3 research outputs found

    Electrosensitization Assists Cell Ablation by Nanosecond Pulsed Electric Field in 3D Cultures

    Get PDF
    Previous studies reported a delayed increase of sensitivity to electroporation (termed electrosensitization ) in mammalian cells that had been subjected to electroporation. Electrosensitization facilitated membrane permeabilization and reduced survival in cell suspensions when the electric pulse treatments were split in fractions. The present study was aimed to visualize the effect of sensitization and establish its utility for cell ablation. We used KLN 205 squamous carcinoma cells embedded in an agarose gel and cell spheroids in Matrigel. A local ablation was created by a train of 200 to 600 of 300-ns pulses (50 Hz, 300-600 V) delivered by a two-needle probe with 1-mm inter-electrode distance. In order to facilitate ablation by engaging electrosensitization, the train was split in two identical fractions applied with a 2- to 480-s interval. At 400-600 V (2.9-4.3 kV/cm), the split-dose treatments increased the ablation volume and cell death up to 2-3-fold compared to single-train treatments. Under the conditions tested, the maximum enhancement of ablation was achieved when two fractions were separated by 100 s. The results suggest that engaging electrosensitization may assist in vivo cancer ablation by reducing the voltage or number of pulses required, or by enabling larger inter-electrode distances without losing the ablation efficiency

    Effets des champs électriques pulsés milli et nanosecondes sur cellules et tissus

    Get PDF
    L'électroperméabilisation est une technique permettant, entre autre, l'entrée de molécules cytotoxiques dans les tumeurs. Elle consiste en la perméabilisation transitoire de la membrane plasmique suite à l'application de champs électriques pulsés. Certaines conditions électriques permettent le transfert de gène, ouvrant le champ d'application de la technique à la thérapie génique. Cette thèse s'est intéressée à étudier les effets des champs électriques sur cellules et tissus, dans le cas de l'électro-transfert de gène. En effet, la compréhension mécanistique de ce transfert est indispensable à l'optimisation de la technique pour les futures applications cliniques. Dans ce contexte, nous nous sommes attachés à étudier les 3 barrières rencontrées par le gène lors de son transfert, à savoir la complexité de l'environnement multicellulaire au niveau du tissu, la membrane plasmique et l'enveloppe nucléaire au niveau de la cellule. i) L'efficacité de l'electrotransfer de gène a été étudié sur le modèle de tumeur in vitro/ex vivo dit sphéroïde. Dans un premier temps ce modèle a été validé pour l'étude de l'électrotransfection et dans un deuxième temps les raisons de l'absence d'efficacité en structure tissulaire ont été mises en évidence et l'optimisation de la technique a été amorcée. ii) Une deuxième partie a été dédiée à l'étude nano-mécanique des cellules à l'échelle de la membrane plasmique par microscopie à force atomique. La microscopie à force atomique a été utilisée afin d'imager et mesurer par spectroscopie de force l'effet de l'électroperméabilisation sur la membrane plasmique. Nous avons imagé la perturbation membranaire et mesuré une diminution d'élasticité membranaire suivant l'application des champs électriques. Ce phénomène a été relié aux effets secondaires de l'électroperméabilisation affectant l'actine corticale. iii) Une dernière partie s'est intéressée aux effets des nanopulses. Ces impulsions très courtes (ns) et intenses (plusieurs kV/cm) représentent la nouvelle génération d'impulsions, dont les effets sont encore peu décrits, mais pourraient permettre une déstabilisation spécifique de l'enveloppe des organelles. L'impact de ses impulsions nanosecondes sur la membrane ont été analysée par Patch-Clamp pour déterminer l'implication du cytosquelette d'actine dans la forme des nanopores créés. Dans un deuxième temps leur impact sur l'enveloppe nucléaire a été étudié, dans le but de déterminer d'éventuels effets néfastes sur le fonctionnement cellulaire, et la potentielle augmentation de transfection résultant d'une déstabilisation de la deuxième barrière rencontré par le gène lors de son transfert. Il est montré que l'actine ne joue pas de rôle dans la formation des nanopores, et que les impulsions nanosecondes ne permettent pas d'augmenter l'efficacité de transfection. En conclusion ces travaux ont apporté de nouveaux éléments dans la compréhension du mécanisme d'électroporation et des barrières au transfert de gène. Des protocoles, modèles, et outils ont été mis en place et sont aujourd'hui validés et disponibles pour une investigation poussée des effets des champs électriques sur le vivantElectropermeabilization is a physical technique first developed to transfer cytotoxic drugs in tumor. It consists in the transient permeabilization of the plasma membrane following electric field application. In specific electric conditions using long pulses of several milliseconds, the membrane destabilization can allow transferring plasmid DNA into the cell, thus allowing the development of gene therapy. For now, one clinical trial has been published using gene eletro-transfer and several others are ongoing. However the efficiency of the technique remains low compared to other transfer methods. This thesis gets interested in how pulsed electric fields affect cell membranes, in the concrete situation of gene transfer by electroporation. The comprehension of electro-gene transfer process need to be well understood in order to optimize it. In this context, we focus on the 3 barriers that DNA is confronted to during its transfer: first at the cell level: plasma membrane and nuclear envelope, second at the tissue level: the complexity of a multicellular environment. i) We first studied the efficiency of gene transfer on multicellular spheroid model. This work allowed the validation of this model for electro-transfection study, and the further optimization of the technique by raising some of the failures encountered in gene transfer in tissue. ii) The second part of the work has been dedicated to study plasma membrane destabilization due to electroporation by Atomic Force Microscopy. We used both innovating imaging modes and spectroscopy modes to analyze the effects on living cells, which resulted in the measurement of a decrease in elasticity, linked to side effects of electric fields on actin cytoskeleton destabilization. iii) The last part has been dedicated to the effects of nanopulses (nsEP) on both plasma membrane and the second barrier encountered by gene during its transfer, namely nuclear envelope. The effects of these very short (ns) and intense (several kV/cm) pulses have been indeed shown to affect both cell membrane and internal envelope (organelles ones). We first study their effect on membrane using patch-clamp to discriminate in the implication of actin cytoskeleton in nanopores formation. We secondly aimed to study how these nanopulses affect the special structure that is nuclear envelope during gene transfer, for validating their potential use on humans, and their possible role in optimization for gene transfer. P-clamp study revealed that actin is not involved in nanopores formation, and gene transfer one that nsEP do not affect positively transfection efficiency. Altogether this thesis brings new insights in electropermeabilization mecanisms understanding and barriers for gene transfer in tissue. Methods, models and tools have been set and validated. They are now usable for investigating electric field effect on living organism
    corecore