6 research outputs found

    The Development and Application of Microwave Heating

    Get PDF
    Microwave heating has found many applications ranging from the microwave ovens in kitchen to heat food, to a sterilization apparatus for medical treatment, to materials processing in the various fields. In those applications, microwave heating demonstrates significant advantages over conventional methods in reduced processing time and less environmental impacts. This book is comprised of eight chapters within three parts highlighting different aspects covering both the basic understandings and the advanced applications. The included discussion on the application of microwave heating in the field of food-, chemical engineering-, agricultural-, forestry- and mineral processing industry will provide a passage for future research. As a monograph, it is designed to be a fundamental reference book, aiming to help the readers to concentrate on the key aspects behind the success in microwave heating

    Chapter 34 - Biocompatibility of nanocellulose: Emerging biomedical applications

    Get PDF
    Nanocellulose already proved to be a highly relevant material for biomedical applications, ensued by its outstanding mechanical properties and, more importantly, its biocompatibility. Nevertheless, despite their previous intensive research, a notable number of emerging applications are still being developed. Interestingly, this drive is not solely based on the nanocellulose features, but also heavily dependent on sustainability. The three core nanocelluloses encompass cellulose nanocrystals (CNCs), cellulose nanofibrils (CNFs), and bacterial nanocellulose (BNC). All these different types of nanocellulose display highly interesting biomedical properties per se, after modification and when used in composite formulations. Novel applications that use nanocellulose includewell-known areas, namely, wound dressings, implants, indwelling medical devices, scaffolds, and novel printed scaffolds. Their cytotoxicity and biocompatibility using recent methodologies are thoroughly analyzed to reinforce their near future applicability. By analyzing the pristine core nanocellulose, none display cytotoxicity. However, CNF has the highest potential to fail long-term biocompatibility since it tends to trigger inflammation. On the other hand, neverdried BNC displays a remarkable biocompatibility. Despite this, all nanocelluloses clearly represent a flag bearer of future superior biomaterials, being elite materials in the urgent replacement of our petrochemical dependence

    Nanofibers - production, properties and functional applications

    Full text link
    With the rapid development of nanoscience and nanotechnology over the last decades, great progress has been made not only in the preparation and characterization of nanomaterials, but also in their functional applications. As an important one-dimensional nanomaterial, nanofibers have extremely high specific surface area because of their small diameters, and nanofiber membranes are highly porous with excellent pore interconnectivity. These unique characteristics plus the functionalities from the materials themselves impart nanofibers with a number of novel properties for applications in areas as various as biomedical engineering, wound healing, drug delivery and release control, catalyst and enzyme carriers, filtration, environment protection, composite reinforcement, sensors, optics, energy harvest and storage , and many others. More and more emphasis has recently been placed on large-scale nanofiber production, the key technology to the wide usages of nanofibers in practice. Tremendous efforts have been made on producing nanofibers from special materials. Concerns have been raised to the safety issue of nanofibrous materials. This book is a compilation of contributions made by experts who specialize in their chosen field. It is grouped into three sections composed of twenty-one chapters, providing an up-to-date coverage of nanofiber preparation, properties and functional applications. I am deeply appreciative of all the authors and have no doubt that their contribution will be a useful resource of anyone associated with the discipline of nanofibers

    SELF-ORGANIZATION IN MICROWAVE FILAMENTARY DISCHARGES

    Get PDF
    We studied the self organising phenomena im filamntary microwave discharge at various pressures and excitation types

    Removal of Target PPCPs from Secondary Effluent Using AOPs and Novel Adsorbents

    Get PDF
    Atenolol (ÎČ-blocker), Clofibric Acid (Lipid regulators) and Diclofenac (Anti-inflammatory) are the drugs widely used and reported to have adverse effects on fish and other organisms. These drugs are found at trace levels in lakes, rivers and sewage treatment plants and conventional treatment plants are ineffective to eliminate these at those levels. A high resolution LC-MS/MS was used to quantify these drugs at low levels. Various advanced oxidation methods were used for the present research to eliminate these drugs from secondary effluent. Complete removal of PPCPs was achieved by synthesizing immobilized TiO2 on a stainless steel mesh and using a combination of O3/UV/TiO2 a very powerful technique. Although individual advanced oxidation process or a combination of two AOPs were able to remove it to a lesser extent. In2O3 porous microspheres, nanocubes, nanoplates and nano crystals were synthesized and used for treatment of secondary effluent. Results have shown that the complete removal of PPCPs was achieved in shorter duration in comparison to the various AOPs using TiO2. Out of these four In2O3 nano materials, porous microspheres exhibited higher activity compared to others. A deciduous wood biomass was subjected to slow pyrolysis at a rate of 7oC/min in the absence of oxygen to 700oC leading to the formation of biochar (BC). The produced biochar had increased surface area and micro porosity. Batch sorption studies were conducted using biochar, natural zeolite (Chabazite) and chemically activated biochar. It was observed that chemically activated biochar was highly efficient followed by biochar

    Hydrothermal synthesis of inorganic nanoparticles for potential technological applications : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Chemistry at Massey University, Manawatū, New Zealand

    Get PDF
    Figures are re-used with the publishers' permission.Iron oxide nanoparticles (IONPs) are of interest in a diverse range of environmental and biomedical applications due to their intrinsic chemical, physical and thermal features such as superparamagnetism, high surface-to-volume ratios, high biocompatibility, low toxicity and easy magnetic separation. Many technological applications necessitate small (diameter < 20 nm) nanoparticles with narrow size distributions (< 5 %) and pronounced saturation magnetisation (Ms) for uniform physical and chemical effects. Historically, the synthesis of IONPs with controlled size and size distribution without particle agglomeration has proved challenging. In this thesis, we utilised an easy hydrothermal route and successfully synthesized two common phases of IONPs, namely Fe₃O₄ (magnetite) and α-Fe₂O₃ (hematite), using Fe(acac)₃ as iron source. By controlling the reaction conditions such as time, temperature, and the concentration of surfactants such as PVP and oleic acid, the different phases were selectively synthesized. The prepared nanoparticles were fully characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), energy dispersive X-Ray spectroscopy (EDS), atomic absorption spectroscopy (AAS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), vibrating-sample magnetometry (VSM), Brunauer-Emmett-Teller (BET) surface area measurements, photoluminescence (PL) and UV–Vis diffuse reflectance spectroscopy (UV–Vis/DRS). In Part I of this thesis, Fe₃O₄ and metal-doped spinel MxFe₃−xO₄ (M = Fe, Mg, Mn, Zn) nanoferrites were synthesised as agents for cancer treatment via a method called magnetic fluid hyperthermia (MFH). In Part II, α-Fe₂O₃ nanoparticles were hybridized with tin (II) sulfide (SnS) to create p-n heterojunction photocatalysts for efficient H2 production via ethanol photoreforming
    corecore