84.92% 

Four Microphones 99.00% 98.29% 91.80% 82.24% 

 

4.4.3 Impact of source type 

The type of source is also an important factor in sound separation, and it is desired that a 

separation method be applicable to all types of sources, because the type of sound sources are 

unknown in advance in most separation cases. In this dissertation, four different sound signals, 

the woman’s and man’s voice, chopper sound, and harp music are used in the three mixture cases 

tested.  

The correlation coefficients in Table 4.1 have shown that PSS can separate any kind of 

sources, and the effectiveness of separation is independent of the source type. However, the 

effectiveness of separation is different on the source type when ICA is used. This is because that 

the ICA algorithm consists of whitening and dimensionality reduction, which is based on the 

assumption that the sound sources are statistical independent and non-Gaussian. In other words, 

ICA employs the non-Gaussian and statistical independent characteristics of the sources to solve 

the sound separation problem. Therefore, it is designed to separate the signals which are non-

Gaussian, and when the source has a high Gaussianity, the assumption of the ICA algorithm is 

not fully satisfied, and the separation of the sound sources can no longer be guaranteed. In the 
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case when the signals are mixture of non-Gaussian sources, such as the woman’s and man’s 

voice, ICA can separate the sound source successfully; while when some more Gaussian sources 

involved in the mixtures, such as the chopper sound, the effectiveness of separation by ICA 

decreases.  

PSS employs the idea that sound are radiated from point sources, and transfer function 

between the sources and the measurements are defined by Green’s function in free field. It 

doesn’t have any restrictions on the type of sources in its algorithm, and the correlation 

coefficients shown in Table 1 also demonstrate that its separation is available for all types of 

sources.  

4.4.4 Impact of SNR 

In all the results given above, the two sources have the same amplitude, thus their SNR 

are zero. However, this may not always be true in reality. It is highly possible that the level of 

one source is higher than the other in many cases, and the separation of the sources is still needed. 

To validate the effectiveness of separation by both methods, the mixture of woman’s and man’s 

voice are used in the test, the woman’s voice is consider as the target source, while the man’s 

voice is an interfering background noise. The sound level of the man’s voice was increased step 

by step until it can totally mask the woman’s voice. At the beginning, the man’s voice has the 

same level as the woman’s voice, and SNR is zero dB; next, SNR is decreased to 5 dB, 10 dB, 

and 15 dB, which means the man’s voice is three times, ten times, and 32 times greater than the 

woman’s voice, respectively. And when the SNR = 15 dB, the woman’s voice is totally covered 

by the man’s voice, and can be hardly heard at the measurement points.  
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The mixed signals were taken as the input to PSS and ICA, respectively, and the 

correlation coefficient of the results and the original signals are shown in Table 4.3. The results 

by ICA are independent of SNR, as long as the type of sound sources satisfies the non-Gaussian 

and statistically independent characteristics.  On the other hand, separation results of PSS are 

influence by SNR. The correlation coefficient of target source decreases from 99.00% to 82.9% 

while SNR decreases from zero dB to 15 dB. However, as discussed above, the separation 

effectiveness of PSS is better than ICA in general. Thus when the SNR is above 10 dB, the 

correlation coefficients by PSS are still higher than those by ICA though they are influenced by 

SNR.  

Table 4.3. Correlation coefficients of sources separation under different SNR. 

 
     

     for PSS      
     for ICA 

Woman’s 

voice 
Man’s voice 

Woman’s 

voice 
Man’s voice 

SNR = 0 dB 99.00% 98.29% 91.8% 82.24% 

SNR = 5 dB 98.81% 99.56% 93.18% 93.73% 

SNR = 10  dB 97.17% 99.67% 89.08% 86.52% 

SNR = 15  dB 82.90% 99.68% 93.45% 86.70% 
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CHAPTER 5 

BLIND SOUND SOURCES LOCALIZATION AND SEPARATION 

After the validation of the sound source localization in Chapter 2 and PSS in Chapter 3, it 

is highly desirable to combine these two algorithms together. Therefore, once the directly 

measured signals at each microphone are obtained, the combined program can find the source 

location as well as reconstruct the source signals. In this chapter, the blind sources localization 

and separation (BSLS) is introduced and validated numerically, and impact of the accuracy of 

localization on the effectiveness of separation is discussed.  

5.1 Combined source localization and source separation 

The sound source localization and PSS algorithm share the same assumption that the 

sound is radiated from point sources in free field, and its travelling obeys the Green’s function in 

free field. Localization algorithm requires at least four microphones in order to find the sources 

positions in three-dimensional space; and PSS requires the number of microphone equal to or 

larger than that of the sources. Moreover, as the results shown in Chapter 4, the orthogonal 

microphone configuration has better separation effectiveness than the non-orthogonal one, and 

the orthogonal set is also validated in Chapter 2 and 3 that it can successfully locate multiple 

sound sources. Therefore the orthogonal microphone set, which consists of four microphones 

located at (0.5, 0, 0), (0, 0.5, 0), (0, 0, − 0.5), and (0, 0, 0.5) in meter in Cartesian coordinates, are 

utilized in the validation of BSLS.  

Sound source localization requires the input of the microphone positions and the 

measurement at each microphone; while PSS needs the microphone measurements and the 

relative positions of microphone and source. In other words, the inputs required by PSS are from 
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both the input and output of the sound source localization. Therefore, BSLS consists of two steps: 

First, use the localization algorithms to determine the source positions; second, take the 

calculated source positions and the measured signals as the input of PSS, the separated sound 

signals pairing with their locations can be obtained.  

Figure 5.1 demonstrates the detailed flowchart of BSLS. The positions of the 

microphones are fixed and their coordinates are stored in computer program in advance. Once 

the incident sound sources are measured by the microphones, the program automatically acquires 

the spectrogram of the measurement at Channel #1. One of the significantly high peaks on the 

spectrogram is found and its corresponding time domain signals at each microphone are selected 

to be the input of the sound source localization program. Note that the position of a peak in a 

spectrogram indicates both the time instance and frequency band information of the signal; 

therefore the selection of the corresponding time domain signals requires the windowing and 

filtering pre-processing introduced in Chapter 2. With the selected time domain signals at each 

microphone, the source localization algorithm can obtain the location of the dominant signal at 

this specific time and frequency band. As there can be multiple peaks in the spectrogram, the 

procedure of selecting time domain signals and finding source location should be repeated until 

all the peaks in spectrogram are evaluated or a satisfactory result of localization is obtain. 

Whenever a source location is found, its coordinates should be saved in the database for further 

use in the PSS program. However, as the localization procedure is conducted in iteration, and the 

peaks in the spectrogram may representing the same dominant source signal, it is possible that 

the newly calculated one coincides with a location already been saved in the database. At this 

point, if the location is already been stored, it doesn’t need to be saved again, thus the latest 

source localization result should be discarded; otherwise, it should be saved to the database of 
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the source locations.  This procedure of searching sources is looped until all the sound sources 

are located and their positions are saved in the database. Next, all the source locations, 

microphone positions, and the directly measured incident sound signals are used as the input of 

the PSS program. PSS separate and reconstruct the original sound sources, and output them 

pairing with their locations.   

 

Figure 5.1 Flow chart of BSLS 

Take one case for an example, assume that woman’s and man’s voices exist in space, and 

they are located at (0, 0, 1) and (2, 0, 0) in meter in Cartesian coordinates, respectively. The 

microphone positions, as mentioned above, are at (0.5, 0, 0), (0, 0.5, 0), (0, 0, − 0.5), and (0, 0, 
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0.5) in meter. The measurements at four microphones can be generated, and they are applied to 

the programming following the flowchart in Figure 5.1 to validate the blind sound sources 

localization and separation.  

In this example, the only inputs for the program are the positions of microphones and the 

mixed time domain signals at the four channels, as shown in Figure 5.2.  

 
(a) Sound signal measured at Channel #1 

 
(b) Sound signal measured at Channel #2 

 
(c) Sound signal measured at Channel #3 

 
(d) Sound signal measured at Channel #4 

Figure 5.2 Incident sound signals measured at four microphones 
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BSLS consists of following steps: 

1) Generate the spectrogram of the signal measured at Channel #1, as shown in 

Figure 5.3.  

2) Detect one of the amplitude peaks in the spectrogram, and find the time instance 

and frequency band of it. In this example, as the black crosshair shown in Figure 5.3, the 

peak is located at between 7 to 7.5 second in time domain, and about 400 Hz in frequency 

domain. Therefore a 0.5 second width window is applied to the signals at each channel, 

from 7 to 7.5 second, followed by a filter, which has the low and high pass frequency 

equal to 300 Hz and 500 Hz, respectively. The selected signals at four microphones are 

shown in Figure 5.4.  

 

 

Figure 5.3 Spectrogram of measured signal at Channel #1. The signal length is 10 second, and the 

frequency domain shows the information up to 2000 Hz. The black crosshair indicates one of the peak 

amplitude position inside this spectrogram, which happens between 7 to 7.5 second, and at frequency of 

300 to 500 Hz.  
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Figure 5.4 Corresponding time domain signals at four microphones. The data displayed in this figure are 

those after windowing and filtering pre-process. 

3) Use the selected signals as the input of the basic sound source localization 

algorithm. As the signal pre-processing procedure is already done in the last step, all one 

need to do is to estimate the time delays between microphones, submit them to Equation 

(2.8) and get the solution. In this example, the calculated source location corresponding 

to this particular point in the spectrogram is (0.0815947, 0.0815947, 0.840506) in meter.  

4) Save the position into the database. If the new source location is the same as 

anyone in the database, discard it; otherwise save it in the database. 

5) Go back to the spectrogram and find another amplitude peak, and then go through 

Step two to four. This step should be conducted multiple times until all the sources are 

found, in other words, no more new source location comes out in Step three. In this 

example, a second source location obtained is obtained at (1.56356, 0, 0).  

6) Take the directly measured signals of the sound sources and the sound source 

locations into the PSS program and reconstruct the original sound sources. In this 

  (a) Selected signal at Channel #1                         (b) Selected signal at Channel #2                        

 

  (c) Selected signal at Channel #3                         (d) Selected signal at Channel #4                      
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example, the two sources are at (0.0815947, 0.0815947, 0.840506) and (1.56356, 0, 0). 

The reconstructed sound signals represent the woman’s and man’s voice, respectively, as 

shown in Figure (b) and (c).  

 

(a) Mixed signals at Channel #1 (woman’s and man’s voices) 

 

                    (b) Separated woman’s voice using PSS         (c) Separated man’s voice using PSS 

Figure 5.5 . Separation of woman’s and man’s voices with an orthogonal array of microphones. (a) Mixed 

signals of woman’s and man’s voices measured at Mic. #1. (b) Separated woman’s voice using PSS; (c) 

Separated man’s voice using PSS; (d) Separated woman’s voice using ICA; and (e) Separated man’s 

voice using by ICA. 

5.2 Numerical simulation results 

Numerical simulation of BSLS was conducted in this section. Two sound sources were 

set at (0, 0, 1) and (2, 0, 0) in meter, respectively, and the orthogonal microphones configuration 

were chosen as (0.50, 0, 0), (0, 0.50, 0), (0, 0,  0.50) and (0, 0, 0.50) in meter. Real world 

sounds were utilized as the sound source signals, and three cases were tested, which are: 

1) Case 1: woman’s and man’s voice, 

2) Case 2: woman’s voice and chopper sound, and 
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3) Case 3: woman’s voice and harp music. 

The estimation of the mixed signals at microphones position is the same as those in 

Chapter 4. However, Chapter 4 only aims at the validation of PSS, and the source locations were 

considered as known input in Chapter 4. In this section, the only inputs for the program are the 

mixed signals and the positions of microphones. The source locations are firstly determined by 

the sound source localization program and then taken as the input for PSS.  

5.2.1 Case 1: Separation of mixed woman’s and man’s voices 

Figure 5.5 shows the BSLS results for the case that woman’s and man’s voice are mixed 

in space. Figure 5.5 (a) illustrates the mixed signal measured at Channel #1. After the procedure 

of finding the sound sources locations introduced above in Section 5.1, the two sound sources are 

located at (0.0815947, 0.0815947, 0.840506) and (1.56356, 0, 0) in meter, respectively. As 

mentioned above, the benchmark locations of the two sources are (0, 0, 1) and (2, 0, 0) in meter. 

The errors of sound localization are therefore 3.88% and 4.76%, respectively, which are 

calculated based on Equation (2.15) in Chapter 2. Take the calculated sound sources and the 

directly measurements at the four microphones as the input for PSS, the sound sources are 

separated as shown in Figure 5.5 (c). The separated results are clear and completed, with the 

correlation coefficient with the original signals equal to 96.27% and 87.12%, respectively.  

5.2.2 Case 2: Separation of mixed woman’s voice and chopper sound 

In the second case, the woman’s voice and chopper sound were mixed. The results are 

shown in Figure 5.6. Figure 5.6 (a) indicates the mixed signal measured at Channel #1. The 

program follows the flowchart in Figure 5.1 and two locations were detected at (0.0815947, 

0.0815947, 0.840506) and (1.98627,  0.0697182,  0.0697182) in meter, respectively. The 
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errors for the localization results in this case are 3.88% and 0.25%, respectively. Next, PSS was 

conducted and the separated signals are shown in Figure 5.6 (b) and (c), and they are paired with 

the sound source locations, respectively. The correlation coefficient on the woman’s voice result 

is 96.26%, and that for chopper sound is 94.59%, which illustrate that BSLS in this case is 

successful.  

 

(a) Mixed signals at Channel #1 (woman’s voice and chopper sound) 

      

                     (b) Separated woman’s voice using PSS          (c) Separated chopper sound using PSS 

Figure 5.6. Separation of woman voice and chopper sound with an orthogonal array of microphones. (a) 

Mixed signal of woman’s voice and chopper sound measured at Mic. #1. (b) Separated woman’s voice by 

using PSS; (c) Separated chopper sound by using PSS; (d) Separated woman’s voice by using ICA; and (e) 

Separated chopper sound by using ICA. 

5.2.3 Case 3: Separation of mixed woman’s voice and harp music 

Figure 5.7 demonstrate the third case where woman’s voice was mixed with harp music. 

Similar to the last two cases, the sound sources were located at (0.0815947, 0.0815947, 0.840506) 

and (1.56356, 0, 0) in meter, and their errors are 3.88% and 4.76%, respectively. The separated 

sound signals are shown in Figure 5.7 (b) and (c), and their correlation coefficients are 96.26% 
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and 89.95%, respectively. BSLS can also successfully reconstruct the original signals pairing 

with their locations.  

 

(a) Mixed signals at Channel #1 (woman’s voice and harp music sound) 

               

           (b) Separated woman’s voice using PSS                (c) Separated harp music sound using PSS 

Figure 5.7. Separation of woman’s voice and harp music sound with an orthogonal array of micro-phones. 

(a) Mixed signals of woman’s voice and harp sound measured at Mic. #1. (b) Separated woman’s voice 

by using PSS; (c) Separated harp sound by using PSS; (d) Separated woman’s voice by using ICA; and (e) 

Separated harp sound by using ICA. 

Summarizing the correlation coefficients of the results in the upper three cases, and 

comparing them with those obtained in Chapter 4, as Table 5.1 shows, it can be seen that BSLS 

is not as effective as the PSS. This is reasonable because PSS uses the input of the benchmark 

locations of the sound sources, but the blind source localization and separation program attempts 

to find out the locations of sound sources, and the locations calculated has some errors which 

may has a negative impact on the separation effect. However, BSLS has the advantages that it 

requires less input information than PSS: the locations of the sound sources are not required in its 
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program. This makes BSLS applicable, because the source locations are not available in many 

practical cases.  

What is more, if the results by BSLS are compared to those by ICA, it is obvious that it 

has better separation results than ICA in general. Moreover, the results by BSLS have not only 

the separated signals, but also their locations, which cannot be gained by ICA. The only 

difference of the input for these two methods is that BSLS needs the positions of microphones in 

advance, which is very easy to get; however, BSLS achieves more information of the sound 

sources, including their time domain signals and positions, and its separation effectiveness is also 

better than ICA.  

The processing time of BSLS is difficult to be predicted though, because the time costs in 

the loop in Figure 5.1 varies in every case, and it is the most time consuming part in the 

flowchart.  

Table 5.1. Comparisons of the correlation coefficients under different algorithms 

 

     
     for PSS      

     for BSLS      
     for ICA 

1
st
 

Source 

2
nd

 

Source 
1

st
 Source 2

nd
 Source 

1
st
 

Source 

2
nd

 

Source 

Woman’s voice vs. Man’s 

voice 
99.00% 98.29% 96.27% 87.12% 91.80% 82.24% 

Woman’s voice vs. 

Chopper sound 
98.97% 99.25% 96.26% 94.59% 93.20% 81.58% 

Woman’s voice vs. Music 

sound 
99.01% 98.74% 96.26% 89.95% 92.73% 69.83% 
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5.3 Impact of source localization error on PSS  

As shown in Table 5.1, the separation effectiveness is influenced by the sound source 

locations determined in the localization procedure. Therefore it is necessary to test the separation 

at various localization errors to get a better understanding of the BSLS method. In this section, 

the error of the localization was systematically generated, and they are introduced to the PSS 

procedures, and the correlation coefficients of the results based on the locations with errors are 

calculated.  

Suppose the location of the benchmark location is benchmarkr


, and with the definition of 

error in Equation (2.15), there can be infinite number of locations r


 which have the same error 

value, and there are distributed on a spherical surface of radius d centered at benchmarkr


. Some of 

the locations r


 may have stronger impact on the PSS procedure than the others. However, it is 

obvious not possible to test them one by one. In this dissertation, six r


were selected, where the 

radius d parallel to the Cartesian coordinates are added to benchmarkr


. Thus they can expressed as 

ibenchmarki drr


 , where i=1, 2, …, 6,  0 0 1 ,,dd 


,  0 0 2 ,,dd 


,  0  03 ,, dd 


, 

 0  04 ,, dd 


,  dd  0 05 ,,


,  dd   0 06 ,,


. The worst separated results by the six locations 

were used in the survey.   

Table 5.2 demonstrates the survey results of the correlation coefficients, and Figure 5.8 

uses the same data and plots them in a three-dimensional scale. The two sound source signals 

used in this test are woman’s and man’s voice, respectively. E1 and E2 indicate the error 

generated for the localization of these two sources, and the percentage values listed in the table 

are the correlation coefficients of the separated woman’s voice. Therefore Table 5.2 and Figure 

5.8 give us a general idea how the localization of the 1
st
 and 2

nd
 source influence the 
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reconstruction of the 1
st
 signal. Values above 90% in the table are highlighted with yellow color, 

which means the reconstruction is completed and very clear.  

Results show that the reconstruction effectiveness of the 1
st
 signal is more dependent on 

the accuracy of the 1
st
 source location than the 2

nd
 one. If the location of the 1

st
 signal is correctly 

located, the PSS program can lead to a satisfactory separated signal for the 1
st
 source even when 

the error of the 2
nd

 source location is 100%, which means the position of 2
nd

 source is incorrect.  

One the other hand, when the error of 1
st
 source location increases, the correlation coefficient of 

the 1
st
 source result decreases rapidly. In conclusion, for the BSLS algorithm, the successful 

reconstruction of one of the sources is majorly dependent on the accuracy of localization of this 

particular source, while the localization accuracies of other sources have limited influence on it.  

What is more, sound source separation doesn’t have high constraint on the accuracy of 

the source locations. It can be seen from Table 5.2 that even the errors of both source locations 

are as high as 35%, the correlation coefficient can still reach 90.10%, which means the 

separation works good.  

Table 5.2. Correlation coefficients in separated woman’s voice as shown in Figure 4. E1 and E2 are errors 

in locating woman’s and man’s voices, respectively. The highlighted area implies the region where PSS 

can produce satisfactory sources separation with 90% and above correlation. 
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Figure 5.8. Surface contour plot of the correlation coefficients for separated woman’s voice using PSS 

subject to errors in locating both sources for woman’s and man’s voices. 
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CHAPTER 6 

NEURAL SIGNALS LOCALIZATION INSIDE BRAIN AUDITORY STRUCTURE 

6.1 Neural signal de-noising   

An important aspect in any signal processing is to sanitize the directly measured data, 

also known as de-noising signals. This is no exception to analyzing neural signals. De-noising 

algorithm is applied to the neural signals to eliminate the unwanted background such as the 

electrical noise, because the random fluctuating of the background may cause the error in the 

source localization algorithm. In this dissertation, averaging methodology is applied to the time 

domain raw data, and the random fluctuations in the background noise are suppressed during the 

averaging process. The averaging algorithm is based on the assumption that neural responses 

measured at a fixed point resulting from stimulus acting at any source position remain the same, 

if the stimulus remains the same. In other words, the neural responses retain similar shapes, and 

their changes are primarily caused by the interferences from random background noises. In the 

experimental validations, the same stimulus is repeated multiple times, and a group of raw data 

responding to the same stimulus is obtained. Meanwhile, random background noise may change 

each time. So by taking averages of these data, it is possible to suppress the random fluctuations 

due to background noise contained in the data set, resulting in a cleaner set of data.  

Assume the measurement was repeated N times, and the raw data array is expressible as 

xn(i), where the subscript “n” is the number of the data array, 1  n  N, and the letter “i” indicate 

the index number of the array. The averaging algorithm consists of three steps: 

1) Synchronize the N set of data arrays using the position of the peaks. Find out the 

index of the peak position in each data array, and move the array back and 
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forward to make sure that the peak at the same index in every data array. The new 

data arrays can be expressed as xsyn,n(i’) . Note that the index number i’ is different 

from the index of the original data array i because the new array is moved along 

the time axis.  

2) Calculate the mean of the synchronized arrays and get the averaged neuron 

response to the stimulus. 

 



N

n

nsyn ix
N

x
1

 responseneuron 

1
',                                     (6.1) 

For example, if ten measurements were conducted responding to the same stimulus, the 

time domain array are recorded as shown in Figure 6.1(a).  Although the timing of the stimulus is 

controlled on purpose, the indices of the peaks still have some offsets, for example, the peak at 

the fourth array has some delay comparing to others. Thus, the index number of the peak at the 

fourth array is larger than the others. Synchronizing the data arrays leads to the results shown in 

Figure 6.1(b), where all the peaks at the tenth index in each array are aligned with each other. 

The shapes of these ten arrays are similar, but some random fluctuations in each array are 

observed. For example, a small peak occurs at around the 60
th

 index in the tenth array, while it 

doesn’t happen in the other arrays. Taking the average of the ten arrays can significantly reduce 

the contribution of the background noise in the signal. The averaged signal (see Figure 6.2) 

shows that the fluctuation around the 60
th

 index is eliminated.  
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(a) Raw data before synchronized 
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(b) Raw data after synchronized 

Figure 6.1 Raw data before and after synchronized 
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Figure 6.2 Averaged raw data 

6.2 Neural signals localization using time reversal algorithm   

Locating the tinnitus related hyper active neurons can help pinpoint the abnormalities in 

the brain auditory system, which is the first step in diagnosing tinnitus. Current technologies 

based on direct measurements of the neural activities can only observe neural activities at the tips 

electrodes, which makes it difficult to find out the precise location of the hyperactive neurons. 

One of the major problems of this approach is that the spatial resolution of the measured data is 

very low, which may lead to less effective treatment strategy for tinnitus. This difficulty is 

especially prevalent when the number of electrodes used in collecting neural activities is low.  

Moreover, the signals traveling in the brain auditory system does not obey any decay 

rules, which means that the amplitude of the measured signals are not necessarily reflecting the 

source locations of the hyper activities. Therefore, the source locations based on observations of 

the amplitudes of the data measured at individual electrodes are unreliable.  

In this dissertation, TR is used to process the input raw data measured by electrodes. 

Basically, the measured data in each channel is inversed in the time history, each electrode is 

treated as an imaginary source, and the time-reversed signals are propagated from these 
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imaginary sources back to the real source. Finally, by summing these time-reversed and back 

propagating signals at every point in space, the actual source location is identified. This is 

because only at the true source location, will the amplitude of the signal peak out. Figure 6.3 

shows the numerical validation of the TR algorithm applying to the brain auditory system to 

locate the sources.  This simulation test mimics a 4 × 8 electrode array with 500m between each 

sensor and each shank, and the locations of impulse sources are arbitrarily selected in space. The 

signal measured at each electrode was estimated and used as the input of the TR algorithm. 

Source localization was done through scanning at 100m interval. 

Figure 6.3(a) shows the contour of the amplitude measured at each electrode. Note that 

only the value exactly at the 32 sensors are reliable, and all the other color scale between the 

sensors are generated by interpolation, which may be reasonable, but not reliable enough to be 

used to determine the location of the source. Moreover, as discussed above, the amplitude is 

actually not necessarily reflecting the location of the source. Therefore even one can estimate the 

area of the source location by the direct measurement, it is still not reliable, and may not be the 

correct result of the source location.  

Figure 6.3 (b) shows the result processed by TR.  It is obvious that there are four sources 

in this numerical simulation, which are located at (0.6, 0.8), (1.2, 0.8), (2.2, 1.2), (2.2, 0.3) in 

millimeter in two-dimensional coordinate system. Unless the directly measured results in Figure 

6.3 (b), the TR result can pinpoint the precise location of the sources of the hyper activities, and 

the spatial resolution of the results are determined by the scanning step size and the sampling 

frequency of the raw data, which make it possible to be much smaller than the sensor spacing. 

What is more, TR can not only locate the sources within the coverage of the electrode arrays, but 
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also estimate the position of the sources outside the sensor coverage, though there may be errors 

on the results outside the sensor coverage because of those results are diverged.  

 

Figure 6.3 Numerical simulation of TR applied in brain auditory system. (a) Signals measured by a 4  8 

array of electrodes separated by 0.5 mm spacing. Results show that electrode positions #6, #10, #18, and 

#20 detected high activities. However, the spatial resolution is poor and interference of signals and noise 

contamination can distort the actual source locations. (b) Images produced by TR enable one to pinpoint 

the exact source locations, even when they fall between the electrodes. The TR results match nearly 

perfectly with the benchmark source locations. 

 

 

 

(a) Direct measurement 

 

 

 

 

 

(b) TR results 
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CHAPTER 7 

EXPERIMENTAL VALIDATION FOR NEURAL SIGNALS LOCALIZATION 

7.1 Experimental setup  

The experimental validation consists of two parts. The first part was the benchmark test, 

which was used to validate the feasibility of the TR method on source localization in the brain 

auditory system. Normal rats were used in this test, and ACES (define ACES) was applied at 

pre-determined locations to examine its effects on suppressing hyper active neural activities. The 

stimulus locations obtained by using the TR algorithm were compared to the benchmark stimulus 

locations, which were pre-selected. Also, the locations corresponding to spontaneous neural 

activities were identified by using the TR algorithm. The benchmark test was conducted by 

applying stimulus in the AC (define AC) of normal rats, and a 4 × 4 electrode array with 400m 

sensor spacing was used to collect the raw data at 3,051 Hz sampling frequency. 

The second part of the experimental validation was conducted on rats with and without 

tinnitus. The goals of this test are to: 1) compare the spontaneous activities of the tinnitus 

positive rats to those of normal rats, and 2) find out the exact positions of the hyper active 

neurons. Moreover, ACES treatments were performed on both normal and tinnitus positive rats. 

Spontaneous activities were collected again after ACES to see if ACES has any impact on 

suppressing the neural activities, especially for tinnitus positive rats. The second part of the 

experimental validation was also performed in the AC. A 2 × 8 electrode array with 400m 

sensor spacing was used to record the raw data at 3,051 Hz sampling frequency.  
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7.2 Benchmark test in AC  

Benchmark test was conducted in the AC of normal rats to validate the time reversal 

algorithm in the brain auditory structure. During the benchmark test, ACES was applied to pre-

determined locations in the AC and was used to estimate the hyper active neural activities. The 

stimulus were generated at every 0.5 second from 50 – 500A with a step of 5A, 10 impulses 

per level. The raw data were collected by a 4 × 4 electrode array with 400m between each 

sensor and each shank (See Figure 7.1), and the sampling frequency was as 3,051 Hz.  

                                                             

Figure 7.1 Electrode arrays used in the benchmark test. A 4×4 electrode arrays were used in the 

benchmark test in AC. 

Two cases were measured in the benchmark test: the first was the spontaneous neural 

activities of normal rats without any stimulus; and the second was the neural activities during 

stimulus. After the neural activities were collected in these two cases, the resultant raw data were 

taken as the input to the TR algorithm. There were several blocks in each case, and a five-minute 

long data were collected in each block to be processed. TR algorithm was conducted 60 times on 

each block, in which each calculation represented a five second length raw data. The source 

localization was done through scanning at 40m interval, which was 1/10 of the sensor spacing. 
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Results of the two cases were compared, and those results for the cases during ACES were 

compared to the benchmark stimulus location. 

Note that 3,051 Hz is the highest sampling frequency possible for the data acquisition 

system to collect multi-channel signals over the required lengths of time histories in these tests. 

The travel speed of signals in AC is estimated to be 0.08 m/s, based on the existing data collected 

in APRL. Therefore in the scanning process, the highest spatial resolution achievable is equal to 

0.08 / 3051 = 26 10
-6

 m or 26 m. The actual scanning step size may be equal to or larger than 

26 m, otherwise the results are not reliable. In this case the scanning step size is set at 40m. If 

a higher sampling frequency is used in this case, a higher spatial resolution can be achieved 

because the scanning step size can be smaller.  

The procedure of the data gathering in the benchmark test can be seen in Figure 7.2.  

Firstly, spontaneous activities without any stimulus were measured in the AC and the raw data 

were saved as Block 3. Secondly, the neuron activates during ACES were tested twice and the 

raw data were saved as Block 5 and 6, respectively. Thirdly, the spontaneous activities without 

stimulus were measured again as Block 7. Fourthly, the neural activities during ACES were 

measured as Block 9 and 10. Finally, the spontaneous activities were measured again as Block 

11. As shown in Figure 7.2, there are total three blocks of the spontaneous activities, and four 

blocks of data collected during the ACES.  
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Figure 7.2 Benchmark test flowchart 

The raw data collected in the two cases are illustrated in Figure 7.3. Figure 7.3 (a) shows 

the spontaneous activities in time domain, and the amplitude of the signals are very small. In the 

source localization procedure, the TR algorithm is applied to the signals at the spontaneous 

activities every five second and attempt to find a reasonable source based on that period of raw 

data. After 60 times of calculation, accumulative neural activities along the five minutes are 

distributed in space, which may denote the representation of the synaptic and discharging 

activities in the brain auditory structure.  

Figure 7.3 (b) shows the activities during the stimulus, and the significant peaks represent 

the artifacts of the stimulus. As the stimulus at each level repeated ten times, the averaging 

algorithm is added before the TR procedure to eliminate the background noises. The averaging 

was conducted on every level at each electrode, which includes ten responses of the ACES, 0.5 

second in each between. Moreover, the artifacts of the ACES at each point happen 

simultaneously with extremely high amplitude, but it is not the response of the neural activities 
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and should not be counted during TR. Therefore the artifacts were zeroed before the TR 

procedure. Similar as the TR procedure for the spontaneous activities, TR was also applied 60 

times to the processed time domain signals in the case during the stimulus, and a source 

distribution in space was obtained which represents the neural activities within five minutes.  

 
 

Figure 7.3 Time domain signals measure at spontaneous activities and during ACES. (a) shows the raw 

data of the spontaneous activities in time domain. (b) shows the raw data of the neural activities during 

ACES. The high peaks in the figure indicate the ACES. 

 

7.2.1 Spontaneous activities in AC  

Figure 7.4 to 7.6 shows the measurements and the TR results of spontaneous activities in 

AC.  Figure 7.4 (a) demonstrates the contour color map of the amplitude in the directly measured 

raw data in Block 3. The spatial resolution of the measurement is no better than the sensor 

spacing, and it cannot provide any information outside the coverage of the sensors. Figure 7.4 (b) 

and (c) show the TR results of Block 3 in two and three dimensional scale respectively. The 

scanning step size is 40m and the scanning coverage extended the sensor coverage 400m at 

each edge. Note that the scale range are fixed and the same in the spontaneous activities and the 

(a) Spontaneous activities signals                          (b) Neural activities during ACES 
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neural activities during stimulus for easy comparison. It can be seen from Figure 7.4 that the 

neural activities of Block 3 are random and very low.  

Figure 7.5 and 7.6 also show the measurement and TR results of spontaneous activities, 

which are obtained by the data of Block 7 and Block 11. Block 7 is the spontaneous activities 

measured between two set of ACES, and Block 11 is the post ACES measurement. It can be seen 

from Figure 7.4 to 7.6 that the spontaneous activities of normal rats are randomly distributed and 

relatively low.  

Figure 7.4 Direct measurement in Block 3 and its TR results for spontaneous activities in AC. Black dots 

indicate electrode locations. (a) shows the direct measurement contour, (b) and (c) demonstrate the TR 

results in 2D and 3D scales, respectively. The TR results show that the spontaneous activities in AC are 

random and the amplitude are relatively low. 

 

(a) Direct measurement 

 

 

 

 

 

 

 

   (b) TR results in 2D scales                               (3) TR results in 3D scales  
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Figure 7.5 Direct measurement in Block 7 and its TR results for spontaneous activities in AC. Black 

dots indicate electrode locations. (a) shows the direct measurement contour, (b) and (c) demonstrate the 

TR results in 2D and 3D scales, respectively. The TR results show that the spontaneous activities in AC 

are random and the amplitude are relatively low. 

 

(b) Direct measurement 

 

 

 

 

 

 

 

   (b) TR results in 2D scales                               (3) TR results in 3D scales  
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Figure 7.6 Direct measurement in Block 11 and its TR results for spontaneous activities in AC. Black 

dots indicate electrode locations. (a) shows the direct measurement contour, (b) and (c) demonstrate the 

TR results in 2D and 3D scales, respectively. The TR results show that the spontaneous activities in AC 

are random and the amplitude are relatively low. 

 

  

(c) Direct measurement 

 

 

 

 

 

 

 

   (b) TR results in 2D scales                               (3) TR results in 3D scales  
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7.2.2 Neural activities in AC during electronic stimulus 

Figure 7.7 to 7.10 demonstrate the measurement and source localization results of the 

blocks during ACES. It can be seen that the plotting of the directly measurements at each 

electrode cannot tell the correct source position. However, the TR results show that the 

amplitude of the activities around the center area is much higher than those in spontaneous 

activities. Note that the stimulus is accomplish at the center of the electrode arrays, and the black 

dashed circle indicates the position of the stimulus. The dimension of the ACES is about the 

same size as the sensor spacing, therefore any peak in the TR results that falls inside the black 

circle is correctly indicating the source signals.   

The results from Figure 7.4 to 7.10 indicate that the neuron responses to the ACES are 

much higher than spontaneous activities, and TR can successfully locate the position of hyper 

active neurons.  
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Figure 7.7 Direct measurement in Block 5 and its TR results for neural activities in AC during ACES. 

Black dots indicate electrode locations, and dashed circle shows the position of the stimulus. (a) shows 

the direct measurement contour, (b) and (c) demonstrate the TR results in 2D and 3D scales, respectively. 

The TR results show that the spontaneous activities in AC concentrates at the area of stimulus and the 

amplitude are high. 

 

(d) Direct measurement 

 

 

 

 

 

 

 

   (b) TR results in 2D scales                               (3) TR results in 3D scales  
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Figure 7.8 Direct measurement in Block 6 and its TR results for neural activities in AC during ACES. 

Black dots indicate electrode locations, and dashed circle shows the position of the stimulus. (a) shows 

the direct measurement contour, (b) and (c) demonstrate the TR results in 2D and 3D scales, respectively. 

The TR results show that the spontaneous activities in AC concentrates at the area of stimulus and the 

amplitude are significantly high. 

 

(e) Direct measurement 

 

 

 

 

 

 

 

   (b) TR results in 2D scales                               (3) TR results in 3D scales  
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Figure 7.9 Direct measurement in Block 9 and its TR results for neural activities in AC during ACES. 

Black dots indicate electrode locations, and dashed circle shows the position of the stimulus. (a) shows 

the direct measurement contour, (b) and (c) demonstrate the TR results in 2D and 3D scales, respectively. 

The TR results show that the spontaneous activities in AC concentrates at the area of stimulus and the 

amplitude are significantly high. 

 

(f) Direct measurement 

 

 

 

 

 

 

 

   (b) TR results in 2D scales                               (3) TR results in 3D scales  
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Figure 7.10 Direct measurement in Block 10 and its TR results for neural activities in AC during ACES. 

Black dots indicate electrode locations, and dashed circle shows the position of the stimulus. (a) shows 

the direct measurement contour, (b) and (c) demonstrate the TR results in 2D and 3D scales, respectively. 

The TR results show that the spontaneous activities in AC locate at the area of stimulus and the amplitude 

are significantly high. 

  

(g) Direct measurement 

 

 

 

 

 

 

 

   (b) TR results in 2D scales                               (3) TR results in 3D scales  
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7.2.3 Comparison of results 

As introduced above, Figure 7.4 to 7.6 indicate the spontaneous activities of a normal rat 

without any external stimulus, while the results in Figure 7.7 to 7.10 represent the neural 

activities responding to ACES. The peaks representing the spontaneous activities have a limited 

number and are randomly distributed in space. In addition, the amplitudes of these peaks are 

relatively small and even the highest one is under 0.0005.  

On the other hand, the peaks in the TR results during the ACES are much more than 

those during spontaneous activities. The amplitudes of the peaks representing the neural 

activities during ACES are large and can be up to 0.0015. In other words, the neurons are much 

more active during the ACES than spontaneous activities. What is more, the peaks are mostly 

concentrated at the center of coverage area of the electrode arrays, which coincide with the 

position of ACES.  

In conclusion, the results from Figure 7.4 to 7.10 indicate that the neuron responses to the 

ACES are much higher than spontaneous activities, and TR can successfully locate the position 

of hyper active neurons.  

7.3 Impact of ACES on suppressing tinnitus related neural activities in AC 

After the benchmark test, the TR algorithm is used to analyzing the raw data measured on 

the rats with and without tinnitus, before and after the ACES to locate the source signals and 

exam the effect of the ACES treatment on reducing the hyper neural activities in AC.  

A 2 × 8 electrode arrays (See Figure 7.11) with 400m sensor spacing were plugged in 

the AC area of the rats, as shown in Figure 7.12. The raw data of spontaneous activities were 
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measured at sampling frequency of 3,051 Hz, and then used as the input of TR to find the source 

location of the hyper activities.  

In the localization procedure, one minute raw data was selected from the time domain 

measurement, and TR was applied to each second length. Therefore totally 60 times TR 

algorithm were conducted on each set of data. The source localization was done through 

scanning at 80m interval, which is 1/5 of the sensor spacing, and the scanning coverage 

extended to 400 m outside the edge of electrode arrays. Note that the scanning step size can be 

as small as 26 m, which can lead to a high spatial resolution but at the cost of much longer 

computation time. As a compromise, a larger scanning step size at 80 m is selected.  

                                    

Figure 7.11 Electrode array used in experimental validation.  A 2×8 electrode arrays were used in the 

experimental validation on the rats with and without tinnitus before and after ACES. 

 

Figure 7.12 Experiment in AC area  
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Figure 7.13 shows the flowchart of the experimental validation procedure. Two groups of 

rats were employed in the test, one group is tinnitus positive, and the other group is tinnitus 

negative. At the beginning of the test, the spontaneous activities in time domain were collected in 

both groups, and TR was applied to the raw data and located the signal sources. Next, ACES 

were conducted on both groups of rats. Biphasic pulses at 75 µA intensity level of ACES were 

used in this test.  The width of the pulses was 100 µs, ten pulses were generated per second, the 

train duration is 500 ms, and the ACES lasted for one minute.  After the ACES procedure, the 

spontaneous activities of two groups were measured again. TR was conducted again on the 

measured raw data and located the sources. The TR results of two groups were compared to each 

other thus the differences between tinnitus positive and negative rats can be obtained. 

Additionally, the TR results before and after ACES in each group were also compared thus the 

effect of ACES can be examined.  

 

 

Figure 7.13 Flowchart of experimental validation on rats with and without tinnitus before and after ACES. 
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Data of two rats in each group are demonstrated in this dissertation. For the tinnitus 

positive group, the two rats are #ImpIE01 and #ImpIE11; and the rats in the tinnitus negative 

group are called #ImpIE06 and #ImpIE14.  

7.3.1 Case 1: Spontaneous neural activities of tinnitus positive rats before ACES 

Figure 7.14 and 7.15 illustrate the spontaneous neural activities of the rat #ImpIE01 and 

#ImpIE11 respectively, which are from the tinnitus positive group. The direct measurement in 

Figure 7.14 (a) and 7.15 (a) look similar, and they cannot tell the position of the hyper active 

signals. And as the TR result showed in Figure 7.14 (b) and (c), the source signals for the rat 

#ImpIE01 are mostly from a point between the electrodes #6, 7, 10, and 11, and the peak is 

significant which may represent the tinnitus related hyper activities. The source signals of rat 

#ImpIE11is also located between the electrodes #6, 7, 10, and 11, as Figure 7.15 shows, but the 

precise location is different from the one obtained by rat #ImpIE01. This is reasonable as the test 

is conducted on two rats, and difference between individuals exists.  
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Figure 7.14 Direct measurement in and its TR results for neural activities in AC of rat #ImpIE01. Black 

dots indicate electrode locations. (a) shows the direct measurement contour, (b) and (c) demonstrate the 

TR results in 2D and 3D scales, respectively. The TR results show that the spontaneous activities in AC 

are mainly at a particular position and the amplitude are significantly high high for the rats with tinnitus 

before ACES. 

 

    (b) TR results (2D scale)                                      (c) TR results (3D scale)          

(a) Direct measurement 
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Figure 7.15 Direct measurement in and its TR results for neural activities in AC of rat #ImpIE11. Black 

dots indicate electrode locations. (a) shows the direct measurement contour, (b) and (c) demonstrate the 

TR results in 2D and 3D scales, respectively. The TR results show that the spontaneous activities in AC 

are mainly at a particular position and the amplitude are significantly high for the rats with tinnitus before 

ACES. 

7.3.2 Case 2: Spontaneous neural activities of tinnitus negative rats before ACES 

Figure 7.16 and 7.17 indicate the direct measurement and TR results of spontaneous 

activities in the tinnitus negative group, and the rats are named #ImpIE06 and #ImpIE14 It can 

be seen that the direct measurement color maps in this group are still similar to those in the 

tinnitus positive group, and one cannot find a reliable solution of the hyper active source 

positions. The TR results of tinnitus negative group demonstrated in Figure 7.16 (b), (c), 7.17 (b), 

(b) TR results (2D scale)                                        (c) TR results (3D scale)          

(a) Direct measurement 
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and (c) has much lower peaks than those in the tinnitus positive group, and the position of the 

peaks are arbitrarily located.  

 

Figure 7.16 Direct measurement in and its TR results for neural activities in AC of rat #ImpIE06. Black 

dots indicate electrode locations. (a) shows the direct measurement contour, (b) and (c) demonstrate the 

TR results in 2D and 3D scales, respectively. The TR results show that the spontaneous activities in AC 

are random and the amplitude are low for the rats without tinnitus before ACES. 

 

(b) TR results (2D scale)                                         (c) TR results (3D scale)          

(a) Direct measurement 
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Figure 7.17 Direct measurement in and its TR results for neural activities in AC of rat #ImpIE14. Black 

dots indicate electrode locations. (a) shows the direct measurement contour, (b) and (c) demonstrate the 

TR results in 2D and 3D scales, respectively. The TR results show that the spontaneous activities in AC 

are random and the amplitude are low for the rats without tinnitus before ACES. 

7.3.3 Case 3: Spontaneous neural activities of tinnitus positive rats after ACES 

Figure 7.18 and 7.19 show the direct measurement and TR results of the tinnitus positive 

group after ACES. Note that ACES was applied on Channel #2 and 15 for both of the rats. The 

direct measurement cannot tell the position of the source signals. The amplitudes of the peaks in 

the TR results (See Figure 7.18 (b), (c), 7.19 (b), and (c)) are much smaller than those before 

ACES, which means that the neural activities of tinnitus positive rats were reduced after ACES.  

(b) TR results (2D scale)                                        (c) TR results (3D scale)          

(a) Direct measurement 
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Figure 7.18 Direct measurement in and its TR results for neural activities in AC of rat #ImpIE01. Black 

dots indicate electrode locations. (a) shows the direct measurement contour, (b) and (c) demonstrate the 

TR results in 2D and 3D scales, respectively. The TR results show that the spontaneous activities in AC 

are reduced for the rats with tinnitus before ACES. 

 

(b) TR results (2D scale)                                        (c) TR results (3D scale)          

(a) Direct measurement 
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Figure 7.19 Direct measurement in and its TR results for neural activities in AC of rat #ImpIE11. Black 

dots indicate electrode locations. (a) shows the direct measurement contour, (b) and (c) demonstrate the 

TR results in 2D and 3D scales, respectively. The TR results show that the spontaneous activities in AC 

are reduced for the rats with tinnitus before ACES. 

7.3.4 Case 4: Spontaneous neural activities of tinnitus negative rats after ACES 

Figure 7.20 and 7.21 show the direct measurement and TR results of the tinnitus negative 

group after ACES. Note that ACES was applied on Channel #7 and 10 for rat #ImpIE06 and on 

Channel #2 and 15 for rat #ImpIE14. The direct measurement cannot tell the position of the 

source signals, and the neural activities after ACES are still small and random for the tinnitus 

negative rats.  

(b) TR results (2D scale)                                        (c) TR results (3D scale)          

(a) Direct measurement 
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Figure 7.20 Direct measurement in and its TR results for neural activities in AC of rat #ImpIE06. Black 

dots indicate electrode locations. (a) shows the direct measurement contour, (b) and (c) demonstrate the 

TR results in 2D and 3D scales, respectively. The TR results show that the spontaneous activities in AC 

are random and the amplitude are low for the rats without tinnitus after ACES. 

 

(b) TR results (2D scale)                                        (c) TR results (3D scale)          

(a) Direct measurement 
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Figure 7.21 Direct measurement in and its TR results for neural activities in AC of rat #ImpIE14. Black 

dots indicate electrode locations. (a) shows the direct measurement contour, (b) and (c) demonstrate the 

TR results in 2D and 3D scales, respectively. The TR results show that the spontaneous activities in AC 

are random and the amplitude are low for the rats without tinnitus after ACES. 

Comparing the direct measurement and the TR results of the four cases demonstrated 

above, it can be seen that the tinnitus positive rats have strong activities in the AC, and the 

position of the hyper active neurons can be pinpointed by the TR algorithm. The spontaneous 

activities in the AC of the tinnitus negative rats are randomly distributed and the amplitudes are 

very small. ACES seems to be able to reduce the hyper neural activities in the AC for rats with 

tinnitus, while it doesn’t have very obvious effect on those rats without tinnitus.  

 

(b) TR results (2D scale)                                        (c) TR results (3D scale)          

(a) Direct measurement 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions  

This dissertation presents the innovative acoustic modeling based method for locating 

arbitrary and incoherent sound sources in 3D space in real time by using a minimal number of 

microphones, and the Point Source Separation (PSS) method for extracting target signals from 

directly measured mixed signals. Combining these two approaches leads to a novel technology 

known as Blind Sources Localization and Separation (BSLS) that enables one to locate multiple 

incoherent sound signals in 3D space and separate original individual sources simultaneously, 

based on the directly measured mixed signals. These technologies have been validated through 

numerical simulations and experiments conducted in various non-ideal environments where there 

are non-negligible, unspecified sound reflections and reverberation as well as interferences from 

random background noise. The advantages and limitations of the model based localization, PSS, 

and BSLS are summarized in Table 8.1.  

Another innovation presented in this dissertation is concerned with applications of the TR 

algorithm to pinpoint the exact locations of hyper-active neurons in the brain auditory structure 

that are directly correlated to the tinnitus perception. Benchmark tests conducted on normal rats 

have confirmed the localization results provided by the TR algorithm. Results demonstrate that 

the spatial resolution of this source localization can be as high as the micrometer level. This high 

precision localization may lead to a paradigm shift in conventional tinnitus diagnosis, which may 

in turn produce a more cost-effective treatment for tinnitus than any of the existing ones. 
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Table 8.1 Advantages and limitations of the model based localization, PSS, and BSLS 

 
Advantages Limitations 

Model based localization 

1. It can provide the precise 

locations of multiple sound 

sources in 3D space in real 

time. 

2. It can handle a variety of sound 

signals including continuous, 

random, impulsive, narrow- and 

broadband signals. 

3. It can cover a localization range 

up to seven times the 

microphone spacing.  

1. It is effective in a free field. 

2. Inside a confined space, its 

effectiveness will be affected 

by the presence of sound 

reflection and reverberation. 

3. It is not suitable for locating 

sound sources that emit tonal 

sounds. 

PSS 

It can exactly reconstruct the 

source signals in terms of 

amplitudes and phases.  

1. It needs source locations. 

2. It is suitable for a free field. 

BSLS 

1. It can provide the precise 

locations of multiple sound 

sources in 3D space in real 

time. 

2. It can handle a variety of sound 

signals including continuous, 

random, impulsive, narrow- and 

broadband signals. 

3. It can cover a localization range 

up to seven times the 

microphone spacing. 

4. It can exactly reconstruct the 

source signals in terms of 

amplitudes and phases 

1. It is effective in a free field. 

2. Inside a confined space, its 

effectiveness will be affected 

by the presence of sound 

reflection and reverberation. 

3. It is not suitable for locating 

sound sources that emit tonal 

sounds. 

8.2 Future work 

The research performed in this dissertation on source localization and separation has 

produced satisfactory results. However, there is much room for further improvements both 

theoretically and experimentally.  
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First of all, both of the localization and separation methods introduced in this dissertation 

assume that the environment is a free field. Such an idealized situation does not exist in reality. 

There are always sound reflections and reverberation, and interferences from background noise 

sources. Moreover, these effects are unknown a priori, and may vary from one environment to 

another. Therefore, it is necessary to account for these effects in the modeling and calculations so 

that the results may be more robust, repeatable and accurate.  

Second, experimental validations should be conducted with different types of sounds in 

various environments for PSS and BSLS algorithms. Moreover, more numerical simulations are 

needed to get a better understanding of the underlying characteristics of these methodologies.  

Third, more benchmark tests should be done on using the TR algorithm to locate hyper 

active neurons in the brain auditory structure. In particular, tests should be performed in the AC, 

inferior colliculus (IC) and dorsal cochlear nucleus (DCN) to ensure the feasibility of this new 

approach to pinpoint the precise locations of active neurons inside the brain auditory structure.  

Fourth, TR algorithm should be extended to locate neuron activities in 3D space. This can 

be accomplished by using implanting multi-channel electrodes in the 3D brain auditory structure, 

which will lead to more accurate diagnosis of the mechanisms underlying tinnitus pathology. 
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APPENDIX A – REAL TIME SOUND SOURCE LOCALIZATION PROGRAM 
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APPENDIX B – BLIND SOURCES LOCALIZATION AND SEPARATION 
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APPENDIX C – LOCALIZATION MAIN PROGRAM (SUB VI) 
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APPENDIX D – TDOA ESTIMATION (SUB VI) 
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APPENDIX E – REDUNDANCY CHECK ON TDOAS (SUB VI)   
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APPENDIX F – SOLVING EQUATION SET IN LOCALIZATION ALGORITHM (SUB 

VI)   
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APPENDIX G – SELECTION OF THE LOCATION FROM TWO ROOTS (SUB VI)   
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APPENDIX H – DISTANCE OF TWO POINTS IN SPACE (SUB VI)   
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APPENDIX I – SOURCE RANGE CALCULATION (SUB VI)   
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APPENDIX J – SOURCE RANGES FOR MULTIPLE SOURCES (SUB VI)   
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APPENDIX K – GENERATION OF  MIXED SIGNALS IN NUMERICAL SIMULATION 

(SUB VI)   
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APPENDIX L – NEURAL ACTIVITIES LOCALIZATION BY TR 

%%%%%%%%%%%%%%%%define parameters and input data%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear 
load block3 
SF=3051.757813;speed=0.08;stimbreak=0.5; 

pro_length=200;sensor_spacing=0.4*10^(-3); 
%assume the source is within the sensor coverage area, then the min delay 
%is zero, while the max delay is 65 index. using the pro_length=200 should 
%be long enough to cover the peak. Also the delayed signal's length can be 
%up to two times of pro_length. 
ch_position=[4 1;4 2;3 1;3 2;2 2;2 1;1 2;1 1;1 4;1 3;2 4;2 3;3 3;3 4;4 3;4 

4]*sensor_spacing; %sensor 
x=0:sensor_spacing/10:5*sensor_spacing;y=x;[x_scan y_scan]=meshgrid(x,y); % 

scan 
[R,L]=size(x_scan);x_scan= reshape(x_scan,R*L,1);y_scan= 

reshape(y_scan,R*L,1); 
%% 
peak_contour=zeros(R*L,1);count=0; 
for k=1:60 

 
%%%%%%E-stim%%%%%%%%%%%%%%%overlapping averaging begin%%%%%%%%%%%%%%%%%%%%%%% 
%     for n=1:16 
%         temp=zeros(pro_length,1); 
%         for l=1:10 
%             start_index=fix(SF*stimbreak*10*(k-1)+(l-

1)*SF*stimbreak)+1;end_index=start_index+fix(l*SF*stimbreak)-1; 
%             [C,I]=max(data(start_index:end_index,n)); 
%             temp=temp+data(I+start_index:I+start_index+pro_length-

1,n); %Estim 
%         end 
%         ch(:,n)=temp;clear temp; 
%         ch(:,n)=ch(:,n)/10; 
%         ch(:,n)=cleartrend(ch(:,n)); %clear trendency caused by artifact 
%         ch(1:15,n)=ch(1:15,n)*0;%only used in E-stim 
%     end 
%%%%%%%regular%%%%%%%%%%%%%%%no overlapping averaging 

end%%%%%%%%%%%%%%%%%%%%%%% 
%% 
ch=zeros(pro_length,16); 
start_index=fix(SF*stimbreak*10*(k-1))+1; 
[C,I]=max(data(start_index:start_index+SF*10*stimbreak,:)); 
[hist_n,xout]=hist(I); 
if (max(C<0.1e-3))%&&(max(hist_n)<8) 
I=max(I(1),pro_length/4); 
for n=1:16 
ch(:,n)=data(start_index+I-pro_length/4:start_index+I+3*pro_length/4-1,n); 
ch(:,n)=cleartrend(ch(:,n)); %clear trendency caused by artifact 
end 
%%%%%%%%%%%%%%time reveral program%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% 
ch_reverse=flipud(ch); 
peak=zeros(R*L,1); 
for m=1:R*L 
scan_position=[x_scan(m,1) y_scan(m,1)]; 
clear sum 
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sum=zeros(pro_length*2,1); 
for n=1:16; 
clear temp dis t 
dis=sqrt((scan_position(1)-ch_position(n,1))^2+(scan_position(2)-

ch_position(n,2))^2); 
t=dis/speed;zero_number=round(t*SF); 
temp=[zeros(zero_number,1) 
ch_reverse(:,n)]; %subplot(2,1,1); plot(temp);axis([0 400 -20e-3 20e-

3])%temp=temp(1:pro_length); 
sum(1:size(temp,1),1)=sum(1:size(temp,1),1)+temp(1:size(temp,1),1);%subplot(2

,1,2); plot(sum);axis([0 400 -50e-3 50e-3]); pause(1) 
end 
peak(m)=max(sum); 
end 
%% 
[C_max,I_max]=max(peak); 
if C_max>0 
peak=fix(peak/C_max)*C_max; 
else 
peak=peak*0; 
end 
x_scan_single = reshape(x_scan,R,L);y_scan_single = 

reshape(y_scan,R,L);peak_single= reshape(peak,R,L); 
clf; 
%subplot(2,1,1); 
peak_single(1:4,:)=peak_single(1:4,:)*0; 
peak_single(18:21,:)=peak_single(18:21,:)*0; 
peak_single(:,18:21)=peak_single(:,18:21)*0; 
peak_single(:,1:4)=peak_single(:,1:4)*0; 
surf(x_scan_single,y_scan_single,peak_single);caxis([0 6e-4]);axis([0 0.002 0 

0.002 0 1e-2]); 
hold 

on;plot3(ch_position(:,1),ch_position(:,2),ch_position(:,2)*0,'MarkerSize',8,

'Marker','o','LineWidth',2,'LineStyle','none',... 
'Color',[0 0 0]);hold on; 
refreshdata(peak_single,'caller');drawnow; 
%subplot(2,1,2); plot(hist_n); pause(1) 
%refreshdata(ch,'caller');drawnow; 
count=count+1; 
peak_contour=peak_contour+peak; 

 
disp(['finished=',num2str(k),'%']); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%% 
end  %only for regular one 
end 
%% 
%%%%%%%%%%%%%final plot%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%time reversal results%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x_scan = reshape(x_scan,R,L); 
y_scan = reshape(y_scan,R,L); 
peak_contour = reshape(peak_contour,R,L); 
% peak_contour(1:10,:)=peak_contour(1:10,:)*0; 
% peak_contour(41:51,:)=peak_contour(41:51,:)*0; 
% peak_contour(:,41:51)=peak_contour(:,41:51)*0; 
% peak_contour(:,1:10)=peak_contour(:,1:10)*0; 
subplot(2,2,4); 
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plot(ch_position(:,1),ch_position(:,2),'MarkerSize',8,'Marker','o','LineWidth

',2,'LineStyle','none',... 
'Color',[0 0 0]); 
surf(x_scan,y_scan,peak_contour);shading interp;view([-10 30]);hold on; 
subplot(2,2,3);plot3(ch_position(:,1),ch_position(:,2),ch_position(:,2)+100,'

MarkerSize',8,'Marker','o','LineWidth',2,'LineStyle','none',... 
'Color',[0 0 0]);hold on; 
surf(x_scan,y_scan,peak_contour);shading interp;view([0 90]); 
hold on; 
plot3(ch_position(:,1),ch_position(:,2),ch_position(:,2)*0,'MarkerSize',8,'Ma

rker','o','LineWidth',2,'LineStyle','none',... 
'Color',[0 0 0]);   axis([0 0.002 0 0.002]); 
%%%%%%%%%directed measured data%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
loudness=max(data);loudness_x=(ch_position(:,1))';loudness_y=(ch_position(:,2

))'; 
temp=loudness;surf_loudness=[temp(9) temp(11) temp(14) temp(16);temp(10) 

temp(12) temp(13) temp(15);temp(7) temp(5) temp(4) temp(2);temp(8) temp(6) 

temp(3) temp(1)];clear temp 
temp=loudness_x;surf_loudness_x=[temp(9) temp(11) temp(14) temp(16);temp(10) 

temp(12) temp(13) temp(15);temp(7) temp(5) temp(4) temp(2);temp(8) temp(6) 

temp(3) temp(1)];clear temp 
temp=loudness_y;surf_loudness_y=[temp(9) temp(11) temp(14) temp(16);temp(10) 

temp(12) temp(13) temp(15);temp(7) temp(5) temp(4) temp(2);temp(8) temp(6) 

temp(3) temp(1)];clear temp 
subplot(2,2,1);surf(surf_loudness_x,surf_loudness_y,surf_loudness);shading 

interp;view([0 90]); 
hold on; 
plot3(ch_position(:,1),ch_position(:,2),ch_position(:,2)*100,'MarkerSize',8,'

Marker','o','LineWidth',2,'LineStyle','none',... 
'Color',[0 0 0]);   axis([0 0.002 0 0.002]); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
function output=cleartrend(input) 
input=input'; 
t=1:1:length(input); 
p=polyfit(t,input,2); 
ch_trend=polyval(p,t); 
output=input-ch_trend; 
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This dissertation presents innovate methodologies for locating, extracting, and separating 

multiple incoherent sound sources in three-dimensional (3D) space; and applications of the time 

reversal (TR) algorithm to pinpoint the hyper active neural activities inside the brain auditory 

structure that are correlated to the tinnitus pathology. Specifically, an acoustic modeling based 

method is developed for locating arbitrary and incoherent sound sources in 3D space in real time 

by using a minimal number of microphones, and the Point Source Separation (PSS) method is 

developed for extracting target signals from directly measured mixed signals. Combining these 

two approaches leads to a novel technology known as Blind Sources Localization and Separation 

(BSLS) that enables one to locate multiple incoherent sound signals in 3D space and separate 

original individual sources simultaneously, based on the directly measured mixed signals. These 

technologies have been validated through numerical simulations and experiments conducted in 

various non-ideal environments where there are non-negligible, unspecified sound reflections 

and reverberation as well as interferences from random background noise. Another innovation 

presented in this dissertation is concerned with applications of the TR algorithm to pinpoint the 
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exact locations of hyper-active neurons in the brain auditory structure that are directly correlated 

to the tinnitus perception. Benchmark tests conducted on normal rats have confirmed the 

localization results provided by the TR algorithm. Results demonstrate that the spatial resolution 

of this source localization can be as high as the micrometer level. This high precision localization 

may lead to a paradigm shift in tinnitus diagnosis, which may in turn produce a more cost-

effective treatment for tinnitus than any of the existing ones. 
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