529 research outputs found

    Heat and Mass Transfer in Radiative Casson Fluid Flow Caused by a Vertical Plate with Variable Magnetic Field Effect

    Get PDF
    The aim of the present study is to investigate influence of variable magnetic field, heat and mass transfer in radiative Casson fluid flow past an infinite vertical porous plate. The governing equations of the flow, heat and mass transfer are transformed into a system of nonlinear ordinary differential equations and solved analytically by the perturbation technique with matlab package. The results obtained show that the velocity, temperature and concentration fields are appreciably influenced by the chemical reaction, thermal stratification and magnetic field. It is observed that the thermal radiation and magnetic field decreases the velocity, temperature and concentration profiles. There is also considerable effects of magnetic field and chemical reaction on skin friction coefficient and Nusselt number. Keywords: MHD, Variable magnetic field, Radiative, Casson fluid, dissipative, Heat transfer, Mass transfer

    MHD boundary layer flow of Carreau fluid over a convectively heated bidirectional sheet with non-fourier heat flux and variable thermal conductivity

    Get PDF
    © 2019 by the authors. In the present exploration, instead of the more customary parabolic Fourier law, we have adopted the hyperbolic Cattaneo-Christov (C-C) heat flux model to jump over the major hurdle of parabolic energy equation . The more realistic three-dimensional Carreau fluid flow analysis is conducted in attendance of temperature-dependent thermal conductivity. The other salient impacts affecting the considered model are the homogeneous-heterogeneous (h-h) reactions and magnetohydrodynamic (MHD). The boundary conditions supporting the problem are convective heat and of h-h reactions. The considered boundary layer problem is addressed via similarity transformations to obtain the system of coupled differential equations. The numerical solutions are attained by undertaking the MATLAB built-in function bvp4c. To comprehend the consequences of assorted parameters on involved distributions, different graphs are plotted and are accompanied by requisite discussions in the light of their physical significance. To substantiate the presented results, a comparison to the already conducted problem is also given. It is envisaged that there is a close correlation between the two results. This shows that dependable results are being submitted. It is noticed that h-h reactions depict an opposite behavior versus concentration profile. Moreover, the temperature of the fluid augments for higher values of thermal conductivity parameters

    Irreversibility minimization analysis of ferromagnetic Oldroyd-B nanofluid flow under the influence of a magnetic dipole

    Get PDF
    © 2021, The Author(s). Studies highlighting nanoparticles suspensions and flow attributes in the context of their application are the subject of current research. In particular, the utilization of these materials in biomedical rheological models has gained great attention. Magneto nanoparticles have a decisive role in the ferrofluid flows to regulate their viscoelastic physiognomies. Having such substantial interest in the flow of ferrofluids our objective is to elaborate the melting heat transfer impact in a stretched Oldroyd-B flow owing to a magnetic dipole in the presence of entropy generation optimization. Buongiorno nanofluid model expounding thermophoretic and Brownian features are considered. Moreover, activation energy with chemical reaction is also considered. The Cattaneo–Christov heat flux model is affianced instead of conventional Fourier law. The renowned bvp4c function of MATLAB is utilized to handle the nonlinearity of the system. Impacts of miscellaneous parameters are portrayed through graphical fallouts and numeric statistics. Results divulge that the velocity and temperature profiles show the opposite trend for growing estimates of the ferromagnetic parameter. It is also noticed that the temperature ratio parameter diminishes the entropy profile. Moreover, it is seen that the concentration profile displays a dwindling trend for the Brownian motion parameter and the opposite trend is witnessed for the thermophoretic parameter

    Upshot of heterogeneous catalysis in a nanofluid flow over a rotating disk with slip effects and Entropy optimization analysis

    Get PDF
    The present study examines homogeneous (HOM)–heterogeneous (HET) reaction in magnetohydrodynamic flow through a porous media on the surface of a rotating disk. Preceding investigations mainly concentrated on the catalysis for the rotating disk; we modeled the impact of HET catalysis in a permeable media over a rotating disk with slip condition at the boundary. The HOM reaction is followed by isothermal cubic autocatalysis, however, the HET reactions occur on the surface governed by first-order kinetics. Additionally, entropy minimization analysis is also conducted for the envisioned mathematical model. The similarity transformations are employed to convert the envisaged model into a non-dimensional form. The system of the modeled problem with ordinary differential equations is analyzed numerically by using MATLAB built-in bvp4c function. The behavior of the emerging parameters versus the thermal, concentration, and velocity distributions are depicted graphically with requisite discussion abiding the thumb rules. It is learned that the rate of the surface catalyzed reaction is strengthened if the interfacial area of the permeable media is enhanced. Thus, a spongy medium can significantly curtail the reaction time. It is also noticed that the amplitude of velocity and thermal profile is maximum for the smallest value of the velocity slip parameter. Heat transfer rate declines for thermophoresis and the Brownian motion parameter with respect to the thermal slip parameter. The cogency of the developed model is also validated by making a comparison of the existing results with a published article under some constraints. Excellent harmony between the two results is noted

    A numerical study of entropy generation, heat and mass transfer in boundary layer flows.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Pietermaritzburg.This study lies at the interface between mathematical modelling of fluid flows and numerical methods for differential equations. It is an investigation, through modelling techniques, of entropy generation in Newtonian and non-Newtonian fluid flows with special focus on nanofluids. We seek to enhance our current understanding of entropy generation mechanisms in fluid flows by investigating the impact of a range of physical and chemical parameters on entropy generation in fluid flows under different geometrical settings and various boundary conditions. We therefore seek to analyse and quantify the contribution of each source of irreversibilities on the total entropy generation. Nanofluids have gained increasing academic and practical importance with uses in many industrial and engineering applications. Entropy generation is also a key factor responsible for energy losses in thermal and engineering systems. Thus minimizing entropy generation is important in optimizing the thermodynamic performance of engineering systems. The entropy generation is analysed through modelling the flow of the fluids of interest using systems of differential equations with high nonlinearity. These equations provide an accurate mathematical description of the fluid flows with various boundary conditions and in different geometries. Due to the complexity of the systems, closed form solutions are not available, and so recent spectral schemes are used to solve the equations. The methods of interest are the spectral relaxation method, spectral quasilinearization method, spectral local linearization method and the bivariate spectral quasilinearization method. In using these methods, we also check and confirm various aspects such as the accuracy, convergence, computational burden and the ease of deployment of the method. The numerical solutions provide useful insights about the physical and chemical characteristics of nanofluids. Additionally, the numerical solutions give insights into the sources of irreversibilities that increases entropy generation and the disorder of the systems leading to energy loss and thermodynamic imperfection. In Chapters 2 and 3 we investigate entropy generation in unsteady fluid flows described by partial differential equations. The partial differential equations are reduced to ordinary differential equations and solved numerically using the spectral quasilinearization method and the bivariate spectral quasilinearization method. In the subsequent chapters we study entropy generation in steady fluid flows that are described using ordinary differential equations. The differential equations are solved numerically using the spectral quasilinearization and the spectral local linearization methods

    Computational Fluid Dynamics 2020

    Get PDF
    This book presents a collection of works published in a recent Special Issue (SI) entitled “Computational Fluid Dynamics”. These works address the development and validation of existent numerical solvers for fluid flow problems and their related applications. They present complex nonlinear, non-Newtonian fluid flow problems that are (in some cases) coupled with heat transfer, phase change, nanofluidic, and magnetohydrodynamics (MHD) phenomena. The applications are wide and range from aerodynamic drag and pressure waves to geometrical blade modification on aerodynamics characteristics of high-pressure gas turbines, hydromagnetic flow arising in porous regions, optimal design of isothermal sloshing vessels to evaluation of (hybrid) nanofluid properties, their control using MHD, and their effect on different modes of heat transfer. Recent advances in numerical, theoretical, and experimental methodologies, as well as new physics, new methodological developments, and their limitations are presented within the current book. Among others, in the presented works, special attention is paid to validating and improving the accuracy of the presented methodologies. This book brings together a collection of inter/multidisciplinary works on many engineering applications in a coherent manner

    Recent Trends in Coatings and Thin Film–Modeling and Application

    Get PDF
    Over the past four decades, there has been increased attention given to the research of fluid mechanics due to its wide application in industry and phycology. Major advances in the modeling of key topics such Newtonian and non-Newtonian fluids and thin film flows have been made and finally published in the Special Issue of coatings. This is an attempt to edit the Special Issue into a book. Although this book is not a formal textbook, it will definitely be useful for university teachers, research students, industrial researchers and in overcoming the difficulties occurring in the said topic, while dealing with the nonlinear governing equations. For such types of equations, it is often more difficult to find an analytical solution or even a numerical one. This book has successfully handled this challenging job with the latest techniques. In addition, the findings of the simulation are logically realistic and meet the standard of sufficient scientific value

    Impact of Newtonian heating and Fourier and Fick’s laws on a magnetohydrodynamic dusty Casson nanofluid flow with variable heat source/sink over a stretching cylinder

    Get PDF
    The present investigation aims to deliberate the magnetohydrodynamic (MHD) dusty Casson nanofluid with variable heat source/sink and modified Fourier’s and Fick’s laws over a stretching cylinder. The novelty of the flow model is enhanced with additional effects of the Newtonian heating, activation energy, and an exothermic chemical reaction. In an exothermic chemical reaction, the energy of the reactants is higher than the end products. The solution to the formulated problem is attained numerically by employing the MATLAB software function bvp4c. The behavior of flow parameters versus involved profiles is discussed graphically at length. For large values of momentum dust particles, the velocity field for the fluid flow declines, whereas an opposite trend is perceived for the dust phase. An escalation is noticed for the Newtonian heating in the temperature profile for both the fluid and dust-particle phase. A comparison is also added with an already published work to check the validity of the envisioned problem

    Effects of ramped wall temperature and concentration on viscoelastic Jeffrey’s fluid flows from a vertical permeable cone

    Get PDF
    In thermo-fluid dynamics, free convection flows external to different geometries such as cylinders, ellipses, spheres, curved walls, wavy plates, cones etc. play major role in various industrial and process engineering systems. The thermal buoyancy force associated with natural convection flows can exert a critical role in determining skin friction and heat transfer rates at the boundary. In thermal engineering, natural convection flows from cones has gained exceptional interest. A theoretical analysis is developed to investigate the nonlinear, steady-state, laminar, non-isothermal convection boundary layer flows of viscoelastic fluid from a vertical permeable cone with a power-law variation in both temperature and concentration. The Jeffery’s viscoelastic model simulates the non-Newtonian characteristics of polymers, which constitutes the novelty of the present work. The transformed conservation equations for linear momentum, energy and concentration are solved numerically under physically viable boundary conditions using the finite-differences Keller-Box scheme. The impact of Deborah number (De), ratio of relaxation to retardation time (λ), surface suction/injection parameter (fw), power-law exponent (n), buoyancy ratio parameter (N) and dimensionless tangential coordinate (Ѯ) on velocity, surface temperature, concentration, local skin friction, heat transfer rate and mass transfer rate in the boundary layer regime are presented graphically. It is observed that increasing values of De reduces velocity whereas the temperature and concentration are increased slightly. Increasing λ enhance velocity however reduces temperature and concentration slightly. The heat and mass transfer rate are found to decrease with increasing De and increase with increasing values of λ. The skin friction is found to decrease with a rise in De whereas it is elevated with increasing values of λ. Increasing values of fw and n, decelerates the flow and also cools the boundary layer i.e. reduces temperature and also concentration. The study is relevant to chemical engineering systems, solvent and polymeric processes

    A numerical study of heat and mass transfer in non-Newtonian nanofluid models.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Pietermaritzburg.A theoretical study of boundary layer flow, heat and mass transport in non-Newtonian nanofluids is presented. Because of the diversity in the physical structure and properties of non-Newtonian fluids, it is not possible to describe their behaviour using a single constitutive model. In the literature, several constitutive models have been proposed to predict the behaviour and rheological properties of non-Newtonian fluids. The question of interest is how the fluid physical parameters affect the boundary layer flow, and heat and mass transfer in various nanofluids. In this thesis, nanofluid models in various geometries and subject to different boundary conditions are constructed and analyzed. A range of fluid models from simple to complex are studied, leading to highly nonlinear and coupled differential equations, which require advanced numerical methods for their solution. This thesis is a conjoin between mathematical modeling of non-Newtonian nanofluid flows and numerical methods for solving differential equations. Some recent spectral techniques for finding numerical solutions of nonlinear systems of differential equations that model fluid flow problems are used. The numerical methods of primary interest are spectral quasilinearization, local linearization and bivariate local linearization methods. Consequently, one of the objectives of this thesis is to test the accuracy, robustness and general validity of these methods. The dependency of heat and mass transfer, and skin friction coefficients on the physical parameters is quantified and discussed. Results show that nanofluids and physical parameters have an important and significant impact on boundary layer flows, and on heat and mass transfer processes.The year on the title page reflects as 2019 on the thesis and differs from that on pages ii to iv which indicates the year 2020
    • …
    corecore