501 research outputs found

    Discontinuous harvesting policy in a Filippov system involving prey refuge

    Full text link
    In this article, a non-smooth predator-prey dynamical system is considered. Here, we discuss about sustainable harvesting in a Filippov predator-prey system, which can produce yield and at the same time prevent over-exploitation of bioresources. The local and global stability analysis of the two subsystems, with and without harvesting, are studied. Furthermore, for the Filippov system, we have performed bifurcation analysis for several key parameters like predation rate, threshold quantity and prey refuge. Some local sliding bifurcations are also observed for the system. Numerical simulations are presented to illustrate the dynamical behaviour of the system

    Derivative-order-dependent stability and transient behaviour in a predator–prey system of fractional differential equations

    Get PDF
    In this paper, the static and dynamic behaviour of a fractional-order predator–prey model are studied, where the nonlinear interactions between the two species lead to multiple stable states. As has been found in many previous systems, the stability of such states can be dependent on the fractional order of the time derivative, which is included as a phenomenological model of memory-effects in the predator and prey species. However, what is less well understood is the transient behaviour and dependence of the observed domains of attraction for each stable state on the order of the fractional time derivative. These dependencies are investigated using analytical (for the stability of equilibria) and numerical (for the observed domains of attraction) techniques. Results reveal far richer dynamics compared to the integer-order model. We conclude that, as well as the species and controllable parameters, the memory effect of the species will play a role in the observed behaviour of the system

    Chaos to Permanence - Through Control Theory

    Get PDF
    Work by Cushing et al. [18] and Kot et al. [60] demonstrate that chaotic behavior does occur in biological systems. We demonstrate that chaotic behavior can enable the survival/thriving of the species involved in a system. We adopt the concepts of persistence/permanence as measures of survival/thriving of the species [35]. We utilize present chaotic behavior and a control algorithm based on [66, 72] to push a non-permanent system into permanence. The algorithm uses the chaotic orbits present in the system to obtain the desired state. We apply the algorithm to a Lotka-Volterra type two-prey, one-predator model from [30], a ratio-dependent one-prey, two-predator model from [35] and a simple prey-specialist predator-generalist predator (for ex: plant-insect pest-spider) interaction model [67] and demonstrate its effectiveness in taking advantage of chaotic behavior to achieve a desirable state for all species involved

    Chaos to Permanence-Through Control Theory

    Get PDF
    Work by Cushing et al. \cite{Cushing} and Kot et al. \cite{Kot} demonstrate that chaotic behavior does occur in biological systems. We demonstrate that chaotic behavior can enable the survival/thriving of the species involved in a system. We adopt the concepts of persistence/permanence as measures of survival/thriving of the species \cite{EVG}. We utilize present chaotic behavior and a control algorithm based on \cite{Vincent97,Vincent2001} to push a non-permanent system into permanence. The algorithm uses the chaotic orbits present in the system to obtain the desired state. We apply the algorithm to a Lotka-Volterra type two-prey, one-predator model from \cite{Harvesting}, a ratio-dependent one-prey, two-predator model from \cite{EVG} and a simple prey-specialist predator-generalist predator (for ex: plant-insect pest-spider) interaction model \cite{Upad} and demonstrate its effectiveness in taking advantage of chaotic behavior to achieve a desirable state for all species involved

    Moving forward in circles: challenges and opportunities in modelling population cycles

    Get PDF
    Population cycling is a widespread phenomenon, observed across a multitude of taxa in both laboratory and natural conditions. Historically, the theory associated with population cycles was tightly linked to pairwise consumer–resource interactions and studied via deterministic models, but current empirical and theoretical research reveals a much richer basis for ecological cycles. Stochasticity and seasonality can modulate or create cyclic behaviour in non-intuitive ways, the high-dimensionality in ecological systems can profoundly influence cycling, and so can demographic structure and eco-evolutionary dynamics. An inclusive theory for population cycles, ranging from ecosystem-level to demographic modelling, grounded in observational or experimental data, is therefore necessary to better understand observed cyclical patterns. In turn, by gaining better insight into the drivers of population cycles, we can begin to understand the causes of cycle gain and loss, how biodiversity interacts with population cycling, and how to effectively manage wildly fluctuating populations, all of which are growing domains of ecological research

    Stochastic Optimal and Time-Optimal Control Studies for Additional Food provided prey-predator Systems involving Holling Type-III Functional Response

    Full text link
    This paper consists of a detailed and novel stochastic optimal control analysis of a coupled non-linear dynamical system. The state equations are modeled as additional food provided prey-predator system with Holling Type-III functional response for predator and intra-specific competition among predators. We firstly discuss the optimal control problem as a Lagrangian problem with a linear quadratic control. Secondly we consider an optimal control problem in the time-optimal control setting. Stochastic maximum principle is used for establishing the existence of optimal controls for both these problems. Numerical simulations are performed based on stochastic forward-backward sweep methods for realizing the theoretical findings. The results obtained in these optimal control problems are discussed in the context of biological conservation and pest management

    Spatiotemporal dynamics of a diffusive predator-prey model with delay and Allee effect in predator

    Get PDF
    It has been shown that Allee effect can change predator-prey dynamics and impact species persistence. Allee effect in the prey population has been widely investigated. However, the study on the Allee effect in the predator population is rare. In this paper, we investigate the spatiotemporal dynamics of a diffusive predator-prey model with digestion delay and Allee effect in the predator population. The conditions of stability and instability induced by diffusion for the positive equilibrium are obtained. The effect of delay on the dynamics of system has three different cases: (a) the delay doesn't change the stability of the positive equilibrium, (b) destabilizes and stabilizes the positive equilibrium and induces stability switches, or (c) destabilizes the positive equilibrium and induces Hopf bifurcation, which is revealed (numerically) to be corresponding to high, intermediate or low level of Allee effect, respectively. To figure out the joint effect of delay and diffusion, we carry out Turing-Hopf bifurcation analysis and derive its normal form, from which we can obtain the classification of dynamics near Turing-Hopf bifurcation point. Complex spatiotemporal dynamical behaviors are found, including the coexistence of two stable spatially homogeneous or inhomogeneous periodic solutions and two stable spatially inhomogeneous quasi-periodic solutions. It deepens our understanding of the effects of Allee effect in the predator population and presents new phenomena induced be delay with spatial diffusion

    The role of mathematical modelling in understanding prokaryotic predation

    Get PDF
    With increasing levels of antimicrobial resistance impacting both human and animal health, novel means of treating resistant infections are urgently needed. Bacteriophages and predatory bacteria such as Bdellovibrio bacteriovorus have been proposed as suitable candidates for this role. Microbes also play a key environmental role as producers or recyclers of nutrients such as carbon and nitrogen, and predators have the capacity to be keystone species within microbial communities. To date, many studies have looked at the mechanisms of action of prokaryotic predators, their safety in in vivo models and their role and effectiveness under specific conditions. Mathematical models however allow researchers to investigate a wider range of scenarios, including aspects of predation that would be difficult, expensive, or time-consuming to investigate experimentally. We review here a history of modelling in prokaryote predation, from simple Lotka-Volterra models, through increasing levels of complexity, including multiple prey and predator species, and environmental and spatial factors. We consider how models have helped address questions around the mechanisms of action of predators and have allowed researchers to make predictions of the dynamics of predator–prey systems. We examine what models can tell us about qualitative and quantitative commonalities or differences between bacterial predators and bacteriophage or protists. We also highlight how models can address real-world situations such as the likely effectiveness of predators in removing prey species and their potential effects in shaping ecosystems. Finally, we look at research questions that are still to be addressed where models could be of benefit

    Impact of alternative food on predator diet in a Leslie-Gower model with prey refuge and Holling â…ˇ functional response

    Get PDF
    Since certain prey hide from predators to protect themselves within their habitats, predators are forced to change their diet due to a lack of prey for consumption, or on the contrary, subsist only with alternative food provided by the environment. Therefore, in this paper, we propose and mathematically contrast a predator-prey, where alternative food for predators is either considered or not when the prey population size is above the refuge threshold size. Since the model with no alternative food for predators has a Hopf bifurcation and a transcritical bifurcation, in addition to a stable limit cycle surrounding the unique interior equilibrium, such bifurcation cases are transferred to the model when considering alternative food for predators when the prey size is above the refuge. However, such a model has two saddle-node bifurcations and a homoclinic bifurcation, characterized by a homoclinic curve surrounding one of the three interior equilibrium points of the model

    Bifurcation analysis of a reaction-diffusion-advection predator-prey system with delay

    Get PDF
    A diffusive predator-prey system with advection and time delay is considered. Choosing the conversion delay τ \tau as a bifurcation parameter, we find that as τ \tau varies, the system will generate Hopf bifurcation. Then, for the reaction diffusion model proposed in this paper, we use an improved center manifold reduction method and normal form theory to derive an algorithm for determining the direction and stability of Hopf bifurcation. Finally, we provide simulations to illustrate the effects of time delay τ \tau and advection α \alpha on system behaviors
    • …
    corecore