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Abstract: In the present exploration, instead of the more customary parabolic Fourier law, we have
adopted the hyperbolic Cattaneo–Christov (C–C) heat flux model to jump over the major hurdle
of “parabolic energy equation”. The more realistic three-dimensional Carreau fluid flow analysis
is conducted in attendance of temperature-dependent thermal conductivity. The other salient
impacts affecting the considered model are the homogeneous-heterogeneous (h-h) reactions and
magnetohydrodynamic (MHD). The boundary conditions supporting the problem are convective
heat and of h-h reactions. The considered boundary layer problem is addressed via similarity
transformations to obtain the system of coupled differential equations. The numerical solutions are
attained by undertaking the MATLAB built-in function bvp4c. To comprehend the consequences of
assorted parameters on involved distributions, different graphs are plotted and are accompanied
by requisite discussions in the light of their physical significance. To substantiate the presented
results, a comparison to the already conducted problem is also given. It is envisaged that there is
a close correlation between the two results. This shows that dependable results are being submitted.
It is noticed that h-h reactions depict an opposite behavior versus concentration profile. Moreover,
the temperature of the fluid augments for higher values of thermal conductivity parameters.

Keywords: Carreau fluid; Cattaneo–Christov heat flux model; convective heat boundary condition;
temperature dependent thermal conductivity; homogeneous-heterogeneous reactions

1. Introduction

Non-Newtonian fluids have gained substantial attention of researchers and scientists owing to
their widespread applications. A number of examples like apple sauce, chyme, emulsions, mud,
soaps, shampoos and blood at low shear stress may be quoted as non-Newtonian fluids. Existing
literature does not facilitate us to identify a single relation that exhibits numerous physiognomies of
non-Newtonian fluids. This is why a variety of mathematical models have been suggested, as deemed
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appropriate, to the requirement. The viscosity of the fluid plays a vital role in the chemical engineering
industry. In case of generalized Newtonian fluids, viscosity is dependent on shear stress. In some
fluids, a change up to two to three orders in magnitude may not make a visible effect in some fluids,
but its impact can’t be ignored particularly in polymer industry and lubrication processes. Bird et al. [1]
presented the idea of generalized Newtonian fluids with the idea that the viscosity fluctuates with
the shear rate. Fluid flows over a solid surface have been frequently studied and the reports revealed
that surface forces become significant on a micro level and lead to the enhanced fluid viscosity due
to fluid layering [2–5]. The major shortcoming of the Power-law model is that it does not properly
address the viscosity in case of very low or high shear rates. To overcome this hurdle, the Carreau fluid
model is introduced [6]. Contrary to the Power law model, the viscosity remains finite as the shear
rate vanishes. This is why the constitutive relation for the Carreau fluid model is more appropriate
in case of free surface flows. Owing to such important characteristics, the Carreau fluid model has
attracted researchers for many years. Chhabra and Uhlherr [7] deliberated the Carreau fluid flow over
the spheres and this concept was extended by Bush and Phan-Thein [8]. The squeezing Carreau fluid
flow past sphere is examined by Uddin et al. [9]. Tshehla [10] deliberated the flow of the Carreau fluid
over an inclined plane. The nonlinear radiation impact on the 3D Carreau fluid flow was deliberated
by Khan et al. [11]. Khan et al. [12] obtained the solution of the Carreau nanofluid flow analytically
with entropy generation. Similar explorations discussing Carreau fluid flow may be found at [13–15]
and many therein.

Flows under the influence of magnetohydrodynamics (MHD) have a wide range of applications
including thermal insulators, blood flow measurements, petroleum and polymer technologies, nuclear
reactors and MHD generators. Taking into account all such applications, many researchers have
examined the flows stimulated by magnetohydrodynamics. Waqas et al. [16] conversed micropolar
fluid’s flow with the effect of convective boundary condition and magnetohydrodynamics. He also
considered effects of viscous dissipation and mixed convection. Ramzan et al. [17] deliberated the
series solution of micropolar fluid flow in attendance of MHD, partial slip and convective boundary
condition over a porous stretching sheet. Besthapu et al. [18] calculated the numerical solution of
double stratification nanofluid flow with MHD and viscous dissipation using the finite element
method past an exponentially stretching sheet. Khan and Azam [19] explored the flow of Carreau
nanofluid under the influence of magnetohydrodynamic using a numerical technique named bvp4c.
Turkyilmazoglu [20] examined the exact solution of micropolar fluid flow with the mixed convection
and magnetohydrodynamic past a permeable heated/cooled deformable plate. Hayat et al. [21]
premeditated the flow of Oldroyd-B nanofluid in attendance of MHD and heat generation/absorption
using Optimal Homotopy analysis method HAM. Some recent attempts highlighting effects of
magnetohydrodynamic may be found at [22–25].

The importance of heat transfer is fundamental in many engineering processes like nuclear
reactors, fuel cells, and microelectronics. Thermal conductivity is considered to be constant in all such
procedures. Nevertheless, the requirement of variable characteristics is fundamental. A variation from
0◦F to 400◦F [26] in temperature is observed in such cases. Fourier law of heat conduction [27] has been
a customary gauge for years in heat transfer applications. However, a major drawback of parabolic
energy equation experiences a disruption in the beginning which prevails throughout the entire
process, which forces the researchers to look for some modification to Fourier’s law. Cattaneo [28]
proposed an improved Fourier’s law by instituting a thermal relaxation term. Later, Oldroyd’s
upper-convected derivatives [29] are considered as an alternative to the thermal relaxation time
in Cattaneo’s model. Recent attempts in various scenarios with an emphasis on C–C flux model
may encompass a study by Ramzan et al. [30], highlighting effects of the 2D third grade-fluid flow
accompanying Cattaneo–Christov heat flux and magnetohydrodynamics. Flow analysis is done in the
presence of h-h reactions and convective boundary condition. Hayat et al. [31] found an analytical
solution of Jeffrey fluid flow past a stretched cylinder with the effect of C–C heat flux and thermal
stratification. Sui et al. [32] studied upper-convected Maxwell nanofluid flow with C–C heat flux and
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slip boundary condition past a linearly stretched sheet. Liu et al. [33] discussed a fractional C–C flux
model numerically where the fractional derivative is represented by a weight coefficient.

Many chemical reactions necessitate the presence of h-h reactions. Fewer of these reactions act
at a slow pace, whereas some absolutely not except in the attendance of the catalyst. These reactions
are involved in many scenarios like fibrous insulations, production of polymers and ceramics, and air
and water pollution. The heterogeneous reactions cover the complete phase evenly and is found
in solid phase. Nevertheless, the homogeneous reactions are covered by catalysis and combustion.
The homogeneous catalyst occurs in liquid and gaseous states but heterogeneous catalyst exists
in solid form. The latest research discussing the h-h reactions effects may comprise the study by
Kumar et al. [34] who examined the irreversibility process with h-h reactions of the flow of carbon
nanotubes based nanofluid past a bi-directional stretched surface. The flow with h-h reactions of
Blasius nanofluid is pondered by Xu [35]. Sithole et al. [36] used a Bivariate spectral local linearization
method to investigate the effects of h-h reactions on the flow of time dependent micropolar nanofluid
past a stretched surface. The numerical simulations are conducted for h-h reactions and nonlinear
thermal radiation past a 3D crossfluid flow with MHD by Khan et al. [37]. In a gravity driven nanofluid
film flow, the effects of h-h reactions with mixed convection are deliberated by Rasees et al. [38].
Ramzan et al. [39,40] highlighted the time dependent nanofluid squeezing flow with carbon nanotubes
under the influence of h-h reactions and C–C heat flux, and in Micropolar nanofluid flow with thermal
radiation past a nonlinear stretched surface and many therein [40–45].

In all the aforementioned literature surveys, it is observed that either the effect of only C–C heat
flux or h-h reactions have been discussed in various geometries. Even if the simultaneous effects of C–C
heat flux and h-h reactions have been discussed, it is in the two-dimensional case. However, much less
literature is available featuring effects of both C–C and h-h reactions in 3D models. The present study
discusses the 3D Carreau fluid model in attendance of temperature-dependent thermal conductivity,
C–C heat flux and h-h reactions accompanied by the impact of convective heat with h-h boundary
conditions. A MATLAB built-in bvp4c routine is betrothed to obtain series solutions. Graphs are
drawn depicting effects of pertinent parameters on involved distributions. Validation of presented
results in the limiting case is also an additional feature of this exploration.

2. Mathematical Formulation

Let us presume a 3D flow of Carreau fluid in x- and y-directions with respective velocities
u = uw(x) = cx and v = vw(y) = dy occupying the region z = 0 under the influence of C–C heat
flux and variable thermal conductivity past a bidirectional stretching surface as shown in Figure 1.
Flow analysis is performed subject to h-h reactions with magnetohydrodynamics. Temperature at the
surface Tw is considered to be more than the temperature away from the surface T∞. A magnetic field
with strength Bo is introduced along the z-axis. Electric and Hall effects are ignored. Small Reynolds
number’s assumption needs to omit an induced magnetic field. For two chemical species A and
B, analysis is performed in the presence of h-h reactions. For homogeneous reaction, the cubic
autocatalysis is epitomized by the following expression [46]:

A + 2B→ 3B, rate = kcab2. (1)

However, on the catalyst surface, the first order isothermal reaction is given by:

A→ B, rate = ksa. (2)

For both the h-h reaction processes, it is assumed that temperature is constant. Governing
equations that abide by the above mentioned assumptions are given below:

ux + vy + wz = 0, (3)
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uux + vuy + wuz = νuzz

[
β∗ + (1− β∗)

{
1 + Γ2 (uz)

2
} n−1

2
]
− σB2

o
ρ u

+ν (n− 1) (1− β∗) Γ2 (uzz) (uz)
2
{

1 + Γ2 (uz)
2
} n−3

2 ,
(4)

uvx + vvy + wvz = νvzz

[
β∗ + (1− β∗)

{
1 + Γ2 (vz)

2
} n−1

2
]
− σB2

o
ρ v

+ν (n− 1) (1− β∗) Γ2 (vzz) (vz)
2
{

1 + Γ2 (vz)
2
} n−3

2 ,
(5)

ρCPV.∇T = −∇.q, (6)

uax + vay + waz = DAazz − kcab2, (7)

ubx + vby + wbz = DBbzz + kcab2, (8)

with q being the heat flux satisfying the relation

q + K1 (qt + V.∇q− q.∇V + (∇.V) q) = −∇ (αT) . (9)

Figure 1. Geometry of the problem.

Using the fluid’s incompressibility condition and Christov [29], Equations (6) and (9) take the
following form after omission of q:

uTx + vTy ++wTz =
1

ρCP
(αTz)z ,

− K1

 u2Txx + v2Tyy + w2Tzz + 2uvTxy

+2vwTyz + 2uwTxz +
(
uux + vuy + wuz

)
Tx+(

uvx + vvy + wvz
)

Ty +
(
uwx + vwy + wwz

)
Tz

 . (10)

The supporting boundary conditions to the given model are

u = uw (x) = cx, v = vw (y) = dy, w = 0,

−khTz = h f (Tw − T) , DAaz = ksa, DBbz = −ksa, atz = 0,

u→ 0, v→ 0, a→ ao, b→ 0, T → T∞asz→ ∞, (11)

considering temperature dependent thermal conductivity ε = kw−k∞
k∞

as defined in [47].
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Taking into account the transformations

u = cx f ′ (η) , v = cyg′ (η) , w = −
√

cν ( f (η) + g (η)) , α = α∞ (1 + εθ) ,

θ (η) = T−T∞
Tw−T∞

, η =
√

c
ν z, a = a0φ (η) , b = a0h (η) .

(12)

The requirement of Equation (3) is met inevitably, whereas Equations (4), (5), (7), (8), (10) and (11)
take the following form:[

β∗ + (1− β∗)
{

1 + We2
1
(

f ′′
)2
} n−3

2
{

1 + nWe2
1
(

f ′′
)2
}]

f ′′′ + ( f + g) f ′′ − f ′2 −M2 f ′ = 0, (13)

[
β∗ + (1− β∗)

{
1 + We2

2
(

g′′
)2
} n−3

2
{

1 + nWe2
2
(

g′′
)2
}]

g′′′ + ( f + g) g′′ − g′2 −M2g′ = 0, (14)

(1 + εθ) θ′′ + εθ′2 + Pr ( f + g) θ′ − Prλ1

(
( f + g)2 θ′′ + ( f + g)

(
f ′ + g′

)
θ′
)
= 0, (15)

φ′′ + Sc ( f + g) φ′ − Scγ1φh2 = 0, (16)

ζh′′ + Sc ( f + g) h′ + Scγ1φh2 = 0, (17)

f (0) = 0, f ′(0) = 1, g(0) = 0, g′(0) = λ,

φ′ (0) = γ2 φ (0) , θ′ (0) = −δ (1− θ (0)) ,

ζh′ (0) = −γ2 φ (0) , f ′(∞)→ 0, f ′′ (∞)→ 0, g′ (∞)→ 0,

g′′ (∞)→ 0, θ (∞)→ 0, φ (∞)→ 1.

(18)

Different parameters used in the above equations are defined as follows:

γ1 =
kca2

0
c , γ2 = k

DAa0

√
v
c , Sc = ν

DA
, Pr = µCp

k , λ = d
c ,

We1 =
√

cΓ2U2
w

ν , We2 =
√

cΓ2V2
w

ν , λ1 = K1c, ζ = DB
DA

, δ =
h f
k

√
ν
c , M2 = σB2

o
cρ .

(19)

The expectation as in most applications that coefficients of chemical species A and B are of
equivalent magnitude lead us to make a supplementary presumption that diffusion coefficients DA
and DB are equivalent i.e., ζ = 1, [46]. Thus, we get:

φ (η) + h (η) = 1. (20)

Now, Equations (16) and (17) take the following form:

φ′′ + Sc ( f + g) φ′ − Scγ1φ (1− φ)2 = 0, (21)

with boundary conditions
φ′(0) = γ2φ(0), φ(∞) = 1. (22)

The skin friction coefficient in dimensional form is

C f x =
τxz

ρU2
w(x)

, C f y =
τyz

ρu2
w(y)

. (23)

Dimensionless forms of Skin friction coefficient is

C f xRe1/2
x = f ′′ (0)

[
β∗ + (1− β∗)

{
1 + We2

1
(

f ′′ (0)
)2
} n−3

2
]

, (24)

C f yRe1/2
x = g′′ (0)

[
β∗ + (1− β∗)

{
1 + We2

2
(

g′′ (0)
)2
} n−3

2
]

. (25)
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3. Numerical Solutions

The software MATLAB with built-in bvp4c function is engaged to solve the system of differential
equations. It requires converting the differential equation with higher order to the first order along
with their respective boundary conditions. We have considered f as y1, g as y4, θ as y7and φ as y9

during the conversion as

y′1 = y2, y′2 = y3,

y′3 =
y2

2 + My2 − (y1 + y4) y3

β∗ + (1− β∗)
(
1 + We2

1y2
3
) n−3

2
(
1 + nWe2

1y2
3
) ,

y′4 = y5, y′5 = y6,

y′6 =
y2

5 + My5 − (y1 + y4) y6

β∗ + (1− β∗)
(
1 + We2

2y2
6
) n−3

2
(
1 + nWe2

2y2
6
) ,

y′7 = y8,

y′8 =
Pr K2 (y1 + y4) (y2 + y5) y8 − Pr (y1 + y4) y8

1 + εy7 − Pr K2 (y1 + y4)
2 ,

y′9 = y10,

y′10 = Scγ1y9 (1− y9)
2 − Sc (y1 + y4) y10,

accompanying the conditions

y1 (0) = 0, y2 (0) = 1, y4 (0) = 0, y5 (0) = λ, y2 (∞) = 0, y5 (∞) = 0,

y8 (0) = −δ (1− y7 (0)) , y7 (∞) = 0, y10 (0) = γ2y9 (0) , y9 (∞) = 1.

This MATLAB built-in routine is verified by drawing Table 1, in which the results are compared
with the previously published article in a limiting case. Previously, Khan et al. [11] have used the
same bvp4c technique to tackle the 3D Carreau fluid model. In Table 1, the Skin friction coefficients for
varied values of λ is calculated. It is found that all obtained values are in total alignment to [11].

Table 1. Comparison of − f ′′ (0) varied estimates of λ when n = 3, We1 = We2 = 0.

λ Khan et al. [11] Present (bvp4c)

0.1 1.020264 1.020264
0.2 1.039497 1.039497
0.3 1.057956 1.057956
0.4 1.075788 1.075788
0.5 1.093095 1.093095
0.6 1.109946 1.109946
0.7 1.126397 1.126397
0.8 1.142488 1.142488
0.9 1.158253 1.158253
1.0 1.173720 1.173720

In Table 2, a comparison is tabulated for various magnetic parameters and stretching ratio
parameter values against the skin friction coefficient along vertical and horizontal directions. It is
noted that the skin friction along the x-direction is gradually increasing for the mounting values of λ.
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Table 2. Comparison of − f ′′ (0) and −g′′ (0) for various values of M and λ.

λ = 0 λ = 0.5 λ = 0.5 λ = 1.0

M − f ′′(0) − f ′′(0) −g′′(0) −g′′(0)

[48] Present [48] Present [48] Present [48] Present

0.0 1.0042 1.0045 1.0932 1.0930 0.4653 0.4652 1.1748 1.1742
10 3.3165 3.3149 3.3420 3.3137 1.6459 1.6440 3.3667 3.3654
100 10.0498 10.0427 10.0582 10.0531 5.0208 5.0201 10.0663 10.0654

4. Results and Discussion

This segment is dedicated to highlight the impacts of prominent parameters on all involved
profiles. In all the figures, the solid lines show the effect of shear thickening (n > 1) fluid while
the dashed lines show the shear thinning (n < 1) fluid properties. Figures 2 and 3 are illustrated to
distinguish the impact of local Weissenberg numbers We1 and We2 on the velocity components f ′(η)
and g′(η) used for shear thickening and shear thinning fluids respectively. From these figures, it is
noted that, for the augmented estimates of We1, the velocity declines in the case of shear thickening
phenomena, while, for the shear thinning phenomena, the velocity increases. Physically, We1 denotes
the proportion between the relaxation time of fluid and increment of viscosity growth of the liquid.
For the shear thinning case, the fluid viscosity decreases; consequently, the velocity of the fluid
increases. Moreover, for the shear thickening phenomenon, the thickness of the boundary layer
escalates for higher values of We1. In Figure 3, we observed the contradictory behavior for the velocity
component g′(η). Consequently, it is also found that shear thickening fluid increases the values of We2,
which results in increasing the velocity of fluid and thickness of its related boundary layer. In Figure 4,
the effect of viscosity ratio parameter β∗ on the velocity is profile f ′(η) is discussed for the case of
shear thinning and shear thickening and keeping all other parameters fixed. An inverse relation is
observed, in the case of the shear thinning fluid and for shear thickening fluid velocity of the fluid
augmented with escalating values of the viscosity ratio parameter. Moreover, it has been observed that
the corresponding boundary layer thickness is less in the case of shear thinning fluid as compared to
the shear thickening fluid. Figures 5 and 6 depict declines in velocity profile against the mounting
values of magnetic field strength M . A decline in velocity profile is being observed because of the fact
that larger values of M enhance the Lorentz force, which increases the resistance for the fluid motion.
This decrease in the thickness of the boundary layer is more vigorous for the shear thinning of fluids.
Figures 7 and 8 exhibit the effect of stretching ratio parameter λ on f ′(η) and g′(η) velocity profiles,
respectively. In Figure 7, the mounting values of stretching ratio parameter resist the fluid flow along
the x-axis and this decline is more prominent in shear thinning fluid. Figure 8 shows the opposite
trend for the large values of λ on the velocity profile, as the velocity increases for both shear thinning
and thickening of fluids. Stretching ratio parameter is the ratio of velocity components along the y-axis
to the x-axis. An increase in λ implies the increment in the y-component of the velocity. The effect of
Prandtl number Pr on temperature field is shown in Figure 9. Temperature profile decreases for higher
values of Pr. The Prandtl number represents the fraction of momentum diffusivity to thermal diffusivity.
Thus, an increase in Pr deteriorates the thermal conductivity; ultimately, it decreases the temperature
distribution. The effect of thermal conductivity parameter ε on the temperature field is being displayed
in Figure 10. It is observed that an increase in values of ε boosts the temperature distribution. It is
an accepted truth that liquids with larger thermal conductivity possess higher temperature. The impact
of Schmidt number Sc on concentration profile is being displayed in Figure 11. The augmented
values of Sc number boosts the concentration profile and thickness of boundary layer for both the
thinning and shear thickening fluids, respectively. The Schmidt number represents the ratio of the
molecular diffusion to the viscous diffusion, and the viscous diffusion decreases upon increasing the
Sc, which enhances the mass transfer in fluid flow. In Figure 12, the thermal relaxation time parameter
λ1 is portrayed against the temperature profile. It is witnessed that, for the increasing values of λ1,
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the temperature profile and thickness of the thermal boundary layer decrease. Figure 13 portrays the
effect of Biot number δ on temperature profile. It is noticed that larger values of Biot number escalate
the temperature field. A direct relation of heat transfer coefficient with Biot number implies an increase
in temperature profile for increasing values of δ. The strength of homogeneous and heterogeneous
reactions γ1 and γ2 against concentration profile is shown in Figures 14 and 15 as reactants expend in
homogeneous reactions. Thus, a reduction in concentration profile is seen for mounting values of γ1.
This fact is shown in Figure 14. An opposite behavior for concentration distribution is observed in
Figure 15. Escalating values of heterogeneous reactions decrease diffusion and thereby decrement in
concentration is perceived for less diffused particles.
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Figure 2. Illustration of We1 versus f ′(η).
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Figure 3. Illustration of We2 versus g′(η).
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5. Conclusions

In this exploration, impacts of h-h reactions on three-dimensional Carreau fluid flow is witnessed
with the presence of temperature dependent thermal conductivity and magneto-hydrodynamic past
a bidirectional stretched surface. Furthermore, the impact of C–C heat flux accompanying convective
boundary condition is also witnessed. A numerical method is betrothed to find the solution. The notable
features of the present study are appended below:

• Strength of homogeneous and heterogeneous reactions show the same decreasing trend on
concentration distribution.

• Effects of Prandtl number and Biot number on temperature field are also conflicting.
• The velocity of the fluid is in decline for a stronger magnetic effect.
• Velocity escalates for growing estimates of ratios of stretching rate.
• With an increase in the value of the Schmidt number, the concentration of the fluid is enhanced.
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Abbreviations

a, b concentrations of chemical species
A, B chemical species
a0 positive dimensional constants
B0 Magnetic field strength [kg s−2 A−1]
Cp Specific heat [J/kg K]
c, d stretching constants
C fx Skin friction coefficient
DA diffusion coefficient of species A
DB diffusion coefficient of species B
f ′, g′ Dimensionless velocities
h f Heat transfer coefficient
h dimensionless concentration due to heterogeneous reaction
K1 thermal relaxation time
k∞ ambient thermal conductivity
kc rate constant of chemical species A
ks rate constant of chemical species B
kw thermal conductivity at wall
M Magnetic parameter
n power law index
Pr Prandtl number
q heat flux
Sc Schmidth number
t time
T∞ Ambient temperature [K]
T Temperature of fluid [K]
Tw Wall temperature [K]
uw sheet velocity along x−axis [m/s]
vw sheet velocity along y-axis [m/s]
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V Velocity vector
(u, v, w) Velocity components [m/s]
uw(x) Stretching velocity along x-axis [m/s]
(x, y, z) Rectangular coordinate axis [m]
We1 Weissenberg number
We2 Weissenberg number
α variable thermal diffusivity
β∗ ratio of viscosities
γ1 Thermal Biot number
γ2 Concentration Biot number
λ ratio of stretching rates
λ1 thermal relaxation time coefficient
ν Kinematic viscosity [m2/s]
θ Dimensionless temperature
σ Electrical conductivity [m−3 kg−1 s3 A2]
µ Dynamic viscosity [kg/m/s]
η Similarity variable
ρ Density of fluid [kg/m3]
δ Deborah number
φ dimensionless concentration
ξ ratio of diffusion coefficients
5 nibla operator
Γ material parameter
ε variable thermal conductivity
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