10 research outputs found

    Numerical study for single and multiple damage detection and localization in beam-like structures using BAT algorithm

    Get PDF
    This paper presents a new damage detection and localization technique based on the changes in vibration parameters using BAT and Particle Swarm Optimization algorithm. The finite element method is used to apply damage at specific element(s) of the considered beams. The damage is represented by a reduction in Young's modulus and the identification of damage is formulated as an optimization problem using objective function based on Modal Scale Factor and changes in natural frequencies. A procedure for detecting and locating damage of beam-like structures based on BAT algorithm is used. This approach presents a method that can be used to detect the single and multiple-damage positions and the rate of damage in structural elements with high accuracy after the first iteration. The results obtained using BAT algorithm are compared to those obtained using Particle Swarm Optimization Algorithm. By taking noise into account in the damage detection and localization problem, it is shown that our approach based on BAT algorithm can detect the damage locations with high accuracy

    Multiple damage detection in composite beams using particle swarm optimization and genetic algorithm

    No full text
    This paper presents a methodology for damage detection and localization in composite beams using vibration data, Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). The data was acquired by developing a program that performs dynamic analysis of unidirectional graphite -epoxy composite beams based on the Finite Element Method (FEM). The objective function makes use of natural frequencies and Modal Assurance Criterion. The proposed methodology is validated using numerically simulated data and experimental data. A comparative study between the performances of PSO and GA in detecting multiple and single damage scenarios is carried out. Then, the effect of noise is investigated by taking different noise levels in the modal data It appears that the noise has a negligible effect on the performance of the presented approaches

    Numerical study for single and multiple damage detection and localization in beam-like structures using BAT algorithm

    Get PDF
    This paper presents a new damage detection and localization technique based on the changes in vibration parameters using BAT and Particle Swarm Optimization algorithm. The finite element method is used to apply damage at specific element(s) of the considered beams. The damage is represented by a reduction in Young’s modulus and the identification of damage is formulated as an optimization problem using objective function based on Modal Scale Factor and changes in natural frequencies. A procedure for detecting and locating damage of beam-like structures based on BAT algorithm is used. This approach presents a method that can be used to detect the single and multiple-damage positions and the rate of damage in structural elements with high accuracy after the first iteration. The results obtained using BAT algorithm are compared to those obtained using Particle Swarm Optimization Algorithm. By taking noise into account in the damage detection and localization problem, it is shown that our approach based on BAT algorithm can detect the damage locations with high accuracy

    Republished Paper. Numerical study for single and multiple damage detection and localization in beam-like structures using BAT algorithm

    Get PDF
    This paper presents a new damage detection and localization technique based on the changes in vibration parameters using BAT and Particle Swarm Optimization algorithm. The finite element method is used to apply damage at specific element(s) of the considered beams. The damage is represented by a reduction in Young’s modulus and the identification of damage is formulated as an optimization problem using objective function based on Modal Scale Factor and changes in natural frequencies. A procedure for detecting and locating damage of beam-like structures based on BAT algorithm is used. This approach presents a method that can be used to detect the single and multiple-damage positions and the rate of damage in structural elements with high accuracy after the first iteration. The results obtained using BAT algorithm are compared to those obtained using Particle Swarm Optimization Algorithm. By taking noise into account in the damage detection and localization problem, it is shown that our approach based on BAT algorithm can detect the damage locations with high accuracy

    Bayesian model selection and parameter estimation for fatigue damage progression models in composites

    Get PDF
    A Bayesian approach is presented for selecting the most probable model class among a set of damage mechanics models for fatigue damage progression in composites. Candidate models, that are first parameterized through a Global Sensitivity Analysis, are ranked based on estimated probabilities that measure the extent of agreement of their predictions with observed data. A case study is presented using multi-scale fatigue damage data from a cross-ply carbon–epoxy laminate. The results show that, for this case, the most probable model class among the competing candidates is the one that involves the simplest damage mechanics. The principle of Ockham's razor seems to hold true for the composite materials investigated here since the data-fit of more complex models is penalized, as they extract more information from the data

    A Review of Structural Health Monitoring Techniques as Applied to Composite Structures.

    Get PDF
    Structural Health Monitoring (SHM) is the process of collecting, interpreting, and analysing data from structures in order to determine its health status and the remaining life span. Composite materials have been extensively use in recent years in several industries with the aim at reducing the total weight of structures while improving their mechanical properties. However, composite materials are prone to develop damage when subjected to low to medium impacts (ie 1 – 10 m/s and 11 – 30 m/s respectively). Hence, the need to use SHM techniques to detect damage at the incipient initiation in composite materials is of high importance. Despite the availability of several SHM methods for the damage identification in composite structures, no single technique has proven suitable for all circumstances. Therefore, this paper offers some updated guidelines for the users of composites on some of the recent advances in SHM applied to composite structures; also, most of the studies reported in the literature seem to have concentrated on the flat composite plates and reinforced with synthetic fibre. There are relatively fewer stories on other structural configurations such as single or double curve structures and hybridised composites reinforced with natural and synthetic fibres as regards SHM

    Analysis of the Response of Modal Parameters to Damage in CFRP Laminates Using a Novel Modal Identification Method

    Get PDF
    Nowadays, composite materials are widely used in several industries, e.g. the aeronautical, automotive, and marine, due to their excellent properties, such as stiffness and strength to weight ratios and high resistance to corrosion. However, they are prone to develop Barely Visible Impact Damage (BVID) from low to medium energy impacts (i.e. 1 – 10 m/s and 11 – 30 m/s respectively) that are reported to occur during both service and maintenance, such as bird strike; hailstones and tool drops. Therefore, Structural Health Monitoring (SHM) techniques have been developed to allow identifying damage at an early stage, in an attempt to avoid catastrophic consequences. Vibration measurement was conducted on healthy and damaged Carbon Fibre Reinforced Polymers (CFRPs) specimens. Damage is introduced to the specimen through a static indentation and the work done by the hemispherical indenter measured. This test was mainly for the purpose of damage introduction in the test samples. In this work, the effects of damage on the individual mode were studied to understand the response pattern of the modal parameters. It is intended that the current study will inform the development of a new damage identification method based on the variations between healthy and damaged specimen’s dynamic results. A new modal identification method (“Elliptical Plane”) that uses an alternative plot of the receptance has been developed in this work. The Elliptical Plane method used the energy dissipated per cycle of vibration as a starting point, to identify modal constants from Frequency Response Functions (FRFs). In comparison with the method of inverse, this new method produces accurate results, for systems that are lightly damped with its modes well-spaced. The sine of the phase of the receptance is plotted against the amplitude of the receptance, through which damping was calculated from the slope of a linear fit to the resulting plot. The results show that, there are other relevant properties of the plot that were not yet delve into by researchers. The shape of the plot is elliptical, near the resonant frequencies, whereby both parts of the modal constants (real and imaginary) can be determined from numerical curve-fitting. The method offers a new perspective on the way the receptance may be represented, in the Elliptical Plane, which may bring valuable insights for other researchers in the field. The novel method is discussed through both numerical and experimental examples. It is a simple method and easy to use. Interestingly, as the energy level increases, the percentage changes in both the modal frequency and damping increases. The linear equations reveal that there is a correlation between the increase in energy and the percentage variation in modal frequency and damping, especially from a threshold energy level determined to be between 15J and 20J for the analysed cases. Finally, modal identification is conducted on the healthy and damaged specimens, and the results were analysed with BETAlab software and the Elliptical Modal identification method. It was observed that the Elliptical Modal identification method provides some interesting results. For instance, a comparison between the modal damping from the ellipse and BETAlab methods revealed that, the level of reduction in the modal damping from the ellipse method is higher than that of the BETAlab. This behaviour offers a promising future in the area of damage identification in structures

    Effect of matrix cracking and material uncertainty on composite plates

    No full text
    A laminated composite plate model based on first order shear deformation theory is implemented using the finite element method.Matrix cracks are introduced into the finite element model by considering changes in the A, B and D matrices of composites. The effects of different boundary conditions, laminate types and ply angles on the behavior of composite plates with matrix cracks are studied.Finally, the effect of material property uncertainty, which is important for composite material on the composite plate, is investigated using Monte Carlo simulations. Probabilistic estimates of damage detection reliability in composite plates are made for static and dynamic measurements. It is found that the effect of uncertainty must be considered for accurate damage detection in composite structures. The estimates of variance obtained for observable system properties due to uncertainty can be used for developing more robust damage detection algorithms. (C) 2010 Elsevier Ltd. All rights reserved
    corecore