49 research outputs found

    On the Performance of Millimeter Wave-based RF-FSO Multi-hop and Mesh Networks

    Full text link
    This paper studies the performance of multi-hop and mesh networks composed of millimeter wave (MMW)-based radio frequency (RF) and free-space optical (FSO) links. The results are obtained in cases with and without hybrid automatic repeat request (HARQ). Taking the MMW characteristics of the RF links into account, we derive closed-form expressions for the networks' outage probability and ergodic achievable rates. We also evaluate the effect of various parameters such as power amplifiers efficiency, number of antennas as well as different coherence times of the RF and the FSO links on the system performance. Finally, we determine the minimum number of the transmit antennas in the RF link such that the same rate is supported in the RF- and the FSO-based hops. The results show the efficiency of the RF-FSO setups in different conditions. Moreover, HARQ can effectively improve the outage probability/energy efficiency, and compensate for the effect of hardware impairments in RF-FSO networks. For common parameter settings of the RF-FSO dual-hop networks, outage probability of 10^{-4} and code rate of 3 nats-per-channel-use, the implementation of HARQ with a maximum of 2 and 3 retransmissions reduces the required power, compared to cases with open-loop communication, by 13 and 17 dB, respectively.Comment: Submitted to IEEE Transactions on Wireless Communication

    On the Performance of Terrestrial Free-Space Optical (FSO) Links under the Presence of Generalized Pointing Errors

    Get PDF
    En ambos grupos se han obtenido expresiones matemáticas en forma cerrada que permiten evaluar la capacidad en todo el rango de valores de SNR (Signal-to-Noise Ratio) en algunos casos y, en otros, solo ha sido posible obtener su comportamiento asintótico debido a la dificultad matemática que presentaba el análisis. A la luz de los resultados obtenidos, podemos concluir que los sistemas MISO FSO son probablemente la solución más interesante en comparación a los sistemas SIMO y MIMO FSO. Al mismo tiempo, los resultados obtenidos en comunicaciones cooperativas permiten concluir que los sistemas cooperativos basados en retransmisión DF son capaces de aumentar la capacidad e incluso mejorar a la capacidad obtenida por un sistema basado en diversidad espacial para determinadas posiciones del nodo retransmisor. En el caso de las contribuciones realizadas en el modelado de errores por desapuntamiento generalizado, los cuales siguen una distribución Beckmann, podemos destacar la aproximación propuesta en esta tesis que nos permite incluir de una forma eficiente y sencilla dichos errores por desapuntamiento al análisis de prestaciones de cualquier sistema de comunicaciones FSO. La herramienta propuesta es válida para analizar cualquier sistema FSO en términos de BER y probabilidad de outage y nos permite detectar qué efecto es dominante, es decir, si la turbulencia atmosférica o los errores por desapuntamiento. El efecto de la correlación también ha sido contemplado, concluyendo que no puede ser ignorado.Los sistemas de comunicaciones ópticas en espacio libre (FSO, Free-Space Optical) para aplicaciones terrestres se presentan en la actualidad como una solución muy interesante para solventar el importante reto provocado por la escasez del espectro RF (Radio-Frequency) disponible. Además, los sistemas FSO se configuran como una seria alternativa frente a otras tecnologías de acceso y transporte como los sistemas de RF debido a las altas tasas de señalización potencialmente muy superiores que se pueden conseguir. Estas ventajas, entre otras, han intensificado la investigación en estos sistemas en las últimas décadas. Por tanto, el análisis de sus prestaciones en términos de probabilidad de error de bit (BER, Bit Error-Rate), probabilidad de outage y capacidad ergódica es de interés relevante, siendo estas altamente afectadas por la turbulencia atmosférica, los errores por desapuntamiento entre transmisor y receptor así como por la niebla densa. En esta tesis, el análisis de las prestaciones de los sistemas FSO ha sido abordado, presentando novedosos resultados para la comunidad científica e investigadora. Dicho análisis de prestaciones se ha dividido en dos grandes áreas de investigación: análisis de la capacidad ergódica, y modelado de errores por desapuntamiento generalizado entre transmisor y receptor. Las contribuciones realizadas dentro del análisis de la capacidad ergódica están divididas en dos grupos: por un lado, el análisis de la capacidad de sistemas FSO avanzados basados en diversidad espacial tales como los sistemas MISO (Multiple-Input/Single-Output), SIMO (Single-Input/Multiple-Output) y MIMO(Multiple-Input/Multiple-Output) FSO; por otro lado, el análisis de la capacidad de sistemas cooperativos basados en retransmisión DF (Detect-and-Forward)

    Performance analysis of RF-FSO multi-hop networks

    Get PDF
    We study the performance of multi-hop networks composed of millimeter wave (MMW)-based radio frequency (RF) and free-space optical (FSO) links. The results are obtained in the cases with and without hybrid automatic repeat request (HARQ). Taking the MMW characteristics of the RF links into account, we derive closed-form expressions for the network outage probability. We also evaluate the effect of various parameters such as power amplifiers efficiency, number of antennas as well as different coherence times of the RF and the FSO links on the system performance. Finally, we present mappings between the performance of RF-FSO multi-hop networks and the ones using only the RF- or the FSO-based communication, in the sense that with appropriate parameter settings the same outage probability is achieved in these setups. The results show the efficiency of the RF-FSO setups in different conditions. Moreover, the HARQ can effectively improve the outage probability/energy efficiency, and compensate the effect of hardware impairments in RF-FSO networks. For common parameter settings of the RF-FSO dual-hop networks, outage probability 10^{-4} and code rate 3 nats-per-channel-use, the implementation of HARQ with a maximum of 2 and 3 retransmissions reduces the required power, compared to the cases with no HARQ, by 13 and 17 dB, respectively.Comment: Presented at IEEE WCNC 201

    Performance evaluation of turbulence-accentuated interchannel crosstalk for hybrid fibre and free-space optical wavelength-division-multiplexing systems using digital pulse-position modulation

    Get PDF
    A hybrid fibre and free-space optical communication link using digital pulse-position modulation (DPPM) in a wavelength-division-multiplexing system is proposed. Such a system, which could provide a power efficient, robust and flexible solution to high-speed access networks, is a contender for a passive optical network solution and could readily be deployed in areas with restrictions in optical fibre installation, or alternatively as a disaster recovery network. Interchannel crosstalk and atmospheric turbulence are major impairments in such a system and could combine in some cases to degrade the system. Both impairments are investigated here and the results are presented in the form of bit error probability, required optical transmission power and power penalties. Depending on the position of the interferer relative to the desired user, power penalties of about 0.2–3.0 dB for weak turbulence and above 20 dB for strong turbulence regimes are reported for bit error rate of 10−6. DPPM scheme with a coding level of 2 show about 2 dB improvements over on–off-keying scheme

    Relay-Assisted Free-Space Optical Communications

    Get PDF
    The atmospheric lightwave propagation is considerably influenced by the random variations in the refractive index of air pockets due to turbulence. This undesired effect significantly degrades the performance of free-space optical (FSO) communication systems. Interestingly, the severity of such random degradations is highly related to the range of atmospheric propagation. In this thesis, we introduce relay-assisted FSO communications as a very promising technique to combat the degradation effects of atmospheric turbulence. Considering different configurations of the relays, we quantify the outage behavior of the relay-assisted system and identify the optimum relaying scheme. We further optimize the performance of the relay-assisted FSO system subject to some power constraints and provide optimal power control strategies for different scenarios under consideration. Moreover, an application of FSO relaying technique in quantum communications is investigated. The results demonstrate impressive performance improvements for the proposed relay-assisted FSO systems with respect to the conventional direct transmission whether applied in a classical or a quantum communication channel

    Introduction to free space optical (FSO) communications

    Get PDF
    The demand for high bandwidth and secure communication is increasing. Free space optical (FSO) wireless communications technology could be one possible alternative option to the RF technologies that can be adopted in certain applications to unlock the bandwidth bottleneck issue, specifically in the last mile access networks, between mobile base stations in RF cellular wireless networks, and for radio over fiber; and over the last decade, we have seen growing research and development activities in FSO communications in the field of high data rate wireless technology applications as well as the emergence of commercial systems

    Robust Optical Wireless Links over Turbulent Media using Diversity Solutions

    Get PDF
    Free-space optic (FSO) technology, i.e., optical wireless communication (OWC), is widely recognized as superior to radio frequency (RF) in many aspects. Visible and invisible optical wireless links solve first/last mile connectivity problems and provide secure, jam-free communication. FSO is license-free and delivers high-speed data rates in the order of Gigabits. Its advantages have fostered significant research efforts aimed at utilizing optical wireless communication, e.g. visible light communication (VLC), for high-speed, secure, indoor communication under the IEEE 802.15.7 standard. However, conventional optical wireless links demand precise optical alignment and suffer from atmospheric turbulence. When compared with RF, they suffer a low degree of reliability and lack robustness. Pointing errors cause optical transceiver misalignment, adversely affecting system reliability. Furthermore, atmospheric turbulence causes irradiance fluctuations and beam broadening of transmitted light. Innovative solutions to overcome limitations on the exploitation of high-speed optical wireless links are greatly needed.Spatial diversity is known to improve RF wireless communication systems. Similar diversity approaches can be adapted for FSO systems to improve its reliability and robustness; however, careful diversity design is needed since FSO apertures typically remain unbalanced as a result of FSO system sensitivity to misalignment. Conventional diversity combining schemes require persistent aperture monitoring and repetitive switching, thus increasing FSO implementation complexities. Furthermore, current RF diversity combining schemes may not be optimized to address the issue of unbalanced FSO receiving apertures.This dissertation investigates two efficient diversity combining schemes for multi-receiving FSO systems: switched diversity combining and generalized selection combining. Both can be exploited to reduce complexity and improve combining efficiency. Unlike maximum ratio combing, equal gain combining, and selective combining, switched diversity simplifies receiver design by avoiding unnecessary switching among receiving apertures. The most significant advantage of generalized combining is its ability to exclude apertures with low quality that could potentially affect the resultant output signal performance.This dissertation also investigates mobile FSO by considering a multi-receiving system in which all receiving FSO apertures are circularly placed on a platform. System mobility and performance are analyzed. Performance results confirm improvements when using angular diversity and generalized selection combining.The précis of this dissertation establishes the foundation of reliable FSO communications using efficient diversity-based solutions. Performance parameters are analyzed mathematically, and then evaluated using computer simulations. A testbed prototype is developed to facilitate the evaluation of optical wireless links via lab experiments

    Predictor Antenna Systems: Exploiting Channel State Information for Vehicle Communications

    Get PDF
    Vehicle communication is one of the most important use cases in the fifth generation of wireless networks (5G).\ua0 The growing demand for quality of service (QoS) characterized by performance metrics, such as spectrum efficiency, peak data rate, and outage probability, is mainly limited by inaccurate prediction/estimation of channel state information (CSI) of the rapidly changing environment around moving vehicles. One way to increase the prediction horizon of CSI in order to improve the QoS is deploying predictor antennas (PAs).\ua0 A PA system consists of two sets of antennas typically mounted on the roof of a vehicle, where the PAs positioned at the front of the vehicle are used to predict the CSI observed by the receive antennas (RAs) that are aligned behind the PAs. In realistic PA systems, however, the actual benefit is affected by a variety of factors, including spatial mismatch, antenna utilization, temporal correlation of scattering environment, and CSI estimation error. This thesis investigates different resource allocation schemes for the PA systems under practical constraints, with main contributions summarized as follows.First, in Paper A, we study the PA system in the presence of the so-called spatial mismatch problem, i.e., when the channel observed by the PA is not exactly the same as the one experienced by the RA. We derive closed-form expressions for the throughput-optimized rate adaptation, and evaluate the system performance in various temporally-correlated conditions for the scattering environment. Our results indicate that PA-assisted adaptive rate adaptation leads to a considerable performance improvement, compared to the cases with no rate adaptation. Then, to simplify e.g., various integral calculations as well as different operations such as parameter optimization, in Paper B, we propose a semi-linear approximation of the Marcum Q-function, and apply the proposed approximation to the evaluation of the PA system. We also perform deep analysis of the effect of various parameters such as antenna separation as well as CSI estimation error. As we show, our proposed approximation scheme enables us to analyze PA systems with high accuracy.The second part of the thesis focuses on improving the spectral efficiency of the PA system by involving the PA into data transmission. In Paper C, we analyze the outage-limited performance of PA systems using hybrid automatic repeat request (HARQ). With our proposed approach, the PA is used not only for improving the CSI in the retransmissions to the RA, but also for data transmission in the initial round.\ua0 As we show in the analytical and the simulation results, the combination of PA and HARQ protocols makes it possible to improve the spectral efficiency and adapt transmission parameters to mitigate the effect of spatial mismatch
    corecore