2,304 research outputs found

    Optimized biometric system based iris-signature for human identification

    Get PDF
    This research aimed at comparing iris-signature techniques, namely the Sequential Technique (ST) and the Standard Deviation Technique (SDT). Both techniques were measured by Backpropagation (BP), Probabilistic, Radial basis function (RBF), and Euclidian distance (ED) classifiers. A biometric system-based iris is developed to identify 30 of CASIA-v1 and 10 subjects from the Real-iris datasets. Then, the proposed unimodal system uses Fourier descriptors to extract the iris features and represent them as an iris-signature graph. The 150 values of input machine vector were optimized to include only high-frequency coefficients of the iris-signature, then the two optimization techniques are applied and compared. The first optimization (ST) selects sequentially new feature values with different lengths from the enrichment graph region that has rapid frequency changes. The second technique (SDT) chooses the high variance coefficients as a new feature of vectors based on the standard deviation formula. The results show that SDT achieved better recognition performance with the lowest vector-lengths, while Probabilistic and BP have the best accuracy

    Sparse multinomial kernel discriminant analysis (sMKDA)

    No full text
    Dimensionality reduction via canonical variate analysis (CVA) is important for pattern recognition and has been extended variously to permit more flexibility, e.g. by "kernelizing" the formulation. This can lead to over-fitting, usually ameliorated by regularization. Here, a method for sparse, multinomial kernel discriminant analysis (sMKDA) is proposed, using a sparse basis to control complexity. It is based on the connection between CVA and least-squares, and uses forward selection via orthogonal least-squares to approximate a basis, generalizing a similar approach for binomial problems. Classification can be performed directly via minimum Mahalanobis distance in the canonical variates. sMKDA achieves state-of-the-art performance in terms of accuracy and sparseness on 11 benchmark datasets

    Iris Image Recognition using Optimized Kohonen Self Organizing Neural Network

    Get PDF
    The pursuit to develop an effective people management system has widened over the years to manage the enormous increase in population. Any management system includes identification, verification and recognition stages. Iris recognition has become notable biometrics to support the management system due to its versatility and non-invasive approach. These systems help to identify the individual with the texture information distributed around the iris region. Many classification algorithms are available to help in iris recognition. But those are very sophisticated and require heavy computation. In this paper, an improved Kohonen self-organizing neural network (KSONN) is used to boost the performance of existing KSONN. This improvement is brought by the introduction of optimization technique into the learning phase of the KSONN. The proposed method shows improved accuracy of the recognition. Moreover, it also reduces the iterations required to train the network. From the experimental results, it is observed that the proposed method achieves a maximum accuracy of 98% in 85 iterations

    Bi-Modality Anxiety Emotion Recognition with PSO-CSVM

    Get PDF

    Multimodal Biometric Systems for Personal Identification and Authentication using Machine and Deep Learning Classifiers

    Get PDF
    Multimodal biometrics, using machine and deep learning, has recently gained interest over single biometric modalities. This interest stems from the fact that this technique improves recognition and, thus, provides more security. In fact, by combining the abilities of single biometrics, the fusion of two or more biometric modalities creates a robust recognition system that is resistant to the flaws of individual modalities. However, the excellent recognition of multimodal systems depends on multiple factors, such as the fusion scheme, fusion technique, feature extraction techniques, and classification method. In machine learning, existing works generally use different algorithms for feature extraction of modalities, which makes the system more complex. On the other hand, deep learning, with its ability to extract features automatically, has made recognition more efficient and accurate. Studies deploying deep learning algorithms in multimodal biometric systems tried to find a good compromise between the false acceptance and the false rejection rates (FAR and FRR) to choose the threshold in the matching step. This manual choice is not optimal and depends on the expertise of the solution designer, hence the need to automatize this step. From this perspective, the second part of this thesis details an end-to-end CNN algorithm with an automatic matching mechanism. This thesis has conducted two studies on face and iris multimodal biometric recognition. The first study proposes a new feature extraction technique for biometric systems based on machine learning. The iris and facial features extraction is performed using the Discrete Wavelet Transform (DWT) combined with the Singular Value Decomposition (SVD). Merging the relevant characteristics of the two modalities is used to create a pattern for an individual in the dataset. The experimental results show the robustness of our proposed technique and the efficiency when using the same feature extraction technique for both modalities. The proposed method outperformed the state-of-the-art and gave an accuracy of 98.90%. The second study proposes a deep learning approach using DensNet121 and FaceNet for iris and faces multimodal recognition using feature-level fusion and a new automatic matching technique. The proposed automatic matching approach does not use the threshold to ensure a better compromise between performance and FAR and FRR errors. However, it uses a trained multilayer perceptron (MLP) model that allows people’s automatic classification into two classes: recognized and unrecognized. This platform ensures an accurate and fully automatic process of multimodal recognition. The results obtained by the DenseNet121-FaceNet model by adopting feature-level fusion and automatic matching are very satisfactory. The proposed deep learning models give 99.78% of accuracy, and 99.56% of precision, with 0.22% of FRR and without FAR errors. The proposed and developed platform solutions in this thesis were tested and vali- dated in two different case studies, the central pharmacy of Al-Asria Eye Clinic in Dubai and the Abu Dhabi Police General Headquarters (Police GHQ). The solution allows fast identification of the persons authorized to access the different rooms. It thus protects the pharmacy against any medication abuse and the red zone in the military zone against the unauthorized use of weapons
    corecore