982 research outputs found

    A New Computer-Aided Diagnosis System with Modified Genetic Feature Selection for BI-RADS Classification of Breast Masses in Mammograms

    Full text link
    Mammography remains the most prevalent imaging tool for early breast cancer screening. The language used to describe abnormalities in mammographic reports is based on the breast Imaging Reporting and Data System (BI-RADS). Assigning a correct BI-RADS category to each examined mammogram is a strenuous and challenging task for even experts. This paper proposes a new and effective computer-aided diagnosis (CAD) system to classify mammographic masses into four assessment categories in BI-RADS. The mass regions are first enhanced by means of histogram equalization and then semiautomatically segmented based on the region growing technique. A total of 130 handcrafted BI-RADS features are then extrcated from the shape, margin, and density of each mass, together with the mass size and the patient's age, as mentioned in BI-RADS mammography. Then, a modified feature selection method based on the genetic algorithm (GA) is proposed to select the most clinically significant BI-RADS features. Finally, a back-propagation neural network (BPN) is employed for classification, and its accuracy is used as the fitness in GA. A set of 500 mammogram images from the digital database of screening mammography (DDSM) is used for evaluation. Our system achieves classification accuracy, positive predictive value, negative predictive value, and Matthews correlation coefficient of 84.5%, 84.4%, 94.8%, and 79.3%, respectively. To our best knowledge, this is the best current result for BI-RADS classification of breast masses in mammography, which makes the proposed system promising to support radiologists for deciding proper patient management based on the automatically assigned BI-RADS categories

    COMPUTER-AIDED MODEL FOR BREAST CANCER DETECTION IN MAMMOGRAMS

    Get PDF
    The objective of this research was to introduce a new system for automated detection of breast masses in mammography images. The system will be able to discriminate if the image has a mass or not, as well as benign and malignant masses. The new automated ROI segmentation model, where a profiling model integrated with a new iterative growing region scheme has been proposed. The ROI region segmentation is integrated with both statistical and texture feature extraction and selection to discriminate suspected regions effectively. A classifier model is designed using linear fisher classifier for suspected region identification. To check the system's performance, a large mammogram database has been used for experimental analysis. Sensitivity, specificity, and accuracy have been used as performance measures. In this study, the methods yielded an accuracy of 93% for normal/abnormal classification and a 79% accuracy for bening/malignant classification. The proposed model had an improvement of 8% for normal/abnormal classification, and a 7% improvement for benign/malignant classification over Naga et al., 2001. Moreover, the model improved 8% for normal/abnormal classification over Subashimi et al., 2015. The early diagnosis of this disease has a major role in its treatment. Thus the use of computer systems as a detection tool could be viewed as essential to helping with this disease

    Early Detection of Breast Cancer Using Machine Learning Techniques

    Get PDF
    Cancer is the second cause of death in the world. 8.8 million patients died due to cancer in 2015. Breast cancer is the leading cause of death among women. Several types of research have been done on early detection of breast cancer to start treatment and increase the chance of survival. Most of the studies concentrated on mammogram images. However, mammogram images sometimes have a risk of false detection that may endanger the patient’s health. It is vital to find alternative methods which are easier to implement and work with different data sets, cheaper and safer, that can produce a more reliable prediction. This paper proposes a hybrid model combined of several Machine Learning (ML) algorithms including Support Vector Machine (SVM), Artificial Neural Network (ANN), K-Nearest Neighbor (KNN), Decision Tree (DT) for effective breast cancer detection. This study also discusses the datasets used for breast cancer detection and diagnosis. The proposed model can be used with different data types such as image, blood, etc

    Computer assisted screening of digital mammogram images

    Get PDF
    The use of computer systems to assist clinicians in digital mammography image screening has advantages over traditional methods. Computer algorithms can enhance the appearance of the images and highlight suspicious areas. Screening provides a more thorough examination of the images. Any computer system that does screening of digital mammograms contains components to address multiple tasks such as: image segmentation, mass lesion detection and classification, and microcalcification detection and classification. This dissertation provides both effective and efficient improvements to existing algorithms, which segment mammogram images and locate mass lesions. In addition, we provide a new algorithm to evaluate and report the results for mass lesion detection. The algorithm presented for mammogram segmentation uses a histogram based operator to define the boundaries between the different components of a mammogram image. It employs a unique clustering algorithm to produce closed, labeled sets of pixels which represent the distinct image components. The mass location algorithm uses a variation of template matching to locate suspicious areas. An evaluation of potential templates and algorithms is included. The method for testing and recording the results of the mass location algorithm groups suspicious pixels into regions and then compares them to the pathology

    High-resolution synthesis of high-density breast mammograms: Application to improved fairness in deep learning based mass detection

    Get PDF
    Computer-aided detection systems based on deep learning have shown good performance in breast cancer detection. However, high-density breasts show poorer detection performance since dense tissues can mask or even simulate masses. Therefore, the sensitivity of mammography for breast cancer detection can be reduced by more than 20% in dense breasts. Additionally, extremely dense cases reported an increased risk of cancer compared to low-density breasts. This study aims to improve the mass detection performance in high-density breasts using synthetic high-density full-field digital mammograms (FFDM) as data augmentation during breast mass detection model training. To this end, a total of five cycle-consistent GAN (CycleGAN) models using three FFDM datasets were trained for low-to-high-density image translation in high-resolution mammograms. The training images were split by breast density BI-RADS categories, being BI-RADS A almost entirely fatty and BI-RADS D extremely dense breasts. Our results showed that the proposed data augmentation technique improved the sensitivity and precision of mass detection in high-density breasts by 2% and 6% in two different test sets and was useful as a domain adaptation technique. In addition, the clinical realism of the synthetic images was evaluated in a reader study involving two expert radiologists and one surgical oncologist.Comment: 9 figures, 3 table

    IMCAD: Computer Aided System for Breast Masses Detection based on Immune Recognition

    Get PDF
    Computer Aided Detection (CAD) systems are very important tools which help radiologists as a second reader in detecting early breast cancer in an efficient way, specially on screening mammograms. One of the challenging problems is the detection of masses, which are powerful signs of cancer, because of their poor apperance on mammograms. This paper investigates an automatic CAD for detection of breast masses in screening mammograms based on fuzzy segmentation and a bio-inspired method for pattern recognition: Artificial Immune Recognition System. The proposed approach is applied to real clinical images from the full field digital mammographic database: Inbreast. In order to validate our proposition, we propose the Receiver Operating Characteristic Curve as an analyzer of our IMCAD classifier system, which achieves a good area under curve, with a sensitivity of 100% and a specificity of 95%. The recognition system based on artificial immunity has shown its efficiency on recognizing masses from a very restricted set of training regions
    • …
    corecore