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ABSTRACT

Abstract

Mammographic risk assessment is concerned with estimating the probability of a
woman developing breast cancer. The aim is to improve the likelihood of early
detection of breast cancers. The leading factor in determining risk is breast den-
sity, which has been shown to be the most accurate measure of mammographic
risk, however more recently it has been suggested that the density (and possibly
the distribution) of linear structures such as ducts and blood vessels within the
breast are also related to mammographic risk. The purpose of this project is to
investigate those relationships and the possibility of including this information in
an automated risk assessment system.

A methodology is developed for detecting the linear structures in 2D mammo-
grams. This information is used to calculate the density of linear structures which
is used in a risk classifier. Results show that a classifier based on the density of
linear structures outperforms a classifier based on breast density (64% correct BI-
RADS classification using linear density compared with 53% using breast density),
and that a classifier combining both factors outperforms both individual classifiers
(74% correct BIRADS classification), suggesting that linear density is related to
risk and provides useful information for risk assessment.

The investigation in to the distribution of linear structures focusses on 3D
tomosynthesis images. The linear structure detection methodology is developed
for use in 3D, and a graph representation of the linear structures is extracted.
Information from this graph relating to the distribution of linear structures is
used for classification. The results of this classification (79% correct BIRADS
classification) suggest that the distribution of linear structures is also related to
risk and that this information provides additional risk–related information useful
for risk assessment.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Background

Each year, an estimated 1.38 million new cases of breast cancer are diagnosed

worldwide, leading to more than 450, 000 deaths [1, 2]. It is amongst the most

common forms of cancer and is the most common form in women [3, 4, 5]. In

the United States, breast cancer forms 26% of cancers diagnosed in women and is

the cause of 15% of cancer–related deaths [3]. In Europe, breast cancer has been

estimated to be the most common form of cancer with approximately 430, 000 new

cases annually, representing 13.5% of all cancer cases [6].

Regular screening for breast cancer has become common in many developed

countries and has been shown to significantly reduce mortality rates by detect-

ing more cancers early when they are at their most treatable [7]. Mammographic

risk assessment involves estimating a patient’s risk of developing breast cancer and

aims to further improve the early detection rate of breast cancer by allowing for im-

proved targeting of resources towards those at greatest risk [8]. Those considered

to be at higher risk can be offered greater surveillance, lifestyle recommendations
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or preventative measures.

Mammographic risk assessment is often performed manually using a model

such as the Gail model [9, 10] which uses personal characteristics to produce a

risk estimate. Such methods are time–consuming and error–prone due to their

dependence on the accurate reporting of risk factors by the patient. As such,

strong interest exists in the possibility of developing automated risk assessment

methodologies and has been assisted by the development of full–field digital mam-

mography as a replacement for traditional screen–film mammography which in-

troduces computers to the capture–display sequence allowing for analysis algo-

rithms [11, 12].

Breast density has been shown to be a strong predictor of mammographic

risk and is the most common quantitative method of measuring risk [13, 14, 15,

16, 17, 18, 19]. Most automated risk assessment methods have focussed on the

area or volume of dense breast tissue as the principal factor. However, more

recently, Tabár et al. have suggested that the density and possibly the distribution

of linear structures (ducts, blood vessels, etc.) in the breast are also correlated

with mammographic risk [20, 21, 22]. The incorporation of this information into

an automated risk classifier could lead to more accurate risk assessment models

which in turn have the potential to improve the early detection of breast cancer.

1.2 Research Objectives

There are six principal research objectives within the project.

1. Select a suitable mammographic line detection methodology.

The relevant line detection literature is reviewed and a specific approach for

detecting linear structures in 2D mammograms is implemented. As a pre-
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cursor to classification, initial experimental results are obtained to assess

whether it is possible to distinguish between the detected linear density in

images of different risk categories.

Figure 1.1 shows some typical mammograms used during the project.

Figure 1.1: Typical 2D mammograms from the MIAS database [23]. Mammo-
grams are ordered according to risk, where the top–left shows the lowest risk
mammogram and the bottom–right shows the highest risk mammogram.

2. Investigate the relationship between the density of linear struc-

tures in 2D mammograms and mammographic risk.

This investigation will assess whether the density of linear structures can be

used to automatically identify mammographic risk, and how its performance
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compares with a more conventional density–based approach. The density of

linear structures detected from the images is used to classify images accord-

ing to commonly used mammographic risk assessment metrics.

3. Detect mammographic linear structures in raw tomosynthesis im-

ages.

Tomosynthesis images provide the potential for significant improvements

over conventional mammography [24, 25, 26]. Raw tomosynthesis images

consist of a sequence of low–dose x–ray images taken in an arc around the

breast, however the x–ray dose used per image is significantly lower than

that used for conventional 2D mammography. This results in poorer con-

trast and so initial experiments are conducted in order to assess the viability

of using linear structure detection techniques in tomosynthesis images. The

purpose of this objective is to investigate if the linear structures in raw to-

mosynthesis images can be detected automatically and can be correlated

with conventional mammograms.

4. Detect mammographic linear structures in reconstructed tomosyn-

thesis images.

A methodology is be developed for the automatic detection of mammo-

graphic linear structures in reconstructed (three–dimensional) tomosynthesis

images. This is based on the methodology used for detecting linear struc-

tures in 2D mammograms.

5. Develop a model of the distribution of linear structures.

A three–dimensional network representation of the distribution of mammo-

graphic linear structures within the breast is developed, where edges of the

network represent linear structures and nodes represent end or branching

points. This can be derived from the results from objective 4.

6. Investigate how the distribution of mammographic linear struc-

tures might be related to risk.
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Tabár et al. have proposed a mammographic risk assessment model based

on four structural components, where the relative proportions of each com-

ponent is linked to the risk of developing breast cancer [20, 21, 22]. One of

the four structural components is linear density. The main purpose of this

scientific aim is to investigate if automatic methods can be used to correlate

the distribution of linear structures (SA5) with mammographic risk.

1.3 Contribution

The principal purpose of this project is to investigate whether the inclusion of lin-

ear structure information might improve an automated risk classifier. Automated

risk classification has the potential to be incorporated into a digital mammographic

screening programme, providing risk information relating to each patient. This

information could be used to target limited resources at those patients most at

risk of developing breast cancer with the aim of increasing early detection rates

overall [8].

During the project, a methodology is developed for detecting the linear struc-

tures in 2D mammograms. This information is used to calculate the density of

linear structures which is used in a risk classifier. Results show that a classifier

based on the density of linear structures outperforms a classifier based on breast

density (64% correct BIRADS classification using linear density compared with

53% using breast density), and that a classifier combining both factors outper-

forms both individual classifiers (74% correct BIRADS classification), suggesting

that linear density is related to risk and provides useful information for risk as-

sessment.

The investigation into the distribution of linear structures focusses on 3D to-

mosynthesis images, which have been suggested as a replacement for conventional
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2D mammography in breast screening [24, 25, 26]. The linear structure detection

methodology is developed for use in 3D, and a graph representation of the linear

structures is extracted. Information from this graph relating to the distribution of

linear structures is used for classification. The results of this classification (79%

correct BIRADS classification) suggest that the distribution of linear structures

is also related to risk and that this information provides additional risk–related

information useful for risk assessment.

In summary, the results of this project suggest that linear structure informa-

tion could be incorporated into an improved automated risk classifier which could

provide useful risk–related information as part of a mammographic screening pro-

gramme.
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Chapter 2

Review of Literature

2.1 Mammographic Risk Assessment

Mammographic risk assessment is concerned with the probability of women de-

veloping breast cancer. The aim is to improve the likelihood of early detection

of breast cancers, which is critical to maximise treatment success and long–term

survival. The principal factor in determining risk is breast density, suggested by

Wolfe as early as 1976 [14] and has been shown to be amongst the most accu-

rate measures of mammographic risk [13]. Several image–based risk assessment

metrics exist, including Wolfe [14], Breast Imaging Reporting and Data System

(BIRADS) Density Classification [27], Boyd SCC [28] and Tabár [22].

The BIRADS and Boyd metrics are entirely density–based. Boyd defined a

system of six class categories (SCC) of progressively increasing breast density,

where class 1 corresponds to the least dense and lowest risk group and class 6

relates to the most dense and highest risk [28]. The BIRADS metric defines four

categories of increasing breast density, where class I represents the least dense and

lowest risk and class IV represents the most dense and highest risk [27].
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The Wolfe and Tabár metrics are based on breast density and the parenchymal

patterns present within the breast. Wolfe defined four categories of mammographic

risk, based primarily on the presence of dense or fatty tissue and the ductal pat-

tern. Wolfe’s class 1 represents the lowest risk and class 4 represents the highest

risk [14]. Tabár proposed a system whereby the breast is composed of four building

blocks: nodular density, linear density, homogeneous fibrous tissue and radiolucent

adipose tissue. The relative proportions of these four building blocks determine

classification in a system of five Patterns, where Patterns I–III are related to low

mammographic risk and Patterns IV–V correspond to high risk [22].

Comparison between Wolfe, Boyd, BI-RADS and Tabár based mammographic

risk assessment by Muhimmah et al. [29] investigated these four risk assessment

metrics and the problems of inter– and intra–observer variability. The study used

a set of 321 mammograms which were classified independently by three expert

radiologists according to each of the four risk metrics. The conclusion was that

the Wolfe, Boyd and BIRADS classifications were strongly correlated (Spearman’s

correlation (rS) = 0.908 − 0.929) whilst the Tabár classification was not well

correlated with the other three metrics (rS = 0.408 − 0.459). It was discovered

that the difference was almost entirely due to Tabár Pattern I and that when

this pattern was removed, the remaining patterns demonstrated a very strong

correlation with the other three classes (rS = 0.93− 0.96).

The authors did not attempt to explain why Tabár Pattern I may not correlate

well with the other risk metrics other than to say that further investigation is

required in order to determine its relationship to risk.

Quantitative assessment of mammographic breast density: relationship with

breast cancer risk by Harvey and Bovbjerg [30] argued that there is a moderate

association between breast density and breast cancer risk. The paper reviewed

several studies across a variety of settings and populations and concluded that
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breast density is a moderate independent risk factor for breast cancer. It says

that only genetic abnormalities, age, the presence of prior breast cancer or biopsy

findings showing lobular carcinoma in situ have a similar or greater association

with breast cancer risk. The authors stated that the use of breast density in

risk assessment is hindered by its inability to be measured in a reproducible,

standardised and automated fashion. Breast density, unlike other risk factors, can

be influenced by effects such as hormone levels, alcohol intake and diet. The paper

finishes by saying that further research is required to determine whether reducing

breast density results in lower risk.

Another factor that has been investigated is the relationship between breast

asymmetry and risk. Breast asymmetry and a predisposition to breast cancer by

Scutt et al. [31] shows that breast asymmetry is a contributing factor to breast can-

cer. The described study used 252 asymptomatic women who had normal mam-

mography, but went on to develop breast cancer, and 252 age–matched healthy

controls who remained free of breast cancer for the duration of the study. The

control group were chosen randomly from lists of suitable candidates in each age

stratum. The mean and standard deviation of the cancer and control groups were

very similar.

The study found that the women who went on to develop breast cancer had

greater breast asymmetry than the control group, leading to the conclusion that

breast asymmetry is a factor that can be considered in mammographic risk assess-

ment. Since breast asymmetry affects mammographic risk, it may be possible for

an automated system to compare the density and distribution of linear structures

between the left and right breasts.
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2.1.1 Density, Boyd & BI-RADS

Breast density has been established as the leading indicator of mammographic risk.

Boyd et al. in Mammographic Density and the Risk and Detection of Breast Can-

cer [19] stated that breast density has a strong association with mammographic

risk. The study involved 1112 images from breast cancer patients and 1112 paired

control images where no breast cancer developed.

The images were placed into one of six Boyd density categories based on their

percent density. Classes 1–6 correspond to 0%, < 10%, 10− < 25%, 25− < 50%,

50− < 75% and ≥ 75% density respectively. The authors discovered that cases in

Boyd SCC classes 3, 4, 5 and 6 are respectively 1.8, 2.1, 2.4 and 4.7 times more

likely to develop breast cancer than those in classes 1 and 2.

Breast Density and Parenchymal Patterns as Markers of Breast Cancer Risk:

A Meta-analysis by McCormack & dos Santos Silva [32] provided a meta–analysis

of 42 publications on mammographic patterns in relation to breast cancer risk.

The authors analysed studies relating breast cancer risk to percent density, Wolfe,

BIRADS and Tábar classifications. The conclusions concurred with the studies

by Boyd et al. that breast density is strongly correlated with mammographic risk.

The correlation with BIRADS and Wolfe classification (which are largely based

on breast density) were also strong.

The study [32] showed the results of the meta–analysis of breast cancer risk

related to Wolfe, BIRADS and Tábar classifications. The analysis according to

Wolfe classifications has combined the four classes into low risk (classes 1 and 2)

and high risk (classes 3 and 4) groups. The studies were divided into incidence

studies in the general population (where assessment was made with a negative

mammogram and cancer was diagnosed subsequently), prevalence studies in the

general population (where assessment was made on the contralateral breast at
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diagnosis) and studies in symptomatic populations.

In all three types of study, the combined results showed an increased risk of

breast cancer in the ‘high risk’ group. This was strongest in the symptomatic

population (6.9 times more likely than the low risk group), than in the studies

in the general population (incidence and prevalence studies showed 1.86 and 1.44

times more likely than the low risk group, respectively). However, there was a

high degree of variation between studies, particularly in studies of the general

population.

Analysis by BIRADS class showed strong correlation with mammographic risk.

The combined results for cases in BIRADS classes 2, 3 and 4 indicated a likelihood

of developing breast cancer of 2.04, 2.81 and 4.08 times that of BIRADS class 1,

respectively.

A notable result was the analysis related to Tábar patterns. Since Tábar pat-

terns I–III should indicate a low risk of breast cancer and patterns IV–V should

indicate a higher risk, it would be expected that when using pattern I as a ref-

erence, that patterns II–III should not show a substantially higher risk, whereas

patterns IV–V should indicate a higher risk [22]. The results observed, however

indicate a lower risk for pattern II, a high risk for patterns III–IV and an approx-

imately equal risk for pattern V.

The study by Muhimmah et al. discussed above indicated a possible anomaly

with Tábar pattern I, whereby patterns II–V correlate well with other metrics but

pattern I does not [29]. It may have been more relevant to use another pattern,

such as pattern II as the reference, however the results would still suggest that

pattern III indicates relatively high risk and pattern V indicates a lower risk. It

should also be noted that the analysis related to Tábar pattern was based on a

single study, whereas the other analyses were all based on multiple studies [32].
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The study by McCormack & dos Santos Silva [32] showed the results of the

meta–analysis of breast cancer risk related to breast percent density. The com-

bined results showed a clear correlation between breast percent density and mam-

mographic risk. The results for incidence cases with densities of 5−24%, 25−49%,

50− 74% and 75%+ were respectively 1.79, 2.11, 2.92 and 4.64, times more likely

to develop breast cancer than cases of less than 5% density. These figures closely

resemble those discussed previously by Boyd et al. [19], supporting the reliability

of these figures and the conclusion of a strong correlation between risk and density.

Quantitative Assessment of Mammographic Breast Density: Relationship with

Breast Cancer Risk by Harvey and Bovbjerg provided a review of studies investi-

gating the relationship between breast density and risk [30]. The review investi-

gated 12 studies conducted since 1982 using quantitative methods to investigate

the relationship between density and risk and all 12 reported a moderate to strong

positive association between increased cancer risk and higher levels of breast den-

sity. The authors discussed whether the association between density and risk is

due to other risk factors for which density is a marker or whether density is an

independent risk factor. Unlike other risk factors such as family history, breast

density can be influenced by hormones or by lifestyle factors such as diet. While

weight, body mass index, age, menopausal status, age at first birth, nulliparity,

family history, hormone use, and previous breast biopsy may all influence breast

density, the authors stated that breast density is consistently correlated with risk

even after adjustment for other variables associated with both density and breast

cancer risk [33, 34], suggesting that density is an independent risk factor. Boyd

et al. reviewed 9 of the 12 studies reviewed by Harvey and Bovbjerg and discov-

ered that cancer risk increased proportionally with density in 8 of the 9 studies

reviewed [35]. The authors discussed the theory of dense tissue masking, proposed

by Egan and Mosteller [36], which suggests that the increased risk may be caused

by dense tissue masking the early stages of abnormalities and thus delaying di-

agnosis. However, if this was the sole reason for the correlation between density
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and risk, at some point in the future it would be expected that the incidence of

breast cancer in women with dense and fatty breasts should become similar. The

authors state that this theory alone cannot explain the correlation. Other studies

have suggested that the masking effect leading to decreased mammographic sen-

sitivity in dense breasts may contribute to mammographic failure, particularly in

younger women [37].

Effect of Baseline Breast Density on Breast Cancer Incidence, Stage, Mortal-

ity, and Screening Parameters: 25-Year Follow-up of a Swedish Mammographic

Screening by Chui et al. [38] described a large–scale study carried out over 25 years

in Kopparberg County, Sweden, the first results of which were published in 1985

by Tabár et al. [39]. A total of 15,658 women were followed from 1977 to 2004 to

ascertain breast cancer incidence and mortality. During the trial period, women

in the active study population provided information on breast density while they

underwent mammographic examination.

Breast density was classified as dense (Tabár patterns IV–V) or non–dense

(Tabár patterns I–III). In addition, information on age at menarche, body mass

index (BMI), age at first full-term pregnancy, and menopausal status was obtained

through a questionnaire prior to screening.

The study [38] showed the results of the analysis of risk factors for breast cancer

incidence. Whilst the results show that incidence is affected by many of the factors

measured, the greatest effects are seen in the analysis of Tabár pattern/density

where patterns IV–V are shown in the multivariate analysis as having an incidence

rate 1.57 times that of patterns I–III. These results lend further support to density

being a leading indicator of mammographic risk.

In summary, numerous studies have concluded that breast density is highly

correlated with mammographic risk and can be used as an indicator of risk. The

Boyd SCC classification and BIRADS density classification metrics are entirely
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based on breast density and are intended to provide an indication of risk. Other

risk assessment metrics, such as Wolfe and Tabár, incorporate breast density as

well as other information.

2.1.2 Parenchymal Patterns, Wolfe & Tabár

It has been suggested that parenchymal patterns within the breast may also be

related to breast cancer risk. Wolfe Mammographic Parenchymal Patterns and

Breast Cancer Risk by Sickles [40] discussed Wolfe’s classification metric [14], in

particular the contribution of parenchymal pattern information.

Wolfe devised a system of four parenchymal pattern categories: N1, primarily

fatty; P1, ≤ 25% prominent ducts; P2, > 25% prominent ducts; and DY, dense

fibroglandular tissue. Throughout this work these categories are generally referred

to as 1, 2, 3 and 4 respectively. Wolfe suggested that class 4 represented a 37 times

greater risk than class 1 [14]. Sickles argues that a combination of a young, pri-

marily symptomatic study population, the choice of a 6-month exclusion interval,

and the limited mammographic capability of the late 1960s and early 1970s make

it likely that a very large proportion of the future cancers identified by Wolfe were

in fact masked cancers already present, and that this would disproportionately

affect dense–breasted women [40]. The result was that the future breast cancer

risk stated by Wolfe was greatly overestimated, leading to controversy as to the

extent that parenchymal patterns contribute to risk.

More recently, Tabár et al. have suggested that the parenchymal patterns

within a breast may be linked to breast cancer risk [20, 22]. Tabár has devised a

classification system based on four mammographic building blocks or tissue types.

The relative proportions of these building blocks determine the pattern. One of

Tabár’s building blocks is linear density [22], suggesting that the density of linear

structures within the breast is linked to risk.
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2.1.3 Hereditary & Other Non–density Factors, Gail &

Claus

Mammographic risk is known to be related to hereditary factors [41], and the

Gail model includes hereditary factors in an estimate of mammographic risk [9] in

addition to other risk factors such as the woman’s age at first live birth, her age

at menarche, the number of previous benign breast biopsies and whether or not

atypical hyperplasia had been identified on any of the biopsies.

Gail Model for Prediction of Absolute Risk of Invasive Breast Cancer: Inde-

pendent Evaluation in the FlorenceEuropean Prospective Investigation Into Cancer

and Nutrition Cohort by Decarli et al. [42] investigated the sensitivity of the Gail

model using large data sets from the US and Italy. The authors concluded that

the Gail model is a good predictor of breast cancer, with observed incidence rates

closely matching the expected incidence rates for both data sets.

Prospective Breast Cancer Risk Prediction Model for Women Undergoing Screen-

ing Mammography by Barlow et al. [43] investigated the addition of breast density

with more traditional risk factors such as those used in the Gail model. The study

used more than two million screening mammograms from one million women who

had not previously been diagnosed with breast cancer. Within one year of the

screening mammogram, 11, 368 women had been diagnosed with breast cancer.

The authors used logistical regression analysis to estimate the probability of

developing breast cancer within one year based on each screening mammogram.

Since risk factors varied depending on menopausal status, the dataset was divided

into premenopausal and postmenopausal women which were subjected to separate

statistical analysis. The sets were then analysed according to a variety of indi-

vidual risk factors in order to find a model that best predicted the likelihood of

developing breast cancer. In each case, a random 75% of the dataset was used as
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the training set and the remaining 25% was used as the validation set.

Results of particular interest have been reproduced in Tabs. 2.1 and 2.2 for

premenopausal and postmenopausal women respectively. The results provide an

interesting overview of a wide variety of mammographic risk factors and an indi-

cation of the significance of each factor.

Results shown in Tab. 2.1 indicate that in premenopausal women, the study

found that breast density was the most significant risk factor, with BIRADS class

4 cases being almost 4 times as likely to develop breast cancer as BIRADS class 1

cases. Age and family history of breast cancer were also major risk factors, where

women with two or more relatives diagnosed with breast cancer are more than

twice as likely to develop breast cancer as those with no family history.

Table 2.2 shows results for postmenopausal women, where the most significant

risk factor is age, followed closely by breast density. Family history was less

significant in postmenopausal women than in premenopausal women. In both

datasets, the most significant risk factor other than age was found to be breast

density, supporting the work of Boyd et al. [19]. No factors other than age, breast

density and (in premenopausal women) family history demonstrated a odds ratio of

greater than 2.0 or less than 0.5. Family history of breast cancer was less significant

than density in both cases, suggesting that density–based risk estimation has the

potential to be more accurate than an estimation based on other factors.

Table 2.2: Table reproduced from Barlow et al. [43] showing multivariable model
for predicting breast cancer within 1 year in postmenopausal women who have
undergone previous screening.

Risk factor Odds ratio (95% CI)
Age
45–49 1.00 (referent)
50–54 1.33 (1.18 to 1.50)
55–59 1.96 (1.75 to 2.20)
60–64 2.27 (2.02 to 2.55)

Continued on next page
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Continued from previous page
Risk factor Odds ratio (95% CI)
65–69 2.47 (2.20 to 2.77)
70–74 2.79 (2.48 to 3.14)
75–79 3.03 (2.69 to 3.42)
80–84 3.33 (2.91 to 3.80)
Hispanic
Non-Hispanic 1.00 (referent)
Hispanic 0.74 (0.66 to 0.81)
Unknown 0.94 (0.87 to 1.01)
Race
White 1.00 (referent)
Asian/Pacific Islander 0.80 (0.71 to 0.90)
Black 1.10 (1.00 to 1.21)
Native-American/Alaskan Native 0.54 (0.42 to 0.70)
Other 0.97 (0.77 to 1.24)
Unknown 1.00 (0.92 to 1.09)
Body mass index, kg/m2
< 25 (referent) 1.00 (referent)
25–29.99 1.14 (1.07 to 1.23)
30–34.99 1.28 (1.17 to1.40)
35 or greater 1.47 (1.30 to 1.65)
Missing 1.03 (0.97 to 1.10)
Age at birth of first child, y
< 30 1.00 (referent)
≥ 30 1.21 (1.09 to 1.33)
Nulliparous 1.18 (1.09 to 1.27)
Unknown 1.02 (0.96 to 1.08)
Prior breast procedure
No 1.00 (referent)
Yes 1.30 (1.24 to 1.36)
Unknown 1.06 (0.98 to 1.15)
First-degree family history of breast cancer
No 1.00 (referent)
Yes, one relative 1.31 (1.24 to 1.39)
Yes, two or more relatives 1.66 (1.39 to 1.99)
Unknown 0.95 (0.89 to 1.02)
Current hormone therapy use
No 1.00 (referent)
Yes 1.19 (1.13 to 1.24)
Unknown 1.13 (1.05 to 1.22)
Surgical menopause
No 1.00 (referent)
Yes 0.84 (0.80 to 0.89)
Unknown 0.94 (0.89 to 1.00)
Previous mammographic outcome
Negative 1.00 (referent)

Continued on next page

Edward Hadley 17



CHAPTER 2. REVIEW OF LITERATURE

Continued from previous page
Risk factor Odds ratio (95% CI)
Positive 1.69 (1.47 to 1.94)
Unknown 1.20 (1.14 to 1.26)
Breast density (BI-RADS)
1. Almost entirely fat 1.00 (referent)
2. Scattered fibroglandular densities 2.09 (1.86 to 2.35)
3. Heterogeneously dense 2.95 (2.61 to 3.32)
4. Extremely dense 3.15 (2.72 to 3.66)
Unknown or different system 2.84 (2.52 to 3.21)

Another study that investigated the relationship of breast density with non-

density risk factors is Mammographic Density Correlation with Gail Model Breast

Cancer Risk Estimates and Component Risk Factors by Palomares et al. [44]. This

study compared mammographic density with risk as calculated using the Gail

model using a set of 99 participants of a clinical trial. The authors found that

although most increases in breast density could be attributed to factors included

in the Gail model, seven percent of density increases could not be explained using

the Gail model factors. This suggests that breast density should be included in a

risk model since there is information present in breast density that is not captured

by the Gail model.

A limitation of the study was the size of the dataset. A relatively small per-

centage difference in a dataset of 99 may simply be due to chance, so for a more

reliable conclusion a repeat of the experiment using a larger dataset would be

beneficial.

Evaluation of breast cancer risk assessment packages in the family history eval-

uation and screening programme by Amir et al. [45] assessed several non–density

based risk assessment models. The investigation used four published models (Gail,

Claus, Ford and Tyrer–Cuzick) and one manual model based on the Claus model

but adjusted for other risk factors.
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Table 2.1: Table reproduced from Barlow et al. [43] showing multivariable model
for predicting breast cancer within 1 year in premenopausal women who have
undergone previous screening.

Risk factor Odds ratio (95% CI)
Age
35–39 1.00 (referent)
40–44 1.23 (0.96 to 1.56)
45–49 1.89 (1.49 to 2.41)
50–54 2.36 (1.84 to 3.02)
Prior breast procedure
No 1.00 (referent)
Yes 1.47 (1.31 to 1.65)
Unknown 0.87 (0.69 to 1.10)
First-degree family history of breast cancer
No 1.00 (referent)
Yes, one relative 1.54 (1.36 to 1.74)
Yes, two or more relatives 2.11 (1.32 to 3.36)
Unknown 0.89 (0.75 to 1.07)
Breast density (BI-RADS)
1 (almost entirely fat) (referent) 1.00 (referent)
2 (scattered fibroglandular densities) 2.00 (1.26 to 3.18)
3 (heterogeneously dense) 3.34 (2.12 to 5.27)
4 (extremely dense) 3.93 (2.46 to 6.28)
Unknown/different system 3.31 (2.09 to 5.24)

The Gail model [9, 10] includes limited information on family history and fo-

cusses on non–genetic risk factors, whereas the Claus model [46] is based primarily

on family history of breast cancer. Ford et al. [47] described a model based on

family history and personal characteristics aimed at identifying the presence of

any mutation of the BRCA genes. A more recent model described by Tyrer et al.

[48] attempts to address many of the shortcomings of the other models by incor-

porating a wider combination of factors than any single earlier model, including

extensive family history and other factors.

The study by Amir at al. used each risk model to estimate the lifetime and

10–year risk of developing breast cancer for each of a set of 3170 women. The

number of expected cases of breast cancer was calculated using each model and

these results were compared with the observed number of cases (64) to provide
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an indication of accuracy. The results showed that the Tyrer–Cuzick and man-

ual models were the most accurate, predicting 69.6 and 78.2 cases respectively.

Although both methods slightly overestimated the risk, the difference was not

statistically significant. The Gail, Claus and Ford methods all significantly un-

derestimated risk, predicting 44.3, 48.6 and 42.3 cases respectively. This suggests

that whilst a combination of family history factors and personal factors provides a

reasonably accurate risk estimation, individually these factors do not provide suf-

ficient information on which to make an accurate risk assessment. A larger study

population would provide a more accurate assessment, since the small number of

cases in this study led to wide confidence intervals.

Mammographic Breast Density and the Gail Model for Breast Cancer Risk Pre-

diction in a Screening Population by Tice et al. [49] used a screening cohort of

81, 777 women to compare the accuracy of the Gail model with the BIRADS den-

sity classification. Within 5.1 years, 955 women had been diagnosed with breast

cancer. The authors found that there was no difference in the accuracy of the Gail

and BIRADS models, suggesting that breast density provides an equivalent level

of accuracy as a risk metric. Interestingly, the Gail model with density added pro-

vided only a marginal improvement over each individual model. This may suggest

that there is very little additional information present in the density estimation,

since density can be affected by many of the risk factors present in the Gail model.

Viewed in conjunction with the study by Amir at al. [45], this may indicate

that a combination of hereditary and other risk factors could provide a better

indication of risk than density alone, although more research would need to be

carried out in order to confirm this.

Some studies have investigated whether the risk of breast cancer can be ef-

fectively reduced by making changes affecting known risk factors. Prevention of

Breast Cancer in Postmenopausal Women: Approaches to Estimating and Reduc-
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ing Risk by Cummings et al. [50] provided a meta–analysis of studies investigating

the relationship between various factors and breast cancer risk, and investigated

the effects of exercise, weight management, healthy diet, moderate alcohol con-

sumption, and fruit and vegetable intake on breast cancer risk.

The study concluded that a combination of risk factors including breast den-

sity and other factors provides the most accurate risk estimates, and the authors

suggested that exercise, weight management, and reducing alcohol intake should

be recommended to postmenopausal women to reduce breast cancer risk. How-

ever, increased intake of fruit and vegetables was not associated with a reduced

risk of breast cancer.

This study has some limitations. Firstly, most of the data concerned only

postmenopausal women, and provided little evidence as to whether such lifestyle

changes in premenopausal women would reduce breast cancer risk. Further, many

of the studies on which the analysis is based used self–evaluation to assess lifestyle

factors, which introduced a potential source of error. Finally, whilst the studies

demonstrated a link between these lifestyle factors and risk, they did not specif-

ically assess the effect of changes in these factors, which would require a wider

clinical study.

Breast Cancer Risk Reduction by Bevers et al. [41] investigated the effects

of some risk reduction strategies but primarily focussed on more severe methods

such as risk reduction surgery and pharmaceutical agents such as tamoxifen and

raloxifene, however the authors also studied the effects of lifestyle factors on the

reduction of breast cancer risk.

The authors concluded that whilst various studies have shown that moderate

alcohol intake is associated with a 30%− 50% increased risk of breast cancer [51],

the effect of a reduction in alcohol intake has not been well–studied.
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Several studies were analysed that investigate the effects of exercise on breast

cancer risk, all of which supported the association between increased exercise and

reduced levels of risk. A study of 90, 509 women found a relative risk of 0.62 (95%

CI, 0.49–0.78) in women who performed at least 5 hours of vigorous exercise per

week, compared with those who did not perform regular exercise [52].

A case–control study of 4538 case patients with newly–diagnosed breast cancer

found that women with annual lifetime exercise activity levels exceeding the me-

dian activity level for active control subjects had a 20% lower breast cancer risk

than inactive women [53]. Finally, a study of 45, 631 women found that those who

reported walking/hiking for at least 10 hours per week had a relative risk of 0.57

(95% CI, 0.34–0.95) compared with inactive women. As discussed, the evidence

generally suggests an inverse association between exercise and risk, however it is

not clear what effect an increase in the level of exercise would have [41].

Bevers et al. concluded that the association between diet and breast cancer

risk is unclear. A trial of 48, 835 women investigating the effects of a low fat diet

on breast cancer risk in postmenopausal women over 8 years found no statistically

significant reduction in risk [54]. The authors note, however, that such trials are

notoriously difficult to maintain and assure compliance with the dietary require-

ments of the trial. Additionally, it is possible that diet may have more of an effect

in younger women [41].

The authors finally assessed the effects of weight/body mass index and conclude

that a substantial amount of evidence suggests an association between higher

body mass index and increased breast cancer risk [41]. A study of 87, 143 women

concluded that women who gain at least 25kg since 18 years of age are 1.45

(95% CI, 1.27–1.66) times more likely to develop breast cancer than those who

maintained their weight [55].
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2.2 3D Breast Tomosynthesis

A number of studies have been published which provide a background for the need

for advances in visualisation for breast cancer. The false-negative mammogram by

Huynh et al. [56], investigated many of the problems in screening for breast can-

cer that lead to false-negative results (i.e. a cancer going undetected). The paper

identified four principal factors that cause false-negative results: the inherent lim-

itations of screen-film mammography, inadequate radiographic technique, subtle

or unusual lesion characteristics, and interpretation error.

The limitations of screen-film mammography include restricted latitude and

contrast, which can make tumours and microcalcifications difficult to detect, par-

ticularly in patients with dense fibroglandular tissue. Radiographic technique

includes factors affecting the taking of x-ray images, such as positioning, compres-

sion and image exposure.

The paper stated that radiographers are more likely to miss lesions that are

small, have a probably benign appearance, or are in an area where visualisation

is difficult, and that common causes of interpretation error include factors such as

suboptimal viewing conditions, outside distractions, lack of systematic approach,

oversight of a subtle lesion due to the finding of a more obvious one, lack of

knowledge, and inaccurate correlations of results with other studies.

Huynh et al. [56] stated that there is very little that can be done to overcome

many of these limitations, however there have since been developments towards

digital imaging and 3D imaging which could potentially help improve aspects

such as contrast, and allow the radiologist to manipulate images on a computer

system, altering quantities such as the contrast to show features more clearly.

Three–dimensional imaging has the potential to overcome many of the limitations

inherent in 2D imaging by removing problems such as overlapping dense tissue
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masking an abnormality and overlapping dense tissue areas giving the false ap-

pearance of an abnormality [24, 57].

Digital breast tomosynthesis is a technique used to produce a three–dimensional

image volume using x–ray images. The image is captured as a series of two–

dimensional digital x–ray images taken at regular intervals in an arc around the

patient (see Fig. 2.1). These images are then reconstructed using a algorithm such

as filtered back–projection to form a three–dimensional volume [58, 59].

Figure 2.1: Diagram showing typical tomosynthesis acquisition. The x–ray source
moves in an arc around the stationary breast and detector, capturing a sequence
of x–ray images at regular intervals.

A principal advantage of tomosynthesis over other 3D imaging techniques such

as magnetic resonance imaging (MRI) is cost. MRI images are expensive, require

highly specialised equipment, and are time consuming to capture, making them

unsuitable for general screening purposes. Tomosynthesis images can be captured

using equipment similar to that used to capture 2D digital mammograms, and

most breast tomosynthesis machines in current use are capable of both [59, 57].
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The individual x–ray images captured during tomosynthesis acquisition are typi-

cally lower–dose than a 2D mammogram, so as to keep the overall exposure similar

to a regular 2–image 2D screening session [57].

The three–dimensional nature of breast tomosynthesis provides the possibility

to overcome many of the shortcomings of 2D mammography. Using 2D mam-

mograms, problems occur when dense tissue in front or behind an abnormality

creates a masking effect, frequently leading the reader to overlook the abnormal-

ity [57]. Similarly, overlapping regions of dense tissue can sometimes create the

false effect of an abnormality, leading to unnecessary, stressful and often–painful

follow–up procedures. Park et al. conclude that tomosynthesis has the potential

to reduce the false–positive rate by providing the reader with better visibility of

any potential areas of concern [57].

Some recent studies have conducted investigations into the possibilities for au-

tomated risk classification in 3D mammographic images. Analysis of Parenchymal

Texture with Digital Breast Tomosynthesis: Comparison with Digital Mammogra-

phy and Implications for Cancer Risk Assessment by Kontos et al. [60] identified

texture features in both 2D digital mammograms and 3D tomosynthesis image vol-

umes and performed linear regression analysis to determine associations between

texture features and breast density.

The study used digital mammograms and breast tomosynthesis volumes from

71 women and found that correlations between texture features and percent den-

sity were stronger in 3D tomosynthesis volumes than in 2D mammograms, sug-

gesting that information detected in 3D tomosynthesis volumes may provide a

more accurate risk estimation [60]. The principal limitation of the study is the

very small dataset used, which makes firm conclusions difficult. A further study

using a larger dataset would allow for more reliable conclusions to be drawn, how-

ever large datasets of tomosynthesis images are not yet readily available due to
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tomosynthesis being a new technique that is not yet in widespread clinical use.

2.3 Line & Edge Detection in Mammographic

Images

Automated detection and classification of parenchymal structures within the breast

has received a significant amount of research, although much of this is aimed at

computer–aided diagnosis (CAD). A CAD system is an automated system that

uses image analysis techniques to detect and classify malignant abnormalities in

a screening mammogram with the intention of reducing false–negative and false–

positive diagnoses [61]. The principles used to detect parenchymal structures for

CAD could be applied to detect linear structures for risk assessment.

Linear structures in mammographic images: detection and classification, by

Zwiggelaar et al. [62], provides a review of four different methods for detecting

linear structures: Line Operator, Orientated Bins, Gaussian Derivatives and Ridge

Detector. The paper made a comparison between the four methods with the aim

of finding the most suitable for use with mammographic images.

Line Operator: Described by Dixon and Taylor [63] and applied to mam-

mograms by Parr et al. [64], the Line Operator involves calculating the average

grey–level, L, of a line of pixels centred on the target pixel at multiple orientations.

The orientation with the largest L is chosen and the line strength, S, is given by

S = (L − N), where N is the average grey–level of a similarly orientated square

of pixels centred on the target pixel. Grey–level values at inter–pixel points are

obtained using bi–linear interpolation.

Orientated Bins: Described by Zwiggelaar et al. [65], the Orientated Bins method

uses a circular region centered on the target pixel, which is divided into equal sec-

tors. Pixels are assigned to the sector containing its centre. The average grey–level,
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L, is calculated for each pair of opposing sectors. The orientation that maximises

L is selected and the line strength, S, is given by S = (L−N), where N is the aver-

age grey–level for the entire circular region. Orientated Bins has the advantage in

that all orientations can be calculated in a single step, making it considerably less

computationally intensive than the Line Operator. Gaussian Derivatives: Karsse-

meijer [66] described a method of line detection based on Gaussian derivatives

[67, 65, 68]. The image is convolved with Gaussian second derivative kernels in

three different orientations and the results, W , are combined arithmetically. The

line strength, W (θ), and orientation, θ are given by
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1
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Ridge Detector: Lindeberg [69, 70] described a method based on second–order

derivatives. The author proposed several measures of ridge strength, the one

selected for analysis was the Aγ−normL index since this is designed to reduce the

response to blobs. The line strength and orientation, θ are given by
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where t is the scale, γ is a normalisation constant and Lxx, Lyy and Lxy are the

second–order derivatives with respect to the subscripts.

At various stages of the experiment, both synthetic and real mammographic

images were used, however, during the initial comparison of the various line detec-
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tion methods only synthetic data was used. Using synthetic data has the advantage

that the linear structures created on them have known lengths and positions, so

the performance of the detection methods can be accurately measured [71, 72, 73].

With real images, however, the exact attributes of the linear structures cannot be

determined to a high degree of accuracy, since the image must be captured cor-

rectly and interpreted by the radiologist, and different radiologists are likely to

interpret the images slightly differently [74]. A disadvantage of synthetic images is

that it is uncertain how accurately they represent real data. This is a problem that

is present in all similar work on measuring the accuracy of line detection methods

on mammographic images; one can never accurately measure the performance of

a particular method against real mammographic data.

The four line detection methods were compared in terms of their signal-to-noise

performance, orientation accuracy, width accuracy, and localisation accuracy. The

signal-to-noise performance was determined using receiver operating characteristic

(ROC) analysis and gives a measure of how accurate a detection method is at

determining whether pixels are part of a linear structure or not. The area under

the ROC curve indicates the degree of accuracy with the line operator method

achieving 0.943, orientated bins achieving 0.916, Gaussian derivatives achieving

0.904, and ridge detector achieving 0.820. These results show that the line operator

method has the best signal-to-noise performance, with the ridge detector having

the worst performance.

Orientation and width accuracy were measured by comparing the orientation

and width at each pixel with the known values from the original image. The

cumulative angular error was calculated for each method and summarised as the

standard deviation of angular error in order to show the orientation accuracy,

and the width accuracy was presented as confusion matrices and summarised as

a percentage correct value for each of the four methods.
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Orientation accuracy results showed that the orientated bins method provided

the best orientation accuracy (7.2◦ standard deviation), with line operator (11.8◦),

Gaussian derivatives (12.5◦) and ridge detector (13.3◦) all achieving slightly worse,

but still reasonable results. Width accuracy measurements showed that the line op-

erator method was the most accurate (73.4%), followed by orientated bins (68.2%),

ridge detector (61.4%) and Gaussian derivatives being the least accurate (58.8%).

Before the localisation accuracy could be measured, the linear structures were

extracted from the line strength and orientation images. This technique used to

extract the linear structures first used non-maximal suppression (NMS) [75]. This

involved comparing each pixel with those either side of it in a line perpendicular

to the orientation direction and selecting pixels whose line strength was greater

or equal to that of its neighbours. After removing those with a line strength

below a threshold level, binary thinning [75] was then used and marked pixels

were categorised according to their number of marked neighbours. Those with

one marked neighbour were considered to be endpoints of linear structures, those

with two marked neighbours were considered to be a part of a linear structure,

whilst those with more than two marked neighbours were unmarked until none

remained. The connecting paths of pixels were then extracted. The experiments

in the paper ignored lines of less than 8 pixels in length.

Once the linear structures had been extracted, the localisation accuracy was

measured for each of the four methods by measuring the distance from each pixel

on linear structures on the known original image with the nearest point on an

extracted linear structure, and calculating the cumulative distributions of locali-

sation error. The results showed that the line operator method was again the most

accurate, showing detected linear structures within two pixels of 86% of known

linear structure pixels. The orientated bins method scored the second highest

results (77%), with Gaussian derivatives coming third (64%) and the ridge detec-

tor method performing comparatively poorly (45%). The results showed quite a
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significant difference in accuracy between the best and worst performing methods.

Throughout the experiments the line operator method has performed consis-

tently well (coming first in three experiments and second in the remaining one),

with the orientated bins method also performing quite reasonably (coming first in

one experiment and second in the remaining three). Conversely, the ridge detec-

tor method has performed consistently poorly in comparison with other methods

(coming last in three experiments and third in the remaining one), although in

some of the experiments the difference between the results for different methods

was not substantial.

The paper continues with further experiments using the line operator method

on real mammographic images, and then attempting to classify the extracted linear

structures to identify the type of structure (either edges, spicules, vessels, ducts,

fibrous tissue, skin folds or other). The linear structures on the real mammo-

graphic images had been annotated by a radiologist, and then the extracted linear

structures were classified based on their cross-sectional profiles and the results

compared with the radiologist’s annotations.

The benefit of knowing your linear structures in mammographic images [75]

also by Zwiggelaar, et al. followed many similar procedures as [62], and aimed to

investigate how the detection and classification of linear structures in mammo-

graphic images can improve the detection rate of microcalcifications and how it

can also help to determine the malignancy of the abnormalities.

This paper recognised that certain abnormalities are associated with certain

types of linear structures, particularly ducts and spicules, and that by detecting

and classifying the linear structures, the detection rate of abnormalities can be

improved. This experiment used twenty real mammographic images, half normal

and half containing microcalcifications.
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The classification of the extracted linear structures resulted in each linear struc-

tures being given a duct probability value, which can be used to help determine

the malignancy of microcalcifications. As in the analysis above, ROC curves were

produced to show firstly a comparison between the detection of microcalcifications

based solely on the grey-level values of the original image, and the detection when

based on these values multiplied by the line strength probability. The area under

the curve, Az, providing a representation of the detectability of the microcalci-

fications, increased from 0.74 to 0.93 when the linear structure information was

taken into account. This showed a very clear improvement in the ability to detect

microcalcifications in the images.

The second analysis conducted in the paper was to plot an ROC curve show-

ing the classification of the malignancy of microcalcifications based on the duct

probability values of the linear structures. An Az value of 0.69 was achieved, indi-

cating a reasonable ability to determine whether a microcalcification is malignant

or benign based on duct probability.

Zwiggelaar et al. [76] demonstrate the detection and classification of linear

structures based on statistical modelling of scale-orientation signatures. The paper

stated that previous classification attempts [77] based on extracted scale informa-

tion had not provided particularly good results and had widely differed from radi-

ologists’ annotations. An experiment was conducted using 29 real mammographic

images, which were processed using the Line Operator to detect linear structures.

These detailed structures were then annotated by an expert radiologist into sev-

eral classes of structure (ducts, edges, fibrous tissue, skin folds, spicules, vessels

and others). Orientation signatures were then extracted from those structures.

Results showed that the ROC analysis for the classification of spicules based on

the signature approach, compared with that based on the cross-sectional profiles

indicated that the new approach performed slightly worse at high sensitivity but
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better at a lower sensitivity. Zwiggelaar et al. [76] continued to produce classi-

fication probability images using the same approach, in an attempt to show the

spicule probability at pixel level, and then combined this information with the de-

tection probability images to produce spicule images. These spicule images were

accessed only visually, no quantitative results were provided to assess their accu-

racy. The authors indicated that there does appear to be a correlation between

the resultant spicule images and the spicules in the original annotated images,

but it was not perfect, since some linear structures not annotated as spicules were

detected as possible spicules. The authors also noted that not all spicules have

been annotated, which is another example of the previously mentioned problem

of using radiologists’ annotations as ‘correct’ results.

Cerneaz and Brady [78] described a method for detecting curvilinear structures

in mammograms using a model–based ridge finder. The authors state that con-

ventional ridge detection methods often perform poorly on mammographic images

when linear structures can lie adjacent and closely parallel to each other. This

causes conventional methods of reducing noise, such as smoothing, to severely re-

duce the effectiveness of the line detection. In order to overcome this, the authors

use a statistical model to identify the set of pixels belonging to the linear structure

components. This set is then expanded to fill small holes in the set and these re-

gions are thinned to produce thinly–connected skeletons. The skeleton structures

are separated at each junction into distinct branches and the set of branches is

scanned for branches that can be merged or discarded due to their similarity. The

branches are reconstructed to form a skeletal representation of the linear structure

network. The results closely matched the linear structures observed by radiolo-

gists. This approach differed from many other approaches in that it focussed on

detecting the entire network rather than any pixel–level measures of line strength

and orientation.

In summary, a variety of methods for detecting linear structures in mammo-
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graphic images have been demonstrated. Most of these methods have adopted

a pixel–level approach, whereby each pixel is annotated with a measure of line

strength and orientation [62], however others have used model–based approaches

to detect the network of structures [78]. The pixel–level information could be use-

ful for tasks such as the classification of structures, and measures of line strength

for all pixels could be useful in risk assessment, where the density of linear struc-

tures has been linked to mammographic risk [22]. Of the pixel–level methods

reviewed, the Line Operator has been shown to outperform several other meth-

ods [62]. The problem of detecting linear structures in three–dimensional breast

images has not been well–studied, and there is little literature available on this

topic, however it may be possible to adapt an existing method to work in three

dimensions.

2.4 Mammographic Density Estimation

Conventional classification of mammographic density by observers has several lim-

itations. The task is time–consuming for the readers, and the inevitable inter–

and intra–observer variabilities lead to inconsistent and unreliable results [16, 79].

These limitations led to the development of semi–automated and automated meth-

ods as a way of quantifying breast density more reliably and consistently.

Some methods, such as interactive thresholding described by Byng, et al. [16],

are semi–automated. The interactive thresholding method requires the reader

to select two thresholds. The first threshold is to outline the breast area whilst

the second threshold best outlines areas of dense tissue. Both inter– and intra–

observer variability were shown to be low using this method. However it remained

present as a limitation since the method remains dependent on the judgement of

the observer [16, 80].
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Automatic segmentation of mammographic density by Sivaramakrishna et al. [81]

described an entirely automated method for segmenting dense tissue. The authors

firstly calculated a variation image which was intended to suppress small bright

areas (such as vessels, noise, etc.) whilst maintaining large bright areas (such

as dense tissue). Secondly, a threshold was determined automatically using the

Minimum Error Thresholding technique [82] and applied in order to delineate the

dense tissue areas. The method was tested using a small set of 32 images; the

results showed that the density measurements correlated closely with the mea-

surements of mammographers. The difference between results obtained using the

algorithm and those of mammographers was similar to the differences in results

between mammographers.

A further study using a larger data set would provide further information as

to the accuracy of measurements obtained using the method, since it is difficult

to draw firm conclusions from such a small trial. However, a fully–automated

method such as this offers the potential for significant benefits as it would overcome

observer variability problems inherent in systems that depend on the judgement

of an observer.

Zhou et al. [83] described an automated method along similar principles to

Sivaramakrishna et al.. The breast area is subjected to an adaptive dynamic

range compression technique designed to reduce the grey–level intensity in back-

ground tissue whilst enhancing larger bright areas. A threshold is then determined

automatically using the grey–level histogram in order to segment the dense tissue.

Magnetic resonance imaging for secondary assessment of breast density in a

high-risk cohort by Klifa et al. [84] used a semi–automated segmentation method

to estimate breast density in 3D MRI image volumes. The method involved a com-

puter system drawing a contour around the dense tissue areas using a combination

of Bezier splines and a Laplacian of Gaussian filter. The user could influence the
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contour by placing control points of Bezier splines close to the edges of the region

of interest.

The authors performed a study to compare the performance of the method us-

ing 2D mammograms and 3D MRI images. Mammograms from a set of 35 women

were assigned percent density measures using a predominantly manual method,

whereby a reader delineated the area of breast density by hand. A computer pro-

gram then analysed these to calculate percent density measures, which were then

compared with the measures obtained from the MRI volumes. The overall results

showed a moderate correlation between density estimations from 2D and 3D meth-

ods, however when divided into low–risk (BIRADS classes 1 and 2) and high–risk

(BIRADS classes 3 and 4) groups the low–risk group showed much stronger cor-

relation between 2D and 3D measures, whereas the high–risk group showed poor

correlation. The authors suggest that this may indicate that 2D density estima-

tion is less accurate for more dense breasts, and that therefore estimates using 3D

image volumes may provide a more accurate risk estimation for this group [84].

Limitations of the study include the very small dataset of only 35 women, and

that different methods were used to assess density in 2D and 3D images. The

small dataset makes any firm conclusions difficult to establish, whilst differences

in the estimation methods could easily account for much or all of the observed

differences. As previously stated, however, large datasets of tomosynthesis images

are not yet readily available due to tomosynthesis being a new system that has

only recently gained approval for clinical use.

Yaffe [85] provides an overview of various approaches to measuring breast den-

sity. He states that initial methods of estimating breast density were entirely sub-

jective, however in recent years more objective and qualitative approaches have

been developed. The most straightforward method, known as planimetry, involved

manually tracing around areas of dense tissue on a screen film mammogram using

an instrument called a planimeter. This provides the total area of dense tissue. A
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similar measurement of the total breast area is obtained and the first measurement

is divided by the second to obtain the proportion of breast area considered dense.

Whilst this method is simple to perform, it is highly labour–intensive and prone

to inter– and intra–observer variability.

Semi–automated methods such as interactive thresholding [16] provide a less

time–consuming alternative to planimetry when using digital or digitised mammo-

grams. These methods have been used successfully in many clinical studies [85],

and generally involve the user interactively selecting a threshold that as closely as

possible segments the dense from fatty tissue, and often a second threshold that

segments the breast area [85, 16]. Yaffe argues that a principle shortcoming of

these techniques is that a single threshold that clearly segments all dense tissue

from fatty tissue is unlikely to exist, resulting in a degree of subjectivity in the

selection of the threshold and consequently inconsistent results. This can be par-

tially overcome by training and the adherence to reading standards, but is unlikely

to be eliminated, giving rise to the desire for fully–automated methods.

Chang et al. [86] and Glide-Hurst et al. [87] have described fully automated

methods based on thresholding, in addition to those by Sivaramakrishna et al. [81]

and Zhou et al. [83]. These methods generally use apply a function to suppress

background noise and enhance larger bright areas that would represent dense

tissue, prior to the automated selection of a threshold by analysing the grey–level

histogram. These methods represent an improvement over the semi–automated

methods since they remove the degree of subjectivity, however they may not always

correctly identify the most suitable threshold [85].

Yaffe states that there has been relatively little work on comparing vari-

ous methods for estimating breast density. Martin et al. [88] compared density

measurements derived from several qualitative, quantitative and semi-automated

methods and found large differences between assessments based on qualitative
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and quantitative methods. The authors found that qualitative methods were less

reproducible and tended to over–estimate the proportion of breast density.

In summary, fully automated methods to segment the dense areas of breast tis-

sue have been developed [81, 83, 86, 87] and such methods are expected to produce

the most reproducible, objective and qualitative estimates of breast density [85],

since they remove user involvement in the segmentation process.

2.5 Mammographic Risk Classification

Various studies have been published investigating mammographic risk classifica-

tion based on the analysis of mammographic images. Texture Based Mammogram

Classification and Segmentation by Gong et al. [89] demonstrated the use of a

texture–based method to classify mammograms into Wolfe classes. Textons were

identified by extracting for each pixel in each of a training set of 200 images, the

greyscale levels of the pixels in an N×N square around the pixel. These greyscale

levels were then row reordered to form ‘image patch’ vectors. These were used

as the initialisation for a Hidden Markov Random Field [90]. The resulting vec-

tors were then aggregated over images from the same Wolfe class and clustered

together, with textons identified using K–means clustering.

Five textons were chosen from each class for use in the classifier. For each test

image, each pixel is labelled with the closest texton in the feature space, and a

histogram is constructed of these texton labellings. These were then compared

with the models learnt using the training set and assigned to the closest match.

Final results showed correct classification rates of 92%, 81%, 83% and 95% for

Wolfe classes 1–4 respectively [89]. The test set consisted of only 43 images and

the authors do not provide a breakdown of the number of images belonging to

each Wolfe classification.

Edward Hadley 37



CHAPTER 2. REVIEW OF LITERATURE

Petroudi et al. [91] described an approach that was also based on texture

classification using a texton dictionary developed from a training set. Each mam-

mogram in the training set is firstly segmented to remove the background and

pectoral muscle, then filtered using Maximum Response 8 filter bank [92]. The

filter responses are clustered over all images per BIRADS class using the K–means

algorithm and the cluster centres represent the textons. This results in a library

of 10 textons per BIRADS class, 40 textons in total. Each pixel in each training

mammogram is then assigned a label by the texton that lies closest to it in the

filter response space, and a texton histogram is computed for each mammogram.

During classification, each test mammogram is segmented, filtered and mapped

to a texton histogram using the same method. This histogram is compared to

all training models and the nearest model is found using the χ2 comparison by

comparing its texton distribution to the learned models. The method achieved an

overall classification accuracy of 76% when evaluated using the MIAS dataset [23].

Bovis and Singh [93] described an alternative approach to feature extraction

and classification. Each mammogram is initially segmented to remove background

area, and four groups of texture features are extracted in addition to a series of

statistical features. The texture features include 1) extracting 15 features by

constructing Spatial Grey Level Dependency (SGLD) matrices [94], 2) the total

spectral energy from 10 equidistant analysing rings from the power spectrum fol-

lowing the application of the Fourier transform, 3) the total texture energy for

this mask combination by convolving the image with each combination of Laws’

texture masks, and 4) four features (standard deviation, mean, skewness and kur-

tosis) following application of the Discrete Wavelet Transform. Classification in

to BIRADS classes was conducted using an Artificial Neural Network. Evaluation

using 377 images from the DDSM dataset [95] using a 10–fold cross–validation

methodology produced an overall classification accuracy of 71.4%.
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Oliver et al. [96, 97] presented a texture–based approach to risk classification

by using texture information to segment dense from fatty tissue areas. Their inves-

tigation involved using a clustering algorithm to group pixels of similar grey–level

intensities together, ultimately resulting in just two clusters of pixels representing

dense and fatty tissue types.

Two different methods, Local Binary Patterns [98] and co–occurrence matri-

ces, were used to extract features from the segmented images for use in a clas-

sifier. During the experiment 322 images were classified into BIRADS classes

using a leave–one–out classification methodology. The experiment investigated

and compared three different clustering algorithms (Fuzzy C–Means, Normalised

Cuts and the Mean Shift algorithm), the two different feature extraction methods

and four different classifiers (K–Nearest–Neighbour with Sequential Forward Se-

lection (SFS) feature selection, Linear Discriminant Analysis, C4.5 Decision Tree

and Support Vector Machine with a polynomial kernel).

Results for the comparison of clustering methods showed 65%, 78%, 73% and

77% correct classification when no segmentation, Fuzzy C–Means, Normalised

Cuts and the Mean Shift algorithm were used respectively, along with the Local

Binary Patterns feature extraction and the K–Nearest–Neighbour classifier. The

result for no segmentation showed that using a clustering algorithm improves

classification accuracy significantly. The performance of the C–Means and Mean

Shift algorithms were similar, whilst the Normalised Cuts algorithm performed

less–well.

The comparison between feature extraction methods was largely inconclusive,

showing 78% and 79% correct classification for the Local Binary Patterns and

co–occurrence matrices methods respectively, when used with the Fuzzy C–Means

clustering and K–Nearest–Neighbour classifier. Meanwhile, the results for the

comparison of classifiers showed 78%, 65%, 68% and 65% correct classification
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for the K–Nearest–Neighbour, Linear Discriminant Analysis, C4.5 Decision Tree

and Support Vector Machine classifiers respectively, when used with the Fuzzy

C–Means clustering and Local Binary Patterns feature extraction.

This result showed that the K–Nearest–Neighbour classifier outperformed all

other classifiers significantly. The authors state that this is indicative of the dif-

ficult task of finding a true boundary between classes, and so it is unsurprising

that a linear classifier such as Linear Discriminant Analysis performs poorly [96].

The relatively poor performance of the Support Vector Machine classifier is per-

haps a surprising result and may indicate mis–configuration. The Support Vector

Machine classifier used a 10–fold cross–validation methodology instead of leave–

one–out, resulting in a smaller training set than for other classifiers, which may

also have influenced the results.

Different approaches have been developed to automatically classify mammo-

grams in to risk categories, although since these studies are often conducted using

different datasets and different risk metrics it is not always possible to draw firm

conclusions as to the relative performance of the different methods. Classification

methods commonly comprise two distinct steps: firstly the extraction of features

from the image, and secondly the use of these features in a classifier to assign

the image to a particular risk category. Some studies used texture analysis based

on textons to segment the image [89, 91]. These methods used texton labels to

construct a texton histogram for each image and classification is conducted by

comparing the histogram of a test image against each histogram in a training set.

Other studies extracted texture and statistical features from the image for use in

a classifier [93, 96].

Work by Oliver et al. [96] evaluated a range of segmentation methods, fea-

ture extraction methods and classifiers. Their approach was to use a clustering

method to segment the image in to dense and fatty tissue types, followed by a
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method to extract features for use in a classifier, and finally classification. The

evaluation included both linear and non–linear classifiers and concluded that, with

the exception of the K–Nearest–Neighbour classifier, there was little difference in

the performance of the other three classifiers evaluated suggesting that classes are

often not well–separated and finding a boundary between classes is not straight-

forward.
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Chapter 3

2D Risk Assessment

3.1 Introduction

The purpose of this chapter is to investigate the relationship between the density of

linear structures and mammographic risk. Initial work involves the selection and

implementation of a line detection methodology and experiments to investigate

whether statistically significant differences in linear density can be detected in

mammograms of different risk categories. This would suggest that linear density

may be used as a predictor for mammographic risk. Further experiments use linear

density in a classifier to automatically place mammograms in to risk categories

and compare against a conventional density–based classifier.

This chapter focusses on the use of conventional two–dimensional mammo-

grams in order to establish any relationship between linear density and mammo-

graphic risk, since this technology is in widespread use and large datasets are

readily available for research purposes.
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3.2 Data

Experiments are conducted using images from the Mammographic Image Analysis

Society (MIAS) database [23]. This database is composed of left and right mam-

mograms from 161 women taken from the screening population. The images are

digitised into 50µm × 50µm pixels. One image (mdb295) had become corrupted

in the copy available, resulting in a set of 321 images that are used throughout

this chapter.

Three classification models are used: Tabár patterns [22], Boyd SCC classes [28]

and Breast Imaging Reporting and Data System (BIRADS) classes [27]. Tabár’s

classification consists of five patterns, where patterns I–III represent a low risk of

developing breast cancer, and patterns IV–V indicate a higher risk. Screening tests

have shown that cancer prevalence in women with patterns IV-V is approximately

twice that in women with patterns I-III [22]. The Boyd SCC model consists of a

scale of six classes where class 1 indicates the lowest risk and class 6 indicates the

highest risk. Finally, the BIRADS classification uses a scale of four classes, where

class I represents a low risk and class IV represents a high risk.

The 321 mammograms were classified by an expert radiologist according to

each classification model. Furthermore, two additional expert radiologists classi-

fied each mammogram according to the BIRADS risk classification metric. Con-

sensus between the classifications of the three individual radiologists was used, as

is common in screening mammography, in order to improve the reliability of the

classifications.

Where disagreement occurred between the experts, the consensus was deter-

mined using the following strategy: where two out of three radiologists agree, the

majority value was used, and where all three experts disagreed, the median value

was used. Of the 321 mammograms, all three experts agreed in 138 cases, two

Edward Hadley 43



CHAPTER 3. 2D RISK ASSESSMENT

experts agreed whilst a third disagreed in 171 cases, and in 12 cases all three

experts disagreed.

Tabár Pattern I II III IV V
Images 119 53 40 81 28

Table 3.1: The distribution of images according to the Tabár classification metric.

Boyd SCC Class 1 2 3 4 5 6
Images 6 60 46 75 90 44

Table 3.2: The distribution of images according to the Boyd classification metric.

BIRADS Class I II III IV
Radiologist 1 129 79 69 44
Radiologist 2 86 112 80 43
Radiologist 3 59 86 142 34
Consensus 87 103 94 37

Table 3.3: The distribution of images according to the BIRADS classification
metric for each radiologist and the consensus.

The distribution of images in the dataset across the three risk classification

metrics can be seen in Tabs. 3.1–3.3. The tables show that a range of mammograms

of all risk levels is present in the dataset. Amongst the 321 mammograms in the

dataset, 115 contained one or more abnormalities.

Figures 3.1–3.3 provide an illustration of some typical mammograms covering

a range of risk levels from the MIAS database. The images have been masked to

remove the pectoral muscle and the non–breast area.

3.3 Linear Structure Detection

3.3.1 Method

The objective of investigating the relationship between the density of linear struc-

tures and mammographic risk has necessitated the development of a robust method
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Figure 3.1: Typical low risk mammograms from the MIAS database. Left image
shows a mammogram of Tabár pattern II, Boyd SCC class 1, BIRADS class I.
Right image shows a mammogram of Tabár pattern II, Boyd SCC class 2, BIRADS
class I.

for detecting linear structures in mammographic images. A study of various meth-

ods for detecting linear structures in mammograms [62] showed that Dixon and

Taylor’s line operator [63] is more accurate than other methods. As such, the line

operator was used in our experiments. The method produces a measure of line

strength and orientation for each pixel in an image.

The line orientation is determined by calculating the mean pixel brightness

of a line of pixels running through the target pixel at a range of orientations, as

shown in Fig. 3.4. The orientation with the largest mean brightness is taken to

be the line orientation. The line strength, S, is then given by

S = (L−N), (3.1)
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Figure 3.2: Typical moderate risk mammograms from the MIAS database. Left
image shows a mammogram of Tabár pattern III, Boyd SCC class 3, BIRADS
class II. Right image shows a mammogram of Tabár pattern I, Boyd SCC class 4,
BIRADS class III.

where L is the mean brightness of the line of pixels, and N is the mean brightness

of a similarly orientated square of pixels as shown in Fig. 3.5. A square is used

rather than a circle to ensure that the background intensity for the full length

of the line is measured to avoid a bias towards the centre–point of the line. Our

experiment used a line length of five pixels and twelve orientations as suggested

by earlier work [62]. Bilinear interpolation was used to calculate the pixel values

where the required points fell between actual pixels.

The method makes the assumption that the lines under detection are approx-

imately one pixel thick, since otherwise part of the line will be included in the

‘background’ measure resulting in a lower line strength measurement. In order to

overcome this, a multi-scale approach was used in order to detect lines of a range

of thicknesses and the resultant images were combined to produce line strength
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Figure 3.3: Typical high risk mammograms from the MIAS database. Left image
shows a mammogram of Tabár pattern IV, Boyd SCC class 6, BIRADS class IV.
Right image shows a mammogram of Tabár pattern V, Boyd SCC class 6, BIRADS
class IV.

Figure 3.4: Diagram showing the line operator method selecting an orientation.
The average grey–scale level is calculated for lines of pixels running through the
target pixel at a range of orientations. The orientation with the greatest average
line strength is selected.
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Figure 3.5: Diagram showing the line operator method measuring the line strength.
The average grey–scale level is calculated for lines of pixels running through the
target pixel, L, and for a similarly orientated square of pixels, N . The line
strength, S, is given by Eq. 3.1.

values for pixels at the original scale. Scaling of the images was achieved firstly by

blurring the image using a 3x3 Gaussian kernel and subsequently subsampling to

provide a resultant image of half the width and height of the original. A Gaussian

of 3x3 (σ = 0.85) was selected because it was felt that a larger Gaussian may

blur the image too much and result in a loss of clarity which may lead to poorer

results from the subsequent linear structure detection. The line strength results

from each scale were combined by enlarging the scaled images to the size of the

original and for each pixel taking the maximum line strength value from the set of

line strength images. Our approach comprised processing with the line operator

at three scales, since this appeared to produce the most reasonable output for the

images under examination.

Finally, the pixel line strengths were thresholded to remove background tex-

ture, since this was the simplest method for obtaining a measure of linear density.

Using a line length of 5, the measures of line strength in 8–bit images (with pixel

values 0 − 255) can reach a theoretical maximum of 204 since this is the highest

value of S that can be obtained (see Eq. 3.1), however the results showed that

most pixels had line strength values in the range 0 − 30. A range of threshold

values were chosen experimentally, and two values (4/204 and 6/204) were used
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for our analysis as they removed most background noise whilst maintaining most

of the linear structure information (see Figs. 3.6–3.8 (c) and (d)).

Experimental procedures to select thresholds involved performing the linear

structure detection on a small set of 4 images selected randomly from the dataset.

The detection was performed on these images using thresholds at integer incre-

ments between 1/204 and 30/204. Initial visual inspection resulted in all thresh-

olds below 3 and above 8 to be discarded, since they clearly either removed too

much linear structure information or not enough background information. The

line detection was then performed on a larger set of 50 randomly selected images

at each threshold in the remaining range and pairwise Mann-Whitney tests were

performed similar to those shown in Sec. 3.3.2 in order to assess the suitability of

each threshold. Based on these tests, the thresholds of 4/204 and 6/204 were se-

lected for further analysis, since they provided a good level of distinction between

the range of risk categories.

Figures 3.6–3.8 (b) show examples of low, moderate and high risk mammo-

grams following processing with the line operator. Figures 3.6–3.8 (c) and (d)

show examples of the resultant images after thresholding. Subsequently, the re-

sults were analysed for differences between images of each Tabár pattern, Boyd

SCC class and BIRADS class.

3.3.2 Results

The relative linear structure density for the various Tabár patterns, Boyd SCC

classes and BIRADS classes are shown in Figs 3.9, 3.10 and 3.11, respectively.

These graphs provide an overview of the difference between the patterns and

classes, and for more detailed analysis, Mann-Whitney U tests were performed on

each pair of Tabár patterns, Boyd SCC and BIRADS classes. These are shown in

Tabs 3.4, 3.5 and 3.6, respectively. Parametric tests, such as analysis of variance
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(a) (b)

(c) (d)

Figure 3.6: A typical mammogram of Boyd SCC class 1/Tabár pattern II/BIRADS
class 1 (low risk).
(a) – original mammogram.
(b) – the results after processing with the line operator.
(c) and (d) – the results after thresholding at 4/204 and 6/204 respectively.
The lines have been enhanced for viewing.
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(a) (b)

(c) (d)

Figure 3.7: A typical mammogram of Boyd SCC class 3/Tabár pattern
III/BIRADS class 2 (moderate risk).
(a) – the original mammogram.
(b) – the results after processing with the line operator.
(c) and (d) – the results after thresholding at 4/204 and 6/204 respectively.
The lines have been enhanced for viewing.
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(a) (b)

(c) (d)

Figure 3.8: A typical mammogram of Boyd SCC class 6/Tabár pattern
IV/BIRADS class 3 (high risk).
(a) – the original mammogram.
(b) – the results after processing with the line operator.
(c) and (d) – the results after thresholding at 4/204 and 6/204 respectively.
The lines have been enhanced for viewing.
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(ANOVA) tests were not used because the test data did not fulfil the necessary

assumptions, however the relatively small number of classes made pairwise Mann-

Whitney tests possible.

The Mann-Whitney test results provide an indication as to whether there was a

statistically significant difference between two classes of images in our data set. A

significant difference would suggest that it may be possible to reliably distinguish

between different classes of images.

As mentioned, two threshold values were used in our analysis (4/204 and

6/204). This is to demonstrate the effects of varying the threshold level and

thus including more or less of the linear structure information.

0.00

0.05

0.10

0.15

0.20

0.25

I II III IV V

Tabar Pattern

M
ea

n
 p

ro
p

o
rt

io
n

 o
f 

p
ix

el
s 

w
it

h
 li

n
e 

st
re

n
g

th
 a

b
o

ve
 

th
re

sh
o

ld
 a

n
d

 9
5%

 c
o

n
fi

d
en

ce
 in

te
rv

al
 b

ar
s

T=4/204
T=6/204

Figure 3.9: Graph showing the mean proportion of pixels with line strengths
above each threshold T and 95% confidence intervals of the mean for images of
each Tabár pattern.

The results of the analysis by Tabár pattern (see Fig. 3.9, Tab. 3.4) demon-

strate the ability to reliably distinguish between patterns II–III (low risk) and

patterns IV–V (high risk) at a threshold of 6/204, with low risk pattern I being

indistinguishable from high risk pattern IV. The results at a threshold of 4/204
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Table 3.4: The p-values obtained by Mann-Whitney tests on each combination
of Tabár patterns for each threshold T . Results not significant at α = 0.05 are
shaded.

Tabár II III IV V
I 0.0000 0.0000 0.7938 0.0000
II 0.0003 0.0000 0.0002
III 0.0000 0.3597
IV 0.0000

T = 4/204

Tabár II III IV V
I 0.0000 0.0000 0.9069 0.0059
II 0.0001 0.0000 0.0000
III 0.0000 0.0336
IV 0.0050

T = 6/204

are less promising, since the low risk pattern III becomes indistinguishable from

high risk pattern V.

The results of the analysis by Boyd SCC class (see Fig. 3.10, Tab. 3.5) differ

somewhat, and it is clear that the proposed method is able to distinguish between

classes 1–3 and classes 4–6 at both thresholds, with a general trend through classes

1–4/5 indicating that a greater linear density is indicative of a greater risk. The

three lower risk classes are each distinguishable from all other classes, whilst the

three higher risk classes are distinguishable from the three lower risk classes, but

are indistinguishable from one another at T = 6/204. At T = 4/204 classes 4 and

6 become distinguishable from one another.

Results from the analysis by BIRADS class (see Fig. 3.11, Tab. 3.6) demon-

strate the ability to distinguish the low risk class 1 from all other classes, and the

higher risk class 3 from all other classes. However, it is not possible to distin-

guish the lower risk class 2 from the higher risk class 4. The trend shown here

differs from the analysis by Boyd class; here the highest risk class 4 indicates a

markedly lower average linear density than the moderately high risk class 3 and a

similar density to the lower risk class 2. Whilst Boyd class 6 does show a slightly

Edward Hadley 54



CHAPTER 3. 2D RISK ASSESSMENT

0.00

0.05

0.10

0.15

0.20

0.25

1 2 3 4 5 6

Boyd SCC classes

M
ea

n
 p

ro
p

o
rt

io
n

 o
f 

p
ix

el
s 

w
it

h
 li

n
e 

st
re

n
g

th
 a

b
o

ve
 

th
re

sh
o

ld
 a

n
d

 9
5%

 c
o

n
fi

d
en

ce
 in

te
rv

al
 b

ar
s

T=4/204
T=6/204

Figure 3.10: Graph showing the mean proportion of pixels with line strengths
above each threshold T and 95% confidence intervals of the mean for images of
each Boyd SCC class.

Table 3.5: The p-values obtained by Mann-Whitney tests on each combination of
Boyd SCC classes at each threshold T . Results not significant at α = 0.05 are
shaded.

Boyd 2 3 4 5 6
1 0.0332 0.0023 0.0001 0.0001 0.0008
2 0.0002 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0362
4 0.6693 0.0287
5 0.0833

T = 4/204

Boyd 2 3 4 5 6
1 0.0155 0.0009 0.0001 0.0000 0.0004
2 0.0001 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0031
4 0.7621 0.4828
5 0.6612

T = 6/204
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lower linear density than class 5, it is much less marked. This is reflected in the

Mann-Whitney tests.
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Figure 3.11: Graph showing the mean proportion of pixels with line strengths
above each threshold T and 95% confidence intervals of the mean for images of
each BIRADS class.

Table 3.6: The p-values obtained by Mann-Whitney tests on each combination of
BIRADS classes at each threshold T . Results not significant at α = 0.05 are
shaded.

BIRADS 2 3 4
1 0.0000 0.0000 0.0000
2 0.0000 0.0771
3 0.0000

T = 4/204

BIRADS 2 3 4
1 0.0000 0.0000 0.0000
2 0.0000 0.8636
3 0.0002

T = 6/204
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3.3.2.1 A Comparison of The Observed Results with Tabár’s Expected

Results

The risk assessment metric developed by Tabár is based on the relative proportions

of four structural components. These are adipose tissue, fibroglandular tissue,

nodular density and linear density. It is the proportion of the linear density

component that is related to this work and Tabár’s expected values for each pattern

are shown in Fig. 3.12.
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Figure 3.12: Graph showing Tabár’s expected proportion of linear density in each
pattern, taken from [22]. Note that due to their similarity, Tabár does not provide
separate values for patterns II and III.

When the observed results at a threshold of 6/204 are normalised to Tabár’s

expected results (see Fig. 3.13), we can see that the results for patterns I-II are

reasonably good approximations of the expected values, whilst the result for pat-

tern IV under–represents Tabár’s expected result. The result for pattern V is an

anomaly which is discussed in Sec. 3.3.3.
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Figure 3.13: Graph showing the observed results at a threshold of 6/204 normalised
by the mean of each data set (see Fig. 3.12).

3.3.3 Discussion and Conclusions

Whilst the proposed approach is simplistic, the results are promising and the

analysis by Boyd SCC class demonstrates a clear ability to automatically distin-

guish between lower risk mammograms (classes 1–3) and higher risk mammograms

(classes 4–6).

The observed proportions of linear structures correlate closely with Tabár’s

expected values for patterns I-IV, however the observed result for pattern V was

considerably greater than expected (see Fig. 3.13). The analysis by Tabár pattern

is interesting since the results for pattern V were unexpected. Tabár suggests

that the linear density in pattern V mammograms should be very low [22] (see

Fig. 3.12), whereas our results indicate a relatively high linear density for this

pattern (see Figs. 3.9 and 3.13). However, a possible explanation might be that

the line operator enhances linear structures even in dense tissue (see Figs. 3.6–

3.8) and as such might result in a high proportion of linear structures, whereas

under the Tabár classification this area might be assigned to one of the alternative
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mammographic building blocks, such as fibrous tissue. Further work to segment

and mask the fibrous tissue prior to application of the line detector is discussed

in Sec. 3.4.

In addition, the results for Tabár pattern I mammograms, which demonstrate

a high linear density, do not correlate with the results of low risk Boyd or BIRADS

classes, which show low linear densities. Other studies have found that Tabár’s

patterns do not correlate well with other risk assessment models [29]. The prin-

cipal anomaly is the low risk Tabár pattern I. The mammograms in our test set

belonging to this pattern do not easily correlate with a particular Boyd classifica-

tion, instead being spread amongst Boyd classes 2-5, with the majority seeming

to belong to the high risk classes 4-5 [29].

The results of the analysis by BIRADS class are also less promising than the

analysis by Boyd class, since it is not currently possible to distinguish between

the low risk class 2 and the high risk class 4. We see in the analysis by Boyd class

that the highest class (6) shows a slightly lower linear density than the classes

immediately below it. At a threshold of 6/204 this decline is only slight and

there is no significant difference between the linear densities of classes 4–6 (see

Table 3.5). The density of class 6 is also significantly higher than all three of the

low risk classes. The decline is accentuated when a threshold of 4/204 is taken,

where we see a significant difference between classes 4 and 6. This indicates a

dependence on the threshold value and a more principled approach to determine

the threshold would be desirable.

Similarly, the highest risk BIRADS class (4) is indistinguishable at either

threshold from the low risk class 2 based on this method, but is significantly

lower than class 3. The trend seen in the results by Boyd class is also present in

the BIRADS results. Owing to a lack of distinction between BIRADS classes 2

and 4, we are unable to make a reliable estimate on the BIRADS scale, and further
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information will be necessary to achieve this. It is possible that a distinction may

be achievable by applying the proposed method at a wider variety of scales, or

alternatively additional data may be necessary, such as information relating to the

distribution of the linear structures.

In summary, the proposed approach is promising but simplistic in that it con-

siders only the density of linear structures and does not take in to account infor-

mation relating to their distribution. The potential to automatically detect linear

structures within a mammogram and relate these measurements to mammographic

risk classifications has been demonstrated.

3.3.4 Investigating the Effect of Abnormalities

3.3.4.1 Background

During the investigation in section 3.3.1, concerns arose as to the effect of ab-

normalities in the data set. Since the MIAS database contains both normal and

abnormal images, could the presence of abnormalities be affecting the results? The

expected result was that the presence of abnormalities would not significantly af-

fect the density of linear structures in the breast, since with the exception of

spiculated lesions, the development of an abnormality is unlikely to increase or

decrease the quantity of linear structures. It is quite likely, however, that the

development of an abnormality would affect the distribution of these structures.

3.3.4.2 Method

Of the 321 MIAS images (see Sec. 3.2), 206 are normal (non-cancerous), and 115

are abnormal (cancerous).

The experiment described in section 3.3.1 was repeated on the subset of 206
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normal images and the results compared with the results on the set of all images in

order to determine whether the inclusion of abnormal images significantly affects

the results. Graphs were produced showing the comparison of the two sets by

both Tabár pattern and Boyd class (see Figs. 3.14 and 3.15).

3.3.4.3 Results and Discussion

The results of this analysis by Tabár pattern and Boyd SCC class are show in

Figs. 3.14 and 3.15, respectively. The results show that there is no significant

difference between the above threshold linearity in set of normal images compared

with the complete dataset.
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Figure 3.14: Graph showing the mean above threshold linearity and 95% confi-
dence intervals of the mean for all images and the subset of normal images at each
Tabár pattern.

The results of a comparison between the whole data set and the subset of

normal images shows no significant differences between the two sets. This was

the expected result (see Sec. 3.3.4.1). It is possible, however, that the presence of

abnormalities may affect the distribution of the linear structures.
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Figure 3.15: Graph showing the mean above threshold linearity and 95% confi-
dence intervals of the mean for all images and the subset of normal images at each
Boyd class.

3.4 Density Estimation

3.4.1 Background

Due to the anomaly observed regarding Tabár pattern V (see sections 3.3.2 and

3.3.3), a follow-up piece of work was undertaken which involved segmenting the

dense from non-dense (fatty) tissue prior to running the line operator. The density

of linear structures in each tissue type can then be analysed separately and should

reduce the anomalous effects seen in the results for Tabár pattern V in the previous

experiment.

The segmentation was conducted using a method described by Sivaramakr-

ishna, et al. [81], which is based on Kittler and Illingworth’s Minimum Error

Thresholding [82]. The method involves converting the image to a variation im-

age, which aims to differentiate between large bright areas (dense tissue) and

small bright areas (e.g. ducts) prior to performing Kittler and Illingworth’s opti-
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mal threshold algorithm. The intention is to segment out large bright areas whilst

leaving small bright areas.

3.4.2 Method

The method used was based on that used in section 3.3, and the experiment used

the same 321 images from the MIAS database.

The method involves creating a variation image from the source image, which

is then used as input to the Minimum Error Thresholding algorithm to produce

an approximation of the dense tissue area. If the Minimum Error Thresholding

algorithm were to be performed over the original image, the algorithm would

place all bright areas of the image above the threshold. This would include dense

tissue, but also smaller bright structures such as ducts and vessels. The purpose

of the conversion to a variation image is to suppress small bright structures whilst

enhancing large bright areas.

The variation image was calculated by dividing each pixel value by its corre-

sponding unit variation V , given by

V (I, J) =
1

S

√

√

√

√

[

N
∑

i=−N

N
∑

j=−N

(

M(i, j)−M(I, J)

M(I, J)

)2
]

, (3.2)

over a square window with sides of length (2N + 1), where S is the number of

pixels in the window. A window size of 5 (i.e. N = 2) was used for our experiment

as suggested by the authors [81].

High pixel values in the original image that are associated with small bright

areas will have a higher V value, and thus a lower value in the variation image

than similar pixel values associated with large bright areas.
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The variation image is then used as the source image for Kittler and Illing-

worth’s Minimum Error Threshold algorithm [82]. This algorithm involves cal-

culating a criterion function for each grey level value and finding its minimum.

This is a relatively straightforward computation. The criterion function J for a

possible grey level threshold value T is given by

J(T ) = 1 + 2 [P1(T ) log σ1(T ) + P2(T ) log σ2(T )]

− 2 [P1(T ) logP1(T ) + P2(T ) logP2(T )] . (3.3)

The parameters Pi(T ), σi(T ) in (3.3), for grey level histogram h(g) are given

by

Pi(T ) =
b

∑

g=a

h(g) (3.4)

and

σi(T ) =

√

∑b

g=a [g − µi(T )]
2 h(g)

Pi(T )
, (3.5)

where

µi(T ) =

∑b

g=a h(g)g

Pi(T )
, (3.6)

a =











0 i = 1

T + 1 i = 2
(3.7)
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and

b =











T i = 1

n+ 1 i = 2
. (3.8)

The minimum J was found and its corresponding value was used as the thresh-

old for segmenting the variation image. An image mask was produced in order to

easily identify the dense tissue areas in subsequent calculations. Some examples

of the images and their resultant dense tissue masks are shown in Figs. 3.16–3.18.

(a) (b)

Figure 3.16: A typical mammogram of Boyd SCC class 1/Tabár pattern
II/BIRADS class 1 (low risk). (a) – the original mammogram. (b) – the dense tis-
sue mask. Areas segmented as dense tissue are shown in black (within the breast
area), whilst areas segmented as non–dense (fatty) tissue are shown in white.

In addition to the segmentation of dense tissue, the original images were pro-

cessed using Dixon and Taylor’s Line Operator algorithm as used previously [63,

62] (see Sect. 3.3.1). The results were combined with the dense tissue mask in

order to distinguish between lines in dense tissue and lines in non–dense (fatty)
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(a) (b)

Figure 3.17: A typical mammogram of Boyd SCC class 3/Tabár pattern
III/BIRADS class 2 (moderate risk). (a) – the original mammogram. (b) – the
dense tissue mask. Areas segmented as dense tissue are shown in black (within
the breast area), whilst areas segmented as non–dense (fatty) tissue are shown in
white.

tissue.

The experiment resulted in a number of variables for each image:

(Ld) the number of pixels with above-threshold linearity in dense tissue,

(Lf ) the number of pixels with above-threshold linearity in fatty tissue,

(Ad) the total number of pixels in dense tissue, and

(Af ) the total number of pixels in fatty tissue.

This provides many combinations of interest, including

(a)
Ld

Ad

, (b)
Lf

Af

, (c)
Ld

Ad + Af

, and(d)
Lf

Ad + Af

. (3.9)
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(a) (b)

Figure 3.18: A typical mammogram of Boyd SCC class 6/Tabár pattern
IV/BIRADS class 3 (high risk). (a) – the original mammogram. (b) – the dense
tissue mask. Areas segmented as dense tissue are shown in black (within the breast
area), whilst areas segmented as non–dense (fatty) tissue are shown in white.

Following initial analysis, whereby the classification experiment was performed

on a small subset of images, it was found that the results of Eq. 3.9 (a) and (b)

yielded worse results than (c) and (d), so it was decided to focus on the latter two

combinations. There are many combinations of the measured variables that could

have been tried, however to investigate them all would have been infeasible and

since (c) and (d) appeared to produce reasonable classification results, these were

selected. The first two combinations consider only the density of linear structures

in dense (or fatty) tissue as a proportion of the area of dense (or fatty) tissue,

whereas the final two combinations consider the density of linear structures in

dense (or fatty) tissue as a proportion of the total breast area. This is also affected

by the relative proportions of dense and fatty tissue in the breast.

A number of problems were found with the density segmentation method.

Some images produced criterion function graphs that were not bimodal, having
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either zero or multiple minima. In addition, spurious values at the edges of the

criterion function curves (caused by, for example, an image having no pixels with

a greyscale value of 255) leading to false minima were initially a problem. This

was overcome by selecting the lowest minimum where multiple minima occurred,

and as a result of observations, by classifying the whole area as non-dense tissue

where no minima occurred.

The segmentation was also found to be heavily dependent on the area used for

segmentation, since if too much background area was included, in many non-dense

breasts the threshold was placed between the background tissue and the breast

tissue, resulting in the whole of the breast area being classified as dense tissue.

To overcome this, a threshold was set and all pixels with greyscale values below

this threshold were ignored. This effectively removed any surrounding background

tissue from the analysis.

3.4.3 Results

An overview of the differences between Tabár patterns, Boyd classes and BIRADS

classes is shown in graph form in Figs 3.19, 3.20 and 3.21, respectively. In or-

der to present a more robust analysis of significant differences between patterns

and classes, Mann–Whitney U tests were performed on each pair of patterns and

classes, and tables of these results are shown in Tabs 3.7, 3.8 and 3.9, respectively.

Results are shown by Tabár pattern (see Fig. 3.19 and Tab. 3.7), Boyd class

(see Fig. 3.20 and Tab. 3.8) and BIRADS class (see Fig. 3.21 and Table 3.9).

The results by Tabár pattern and BIRADS class show that there are significant

differences between all patterns or classes, both in dense and fatty tissue, although

the differences are more significant in dense tissue than in fatty tissue. The results

by Boyd class show significant differences between all classes in dense tissue and

between some classes in fatty tissue, however some Boyd class combinations in
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Dense and Fatty linearity as a proportion of total breast area
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Figure 3.19: Graph showing the mean proportion of pixels with line strengths
above a threshold T = 4/204 and 95% confidence intervals of the mean for images
of each Tabár class. Results are shown for linear structures in dense and fatty
tissue as a proportion of total breast area.
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Figure 3.20: Graph showing the mean proportion of pixels with line strengths
above a threshold T = 4/204 and 95% confidence intervals of the mean for images
of each Boyd class. Results are shown for linear structures in dense and fatty
tissue as a proportion of total breast area.
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Dense and Fatty linearity as a proportion of total breast area
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Figure 3.21: Graph showing the mean proportion of pixels with line strengths
above a threshold T = 4/204 and 95% confidence intervals of the mean for images
of each BIRADS class. Results are shown for linear structures in dense and fatty
tissue as a proportion of total breast area.

Table 3.7: The p-values obtained by Mann-Whitney tests on each combination
of Tabár patterns for linear structures in dense and fatty tissue, at a threshold
T = 4/204. All results are significant at α = 0.05.

Tabár II III IV V
I 0.0000 0.0000 0.0000 0.0000
II 0.0003 0.0000 0.0000
III 0.0000 0.0000
IV 0.0027

Linear structures in dense tissue.

Tabár II III IV V
I 0.0000 0.0000 0.0032 0.0000
II 0.0101 0.0001 0.0089
III 0.0297 0.0010
IV 0.0000

Linear structures in non–dense (fatty) tissue.
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Table 3.8: The p-values obtained by Mann-Whitney tests on each combination of
Boyd SCC classes for linear structures in dense and fatty tissue, at a threshold
T = 4/204. Results not significant at α = 0.05 are shaded.

Boyd 2 3 4 5 6
1 0.0204 0.0006 0.0001 0.0000 0.0001
2 0.0000 0.0000 0.0000 0.0000
3 0.0005 0.0000 0.0000
4 0.0005 0.0000
5 0.0000

Linear structures in dense tissue.

Boyd 2 3 4 5 6
1 0.1997 0.0734 0.0161 0.0036 0.5018
2 0.0101 0.0000 0.0000 0.0585
3 0.0024 0.0382 0.0104
4 0.1458 0.0000
5 0.0000
Linear structures in non–dense (fatty) tissue.

Table 3.9: The p-values obtained by Mann-Whitney tests on each combination of
BIRADS classes for linear structures in dense and fatty tissue, at a threshold
T = 4/204. All results are significant at α = 0.05.

BIRADS 2 3 4
1 0.0000 0.0000 0.0000
2 0.0000 0.0000
3 0.0000

Linear structures in dense tissue.

BIRADS 2 3 4
1 0.0001 0.0000 0.0448
2 0.0410 0.0001
3 0.0000

Linear structures in non–dense (fatty) tissue.
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fatty tissue do not show significant differences.

A threshold of 4/204 was used for the analysis during this experiment, since

higher thresholds resulted in no or very few pixels in dense tissue being above the

threshold for many images, making calculations and statistical analysis difficult,

whilst lower thresholds were found to include substantial levels of background

noise.

3.4.3.1 A Comparison of The Observed Results in Fatty Tissue with

Tabár’s Expected Results

Figure 3.22 shows the observed results for area of linear structures in non–dense

(fatty) tissue normalised to Tabár’s expected results (see Fig. 3.12) at pattern II.

The result for pattern V has improved considerably from the result from the initial

experiment (see Fig. 3.13).

Figure 3.22: Graph showing the observed results in fatty tissue normalised by
pattern II to Tabár’s expected results (see Fig. 3.12).

Edward Hadley 72



CHAPTER 3. 2D RISK ASSESSMENT

3.4.4 Discussion and Conclusions

The proposed approach demonstrates the ability to distinguish between all Tabár

patterns and Boyd and BIRADS classes using the area of linear structures in dense

tissue as a proportion of total breast area (see Tabs 3.7, 3.8 and 3.9). The result

by Boyd class was as expected, since it is well known that the proportion of dense

tissue is related to mammographic risk [14, 15, 16, 17, 18, 19]. Since the Boyd

metric is an indirect measure of breast density it can be assumed from this result

that as the proportion of dense tissue increases, the area of linear structures in

dense tissue also increases.

The results by Tabár pattern and BIRADS class also demonstrate a similar

pattern. As with the results by Boyd class, we also see a positive relationship

between linearity in dense tissue and risk when compared to BIRADS classes and

Tabár patterns II-V (see Figs. 3.19, 3.20 and 3.21). The results for the area of

linear structures in fatty tissue shows a slightly different pattern, where there is a

general positive relationship between linearity and risk in low and moderate risk

categories, followed by a sharp reduction in linearity in the highest risk categories

(see Figs. 3.19, 3.20 and 3.21). This effect can be explained by the prevalence of

dense tissue in the highest risk mammograms, meaning that there is little fatty

tissue and as a result, fewer linear structures in fatty tissue.

The overall results for linear density in non–dense (fatty) tissue do not demon-

strate such potential as for those in dense tissue. Whilst it is possible to distinguish

between all Tabár patterns and BIRADS classes using the area of linear structures

in fatty tissue, the ability to distinguish between Boyd classes using this measure-

ment is more limited (see Tabs 3.7, 3.8 and 3.9). Where it is possible to distinguish

between patterns and classes, the p–values generally indicate that the differences

are less significant using linear structures in fatty tissue as a measurement rather

than linear structures in dense tissue.
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A disadvantage of the dense tissue segmentation method used is that it may

be subject to variations between images. The dense tissue thresholding is car-

ried out on each image individually, meaning that it is possible that variations

in brightness, contrast and other image properties will affect the outcome of the

thresholding. Mammograms taken on different machines and at different times,

and processed differently are likely to be of slightly different brightness and con-

trast. This is a difficult problem to overcome. A single global threshold would

eliminate differences caused by different proportions of tissue types in different

images. However, if a single threshold were to be chosen for a set of images being

processed, this would cause undesirable effects when processing images of different

brightness and contrast caused by different machines and other variables.

A remaining issue in the linear structure detection algorithm is that the line

strength threshold is currently chosen experimentally, and in this experiment a

threshold of 6/204 was found to result in unusable results for many images. A

more principled approach to determining the threshold would be an improvement,

and future work will investigate the possibility of using the grey scale histogram

to automatically determine a suitable threshold.

The result for Tabár pattern V when the linear structures in dense tissue are

removed is closer to Tabár’s expected value than the result obtained during the ini-

tial experiment prior to tissue segmentation (see Figs 3.22 and 3.12, respectively).

This lends credibility to the hypothesis that the initial result was too high because

linear structures were being detected in dense tissue whereas in Tabár’s model this

entire area would be assigned to a different building block. However, although the

results obtained from the new experiment now show pattern V as having the low-

est proportion of linear density, the result remains higher than Tabár’s expected

value. In addition, the segmentation has caused the proportion of linear density

in pattern IV to be reduced below Tabár’s expected value.
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In summary, the results are highly promising and the proposed method pro-

vides a possible approach for the automatic classification of mammograms in to

Tabár patterns, Boyd or BIRADS classes. The ability to automatically classify

mammograms by a common risk assessment metric would be an extremely useful

aid to radiologists that may lead to improved early detection rates. It is intended

for future work to investigate the automatic risk classification of mammograms.

3.5 Classification

3.5.1 Background

Having demonstrated that the density of linear structures in the breast can be au-

tomatically detected and correlated with the expected proportions for risk patterns

(see Secs 3.3–3.4), an experiment was proposed to investigate whether mammo-

grams can be automatically placed in to risk categories using this information.

The main purpose of this work is to investigate whether the use of linear structure

information in an automatic risk classifier leads to improved accuracy.

Initial experiments using a simple linear classifier were conducted and then de-

veloped using a more complex non–linear support vector machine–based classifier.

3.5.2 Risk Classification using Linear Techniques

3.5.2.1 Method

Three hundred and twenty-one mammographic images from the Mammographic

Image Analysis Society (MIAS) database [23] were classified according to BIRADS

classes [27] by three expert radiologists (see section 3.2). Example images of low,
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moderate and high risk mammograms are shown in Fig. 3.23 (a).

(a)

(b)

(c)

Figure 3.23: Some typical mammograms of various BIRADS classes. The left
column shows a mammogram of BIRADS class 1 (low risk), the second column
shows a mammogram of BIRADS class 2 (low–moderate risk) and the third column
shows a mammogram of BIRADS class 3 (moderate–high risk), and the final
column shows a mammogram of BIRADS class 4 (high risk). The images in
row (a) show the original mammograms, row (b) shows the results of density
segmentation (non-dense tissue is shown in white), and row (c) shows the results
after processing with the line operator. The images have had a mask applied to
remove everything outside the breast area. The lines in (c) have been enhanced
for viewing.

All 321 images were segmented using the method described in Sec. 3.4. This

produced masks identifying the dense tissue in the image and allowed for the

consideration of linear structures in each tissue type independently. Examples of
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density masks produced are shown in Fig. 3.23 (b). The results of this segmenta-

tion produced two values used in later calculations:

– the total number of pixels in dense tissue: Ad,

– the total number of pixels in fatty tissue: Af .

In addition, the images were processed using the line operator method de-

scribed in Sec. 3.3), producing a measurement of line strength at each pixel.

Fig. 3.23 (c) shows examples of low, moderate and high risk mammograms fol-

lowing processing with the line operator. When considered alongside the density

mask two further values were produced for use in further calculations:

– the number of pixels with above-threshold linearity in dense tissue: Ld,

– the number of pixels with above-threshold linearity in fatty tissue: Lf .

Finally, the images were classified in BIRADS classes using linear discriminant

analysis (see Sec. 3.5.2.1.1) based on the features extracted from the processed

images and the results analysed.

3.5.2.1.1 Classification Classification was conducted using linear discrimi-

nant analysis, which takes several factors as predictors and attempts to classify

each mammogram in to BIRADS classes. Classification was conducted three times

– firstly using density information only, secondly using linear structure information

only, and a third time using both density and linear structure information.

Linear discriminant analysis uses one or more predictors, which are used to

attempt to distinguish between objects of the various classes. In the classification

based on density information, the following values were used as predictors:

Ad

Ad + Af

, log
Ad

Ad + Af

, (3.10)

where Ad

Ad+Af
represents the area of dense tissue (Ad) as a proportion of the total
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breast area (Ad + Af ).

During experimentation it was found that adding the log of the value as an

additional predictor increased the performance of the classifier. It can be assumed

that the log function accentuates the lower parts of the scale where most of the

mammograms lie, producing greater separation between classes. The classification

based on linear structure information used the following values as predictors:

Ld

Ad

,
Lf

Af

, log
Ld

Ad

, log
Lf

Af

, (3.11)

where Ld

Ad
represents the linear density in dense tissue and

Lf

Af
represents the linear

density in non–dense tissue. Figs. 3.24–3.25 show plots of these values grouped

into BIRADS classes.

Figure 3.24: Graph showing a plot of Ld

Ad
against

Lf

Af
grouped into BIRADS classes.

The classification based on both linear structure and density information uses a

single classifier which incorporates all of the above six values as predictors (i.e. the

predictors from both the density classification and linear structure classification

are used in the third classification).
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Figure 3.25: Graph showing a plot of log Ld

Ad
against log

Lf

Af
grouped into BIRADS

classes.

Results of each classification are shown in table form, including the proportion

of correct classifications and the kappa (κ) coefficient [99, 100]. The κ coefficient

is a means of estimating agreement in categorical data, and is given by

κ =
P (D)− P (E)

1− P (E)
(3.12)

where P (D) is the proportion of correct classifications and P (E) is the proportion

expected by chance. The κ coefficient is a means of estimating agreement in

categorical data and can be used to assess the performance of the classification.

A list of common interpretations of κ values is shown in Tab. 3.10 [100].

Table 3.10: Common interpretations of κ values [100].

κ Agreement
< 0 Poor

0− 0.20 Slight
0.21− 0.40 Fair
0.41− 0.60 Moderate
0.61− 0.80 Substantial
0.81− 1.00 Almost Perfect
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3.5.2.2 Results

3.5.2.2.1 Classification Based on Density Results of the leave–one–woman–

out linear discriminant analysis by BIRADS class based on density information are

shown in Tab. 3.11. The results indicate a 66% accuracy in classifying the mam-

mograms. The κ coefficient indicates moderate agreement between the classified

results and the true classes.

Table 3.11: Classification results by BIRADS class based on density information.

Placed Class
True Class

1 2 3 4
1 62 14 2 0
2 18 57 19 4
3 4 28 68 9
4 3 4 5 24

Proportion correct
0.713 0.553 0.728 0.649

0.657
κ coefficient 0.54

3.5.2.2.2 Classification Based on Linear Structures Results of linear dis-

criminant analysis by BIRADS class based on linear structure information are

shown in Tab. 3.12. The results indicate a 67% accuracy in classifying the mam-

mograms. The κ coefficient indicates moderate agreement between the classified

results and the true classes.

Table 3.12: Classification results by BIRADS class based on linear structure in-
formation.

Placed Class
True Class

1 2 3 4
1 68 10 7 1
2 9 71 27 0
3 9 19 50 9
4 1 3 10 27

Proportion correct
0.782 0.689 0.532 0.730

0.673
κ coefficient 0.56
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3.5.2.2.3 Classification Based on Linear Structures and Density Re-

sults of linear discriminant analysis by BIRADS class based on a combination of

density and linear structure information are shown in Tab. 3.13. The results indi-

cate a 72% accuracy in classifying the mammograms. The κ coefficient indicates

a substantial agreement between the true classes and the placed classes. These

results show that a combined approach is superior to using either of the single

components.

Table 3.13: Classification results by BIRADS class based on density and linear
structure information.

Placed Class
True Class

1 2 3 4
1 70 12 2 1
2 12 73 25 0
3 2 15 60 9
4 3 3 7 27

Proportion correct
0.805 0.709 0.638 0.730

0.717
κ coefficient 0.62

3.5.2.3 Discussion and Conclusions

The results are promising and show a substantial improvement between classifi-

cation using density information and classification using combined information,

leading to the conclusion that linear structure information is valuable in the au-

tomatic risk classification of mammograms.

An alternative approach to the analysis might be to look at whether the mam-

mograms are correctly classified in to high/low risk groups. Results of this analysis

for combined density and linear structure information are shown in Tab. 3.14.

It can be seen that the classifier provides 84% correct high/low classification

(κ = 0.79) based on both density and linear structure information.

A comparison with other methods described in literature shows that the pro-
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Table 3.14: Classification results by BIRADS class based on density and linear
structure information summarised as low (classes 1-2)/high (classes 3-4) groups.

Placed Class
True Class

Low High
Low 167 28
High 23 103

Proportion correct
0.879 0.786

0.841
κ coefficient 0.79

posed method performs well, achieving 72% correct classification. Oliver et al. [101]

performed texture–based classification by BIRADS class on the MIAS images used

in this analysis. This classification achieved 66% accuracy when classifying the

images without prior segmentation. Results were improved significantly to be-

tween 79% and 82% correct classification when the images were segmented in to

regions prior to the texture analysis as first suggested by Karssemeijer [102].

The alternative classifications described in literature suggest that texture–

based classification with prior segmentation performs better than density–based

segmentation [97]. As such, an option for future work would be to investigate

classification based on this approach combined with linear structure information.

The combination technique used was a straightforward one, however optimisation

techniques exist which may provide improved results for the combined classifica-

tion.

For the purposes of a comparison between density, linear structure and com-

bined information the methods used were adequate, however more accurate meth-

ods for the segmentation of dense tissue and classification have been demon-

strated [101, 97]. The results shown demonstrate that the inclusion of linear

structure information improves automatic risk classification when compared to a

conventional density–based classifier.
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3.5.2.4 Application of Non–Linear Classification Techniques

The simple classification experiments were followed–up with non–linear classifica-

tion using a Support Vector Machine (SVM) based classifier [103]. The classifier

used a radial basis function (RBF) kernel, and a grid search of parameters was

performed to obtain suitable parameters for each experiment.

The experiment was performed on two independent datasets, one of which has

been divided in to two groups. Initial results were obtained using the Mammo-

graphic Image Analysis Society (MIAS) database [23] (see section 3.2). A second

dataset containing 831 mammograms from the Digital Database for Screening

Mammography (DDSM) database [104] was used to confirm results. This dataset

consisted of digitised mammograms from 831 different patients classified accord-

ing to the BIRADS metric. Figure 3.26 shows some typical examples from the

DDSM database, alongside corresponding dense tissue masks and linear structure

detection results. The images used had been reduced in size and padded to fill a

1024x1024 matrix. Table 3.15 shows the distribution of images according to the

BIRADS classification. In order to avoid bias in the results when comparing the

two datasets, the left images from the MIAS dataset were discounted, resulting in

a dataset consisting of 160 images from individual women.

The threshold used for the MIAS database remained 6/204, however since

the DDSM database images differed in size and contrast the threshold selection

procedure described in Sec. 3.3.1 was repeated to find a suitable threshold for these

images. This resulted in a threshold of 2/204 being selected as the DDSM images

were found to contain less contrast than the MIAS images, which resulted in

lower line strength measures. Future work may involve the development of a more

principled approach to determining the threshold using the grey–level histogram

of a dataset.
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Six classification experiments were performed, corresponding with the LDA

experiments. Cross–validation was used in order to provide unbiased results. This

was performed in a leave–one–out methodology on the MIAS dataset, and owing to

computational constraints, in a 10–fold methodology on the larger DDSM dataset.

BIRADS class 1 2 3 4
Images 106 336 255 134

Table 3.15: The distribution of DDSM database images according to the BIRADS
classification metric.

3.5.2.4.1 Results Results using the non–linear Support Vector Machine based

classifier experiment are shown as confusion matrices in Tabs 3.16–3.21. Ta-

bles 3.16 and 3.17 provide results for classification based on density information,

Tabs 3.18 and 3.19 provide results for classification based on linear structure in-

formation, and Tabs 3.20 and 3.21 provide results for classification based on both

density and linear structure information. Table 3.22 shows the SVM classification

results grouped by low/high risk categories. Results for the MIAS database have

been summed across all leave–one–woman–out classifications and results for the

DDSM database have been summed across the ten folds.

Table 3.16: Classification based on density information using the MIAS dataset.

Placed Class
True Class

1 2 3 4
1 35 11 3 2
2 4 13 10 1
3 2 24 28 7
4 2 5 4 9

Proportion correct
0.8140 0.2453 0.6222 0.4737

0.5312
κ coefficient 0.37

3.5.2.4.2 Discussion and Conclusions Whilst the use of simple LDA anal-

ysis produces results that compare less favourably with some other studies [93, 91,

97], a pattern is evident throughout both datasets. The classification results sug-

gest that the density–based classifier produced the least accurate overall results,
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(a)

(b)

(c)

Figure 3.26: Some typical mammograms from the DDSM database of each BI-
RADS class. The left column shows a mammogram of BIRADS class 1 (low risk),
the second column shows a mammogram of BIRADS class 2 (low–moderate risk)
and the third column shows a mammogram of BIRADS class 3 (moderate–high
risk), and the final column shows a mammogram of BIRADS class 4 (high risk).
The images in row (a) show the original mammograms, row (b) shows the results
of density segmentation (non-dense tissue is shown in white), and row (c) shows
the results after processing with the line operator. The images have had a mask
applied to remove everything outside the breast area. The lines in (c) have been
enhanced for viewing.
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Table 3.17: Classification based on density information using the DDSM dataset.

Placed Class
True Class

1 2 3 4
1 12 7 0 0
2 91 278 90 34
3 3 49 143 79
4 0 2 22 21

Proportion correct
0.1132 0.8274 0.5608 0.1567

0.5463
κ coefficient 0.40

Table 3.18: Classification based on linear structure information using the MIAS
dataset.

Placed Class
True Class

1 2 3 4
1 29 27 3 1
2 9 34 14 0
3 4 12 28 6
4 1 0 0 12

Proportion correct
0.6744 0.6415 0.6222 0.6316

0.6438
κ coefficient 0.53

Table 3.19: Classification based on linear structure information using the DDSM
dataset.

Placed Class
True Class

1 2 3 4
1 15 8 0 0
2 88 264 74 28
3 2 60 158 69
4 1 4 23 37

Proportion correct
0.1415 0.7857 0.6196 0.2761

0.5704
κ coefficient 0.43

Table 3.20: Classification based on density and linear structure information using
the MIAS dataset.

Placed Class
True Class

1 2 3 4
1 33 5 1 2
2 8 40 12 0
3 1 8 31 3
4 1 0 1 14

Proportion correct
0.7674 0.7547 0.6889 0.7368

0.7375
κ coefficient 0.65
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Table 3.21: Classification based on density and linear structure information using
the DDSM dataset.

Placed Class
True Class

1 2 3 4
1 14 5 0 0
2 90 270 76 32
3 2 57 161 69
4 0 4 18 33

Proportion correct
0.1321 0.8036 0.6314 0.2463

0.5752
κ coefficient 0.43

Table 3.22: SVM classification results divided in to high/low risk groups.
Classification Dataset BIRADS Class κ coefficient

Low High All
Density MIAS 0.6563 0.7500 0.6938 0.59

DDSM 0.8778 0.6812 0.7858 0.71
Linear structures MIAS 0.8229 0.7188 0.7813 0.71

DDSM 0.8484 0.7378 0.7966 0.73
Density & linear MIAS 0.8958 0.7656 0.8438 0.79

DDSM 0.8575 0.7224 0.7942 0.73

the linear structure–based classifier performed slightly better, and the density and

linear structure information produced the most accurate classification. This sug-

gests that linear structure information is of value as part of a mammographic risk

classifier. The SVM–based classifier produced results that were generally improve-

ments over those produced by LDA, however the same trend is demonstrated in

these results.

A notable trend in the results was the difference between the two datasets.

The DDSM dataset produced considerably poorer classification results than the

MIAS dataset. An important factor that may have contributed to this effect is the

accuracy of the ground truth BIRADS classifications. Whereas the MIAS dataset

has been classified by three expert radiologists and consensus classifications were

found, the circumstances of how the DDSM dataset has been classified are unclear.

It is possible that only a single radiologist was used, and it is also possible that

there was no consistency of radiologist over the entire dataset. Since a large
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degree of inter-radiologist variation is often observed[105], even amongst expert

radiologists, it is possible that the “true” classifications for the DDSM dataset

are not as accurate as for the MIAS dataset. Other studies have observed less

accurate classification results using the DDSM dataset compared with the MIAS

dataset [97].

In addition to the breakdown of results according to individual BIRADS class,

a common usage by radiologists in practice is a straightforward high/low risk

categorisation. Table 3.22 shows the SVM classification results as high/low groups,

where BIRADS classes 1 and 2 are considered low risk and classes 3 and 4 are

considered high risk.

An interesting outcome of this analysis is that the results for the two datasets

are broadly comparable when the BIRADS classes are grouped together, suggest-

ing that much of the poor performance of the DDSM classification may be due

to more variable ground truth classifications. This analysis also demonstrates

that a high degree of accuracy can be obtained using the proposed method when

classifying mammograms in to high/low risk categories.

A final consideration is the extraction of data from images, where the pro-

posed approach considers only the density of linear structures and does not take

in to account information relating to their distribution. Since several risk assess-

ment models are based on the parenchymal patterns in the breast [14, 22], it has

been suggested that the distribution of linear structures may be related to risk,

and as such may provide additional information useful for risk assessment. An

investigation in to this is described in Chapter 4.
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Chapter 4

3D Risk Assessment

4.1 Introduction

Conventional two-dimensional projection mammography plays a very significant

role in breast cancer detection, diagnosis and treatment. However, it is well–known

that 2D mammography has several inherent limitations, caused by the projection

of the 3D breast anatomy on to a 2D plane. These include cancers being obscured

by superimposed normal tissue and overlapping normal tissue creating the artificial

appearance of densities [56]. These limitations often result in false–negative or

false–positive diagnoses, increasing risk to the patient or exposing them to stress

and unnecessary, often painful follow–up procedures.

Three–dimensional breast tomosynthesis provides a significant advance over

projection mammography. Tomosynthesis effectively eliminates the effects of su-

perimposed tissue on parenchymal structures of interest [25, 26]. This can increase

margin visibility, especially in dense breasts and has been shown to improve lesion

visibility [24] and the visibility of parenchymal texture features [60].

Experiments described in this chapter investigate the feasibility of extract-
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ing information relating to the distribution of linear structures from 3D breast

tomosynthesis images and using this data to provide automatic risk assessment.

4.2 Detection of Anatomical Linear Structures

in Raw Tomosynthesis Images

4.2.1 Introduction

The purpose of this work is to investigate the sensitivity of the detection of linear

structures in raw tomosynthesis images compared to conventional mammograms.

Breast tomosynthesis acquires a series of projection x–ray images as the x–

ray source moves in an arc around the fixed breast and digital imaging detector.

With the exception of their acquisition angle, the ‘raw’ projection images are

similar to conventional x–ray mammograms. However they are taken using a

significantly lower x–ray dose than that used for conventional mammograms, such

that the overall dose received by the patient is similar for the two methods and

the tomosynthesis patient is not exposed to increased levels of harmful x–ray

radiation [24]. This has the effect of limiting the number of images acquired so as

to maintain a reasonable level of contrast within each image, leading to potential

difficulties in the three–dimensional reconstruction.

As a result of the lower x–ray dose, a principal concern was that there would

be insufficient contrast available to make reliable detection of linear structures

possible. In order to ascertain whether sufficient information was available in

tomosynthesis images, an investigation was conducted using the linear structure

detection methodology developed in Chapter 3 and applying it to both conven-

tional mammograms and the central image from a sequence of raw tomosynthesis

Edward Hadley 90



CHAPTER 4. 3D RISK ASSESSMENT

images captured during the same session.

Throughout this experiment raw tomosynthesis images were used (the two–

dimensional projection images) rather than the three–dimensional reconstructed

images because they are more easily comparable with conventional mammograms

due to their dimensionality. Additionally, the raw tomosynthesis images allowed

for a preliminary investigation to be undertaken using existing detection method-

ology prior the development of a three–dimensional linear structure detector.

4.2.2 Data

Conventional mammograms and tomosynthesis images were captured for 40 pa-

tients during the same screening sessions. For each patient, two conventional

mammograms (left and right breast) and two sets of nine raw tomosynthesis im-

ages (in an arc around the patient) were captured using a GE Senographe 2000D

FFDM system at the University of Pennsylvania. The system was modified for

the series of nine projection tomosynthesis images to be taken across a -25◦ – +25◦

range at 6.25◦ intervals. Projection images were acquired with a pixel resolution

of 0.1mm.

Of the sets of nine raw tomosynthesis images, the central image represented

a side–view and corresponded most closely with the MLO conventional mammo-

grams, and as such these central images were selected for use in our experiment.

The images were represented as 12–bit grey–scale, 1914x2294 pixel DICOM files.

Figures 4.1 and 4.2 show a conventional mammogram and the sequence of raw

tomosynthesis images for the same breasts.
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Figure 4.1: A conventional mammogram (top left) and a corresponding sequence
of raw tomosynthesis images.
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Figure 4.2: A conventional mammogram (top left) and a corresponding sequence
of raw tomosynthesis images.
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4.2.3 Method

The Line Operator method (see Sec. 3.3.1) was applied to each of the 80 mammo-

grams and corresponding central raw tomosynthesis images. Figure 4.3 shows the

original mammogram and raw tomosynthesis images from Fig. 4.1 and the results

of processing with the line operator.

Figure 4.3: Line operator results showing a conventional mammogram (left) and
a corresponding raw tomosynthesis image (right). The linear structures have been
enhanced for display.

Following application of the line operator, the line strength results were thresh-
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olded to remove background tissue, aiming to leave only linear structures. The

choice of threshold greatly affects the measure of proportion of linear structures.

Initial experiments involved performing the linear structure detection method on

a small, randomly–selected subset of images of each set at a wide range of thresh-

olds and selecting two thresholds that visually appeared to remove most back-

ground tissue whilst leaving most of the linear structure information intact. The

two thresholds that were used during this experiment were 16/4096 and 20/4096.

Whilst different thresholds could have been selected for each set of images, these

thresholds appeared to be suitable for both the mammograms and central to-

mosynthesis images.

Line strength values in these images were in the range 0–4096 (the maximum

grey–scale value for the images used). The two sets of images were thresholded

at each threshold by removing all pixels with line strength values below that

threshold. Figure 4.4 shows the conventional mammogram and raw tomosynthesis

images shown in Fig. 4.3 following thresholding at 16/4096 and 20/4096.

4.2.4 Results

The graph in Fig. 4.5 shows the proportion of above–threshold linearity in raw

tomosynthesis images against the corresponding conventional mammograms. A

threshold of 20/4096 was used in both the conventional mammograms and to-

mosynthesis images in order to achieve the best correlation. This achieved a

Pearson product moment correlation coefficient of 0.866.

Figure 4.6 shows the proportions of above threshold linearity in raw tomosyn-

thesis images and mammograms at all combinations of thresholds used.
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Figure 4.4: Thresholded line operator results showing a conventional mammogram
(left) and a corresponding raw tomosynthesis image (right). The top images have
been thresholded at 16/4096 and the bottom images have been thresholded at
20/4096. The linear structures have been enhanced for display.

Edward Hadley 96



CHAPTER 4. 3D RISK ASSESSMENT

Proportion of above threshold linearity at a threshold of 0.5%
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Figure 4.5: A graph showing the proportion of above–threshold linearity in raw to-
mosynthesis images against corresponding conventional mammograms at a thresh-
old of 20/4096.
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Figure 4.6: A graph showing the proportion of above–threshold linearity in raw
tomosynthesis images against corresponding conventional mammograms at various
combinations of thresholds. In the legend, T indicates the threshold used for the
raw tomosynthesis images and M indicates the threshold used for mammograms.
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4.2.5 Discussion and Conclusions

Linear structure information in mammograms has been linked to mammographic

risk and detected linear structure information has shown promise in improving the

specificity of automatic risk assessment [22, 106]. Tomosynthesis offers the poten-

tial for significant improvements over mammograms by eliminating the problems

associated with the representation of the 3D anatomy in 2D [25, 26, 24]. The re-

sults shown in Fig. 4.5 show a high correlation between the detected proportions of

linear structures in raw tomosynthesis images compared with conventional mam-

mograms (0.866). This suggests that the linear structure information in tomosyn-

thesis images may be useful in mammographic risk assessment investigations.

The selected threshold affected the correlations. Since the contrast varied be-

tween the different image types, the thresholds were selected independently in

order to achieve the closest correlation, however the correlations were highest

when both were thresholded at 20/4096 (0.866) and when both were thresholded

at 16/4096 (0.813). A larger sample of thresholds would need to be used in or-

der to assess whether this is significant. The correlation remained good when

mammograms thresholded at 20/4096 were compared with tomosynthesis images

thresholded at 16/4096 (0.714), however the correlation was less acute when these

thresholds were reversed (0.475).

It is suggested that since the contrast was greater in the mammograms (due

to the higher x–ray dose) the line strength values tended to be higher, and as a

result when the mammogram results were thresholded at a low proportion less

background would be removed. When a high threshold was applied, more back-

ground would be removed and a large amount of linear structure information

remained. However, when the lower–contrast tomosynthesis image results were

thresholded at a high proportion more linear structure information would be re-

moved (see Fig. 4.4). When these combinations or thresholds are compared, the
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correlation would be expected to be poorer than for other combinations.

Overall, the results are promising because they suggest that, whilst the corre-

lation is not exact and the linear structures are clearly less easily detectable in the

raw tomosynthesis images, the correlation across the dataset remains very high

and as such it could be expected that the information would represent a useful

indicator in risk assessment.

4.3 3D Linear Structure Detection

4.3.1 Background

It has been demonstrated that the linear structure information captured for to-

mosynthesis images is detectable and is likely to be useful in indicating mam-

mographic risk (see Sec. 4.2), so the next step towards producing a classifier for

tomosynthesis images is to demonstrate a line detector for the 3–dimensional re-

constructed image volumes. The purpose of this work is to show that linear

structures can be detected in tomosynthesis volumes and to investigate how the

detected linear structure information correlates with linear structure information

detected in 2–dimensional mammograms.

4.3.2 Data

The raw tomosynthesis images described in Sec. 4.2.2 were used to reconstruct 3–

dimensional image volumes using a filtered–backprojection approach. The volumes

were represented with slices at 1mm intervals and an in–plane pixel resolution of

0.22mm. Typical volumes consisted of 50 – 90 slices. Images from 39 women were

used in this study due to corruption in the image data for one patient.
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Figure 4.7 shows a typical mammogram and slices from the corresponding

tomosynthesis volume.

4.3.3 Method

The 2–dimensional mammograms and 3–dimensional tomosynthesis volumes were

processed using linear structure detection algorithms. The method used on mam-

mograms (see Sec. 3.3.1) was adapted for use on 3–dimensional tomosynthesis

volumes.

The original method calculates a measure of line strength and orientation for

each pixel in a 2–dimensional image as follows:

For each pixel, a line strength measure (S) is calculated by applying

S = (L−N) (4.1)

in 12 equally–spaced orientations, where L is the mean grey–level value of a line

of pixels of length 5 centred on the target pixel, and N is the mean grey–level

value of a similarly–orientated square of pixels. For each pixel, the maximum S is

selected and its corresponding orientation taken to be the pixel’s line orientation.

This method was adapted for use on the three-dimensional tomosynthesis im-

ages by calculating the mean grey–level of a line of 5 voxels at a range of 12

orientations for each of 12 planes orientated around the x–axis, and subtracting

the mean grey–level of a similarly–orientated cube of voxels. Voxel values were

obtained using trilinear interpolation where positions did not correspond with in-

dividual voxel positions. Prior to processing, each slice was scaled to produce a

pixel resolution approximately equal to the between–slice resolution.

As with the 2–dimensional method, a multi-scale approach was used in order
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Figure 4.7: A typical mammogram (top left) and four slices from the corresponding
tomosynthesis volume. The first slice (middle left) is from close to the edge of the
volume and shows the skin layer, whereas the fourth slice (bottom right) is from
close to the centre of the volume and shows the deeper fibro-glandular tissue.
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to detect lines of a range of thicknesses whereby the images were blurred using a

3x3x3 Gaussian filter then subsampled to produce an image at half the width and

height of the original. A Gaussian of 3x3x3 (σ = 0.85) was selected because it

was felt that a larger Gaussian may blur the image too much and result in a loss

of clarity which may lead to poorer results from the subsequent linear structure

detection. The line detector was applied independently on the images at each

scale and then combined by taking the maximum line strength value from the

corresponding voxel(s) in each scaled image. Three scales were used with the 2D

mammograms and two scales with the tomosynthesis images, since the original

tomosynthesis images were smaller than the original mammograms.

Finally, the voxel line strengths were thresholded to remove background texture

and artefacts. A measure of above–threshold linearity was calculated for each

image as an indicator of linear density. Areas outside of the breast area were

masked and discarded.

Linearity measures for corresponding 2D and 3D images for each patient were

compared.

4.3.4 Results

Figure 4.8 shows line detection results for a typical two–dimensional mammo-

gram. The figure shows the original digital projection mammogram alongside the

unthresholded and thresholded line detection result images.

Typical line detection results for the three–dimensional tomosynthesis images

are shown in Fig. 4.9. This figure shows sample results for a series of slices in 5 slice

increments. For each slice, the original slice image is displayed alongside both the

unthresholded and thresholded line detection result images. The initial output

images are thresholded at a level most suitable for removing background and
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(a) (b) (c)

Figure 4.8: Mammogram line detection results. Original mammogram (a) along-
side the unthresholded line detection results (b) and thresholded line detection
results (c).

reconstruction artefact noise whilst maintaining the linear structure information.

Figure 4.10 shows a graph of the detected linearity in two–dimensional mam-

mograms against the detected linearity each corresponding three–dimensional to-

mosynthesis image. The results demonstrate a good degree of correlation (Pear-

son’s coefficient 0.73).

4.3.5 Discussion

The comparison between the linearity detected in two–dimensional mammograms

and corresponding three–dimensional tomosynthesis images shows a good degree

of correlation, achieving a correlation coefficient of 0.73. Since the linearity in

two–dimensional mammograms has been well–correlated to mammographic risk

[106, 107], it can be expected that the linearity in tomosynthesis images may also

be correlated to risk.

This study is limited in several aspects by the lack of availability of a wide

range of image data. At the time of these experiments, breast tomosynthesis is

experimental and only a handful of tomosynthesis machines currently exist. As

such most of the images taken are of patients with known cancers during clinical
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(a) (b) (c)

Figure 4.9: Tomosynthesis line detection results. Each row shows an image slice
with an interval of 5 slices between rows. The top row shows a slice close to
the edge of the volume, whilst the bottom row shows a slice close to the centre
of the volume. In each row, column (a) shows the original tomosynthesis slice,
column (b) shows the unthresholded line detection results and column (c) shows
the thresholded line detection results.
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Figure 4.10: A comparison of the linearity of two–dimensional mammograms and
corresponding three–dimensional tomosynthesis images.

trials [57]. The small dataset used (39 images) is clearly a limitation of this study.

A direct comparison between three–dimensional linearity and mammographic

risk would be an ideal continuation, however this would be difficult in practice

due to the limited data available. Such a comparison would likely require a

large dataset of tomosynthesis images that are spread across all risk categories,

whereas currently–available datasets are generally small and images are concen-

trated around the high risk categories, making any valid statistical comparison

unlikely.

Other recent studies have suggested a link between the parenchymal pattern

visible in tomosynthesis images and mammographic risk [108], and have shown

that the parenchymal patterns are more clearly defined in tomosynthesis volumes

[60]. It was also suggested that, due to the advantages of three–dimensional images

in mammography, the parenchymal patterns visible in three–dimensional tomosyn-
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thesis images might eventually be expected to provide a better indicator of risk

than those currently available from two–dimensional mammograms [108].

Therefore, a perfect correlation result in this experiment would not be ideal,

as it would indicate that there is no additional information available in the three–

dimensional tomosynthesis images.

In summary, this experiment has demonstrated that linear structures can be

detected in 3–dimensional tomosynthesis volumes. This can be used as a basis for

further work to produce a risk classifier.

4.4 Network Representation

4.4.1 Introduction

It has been demonstrated that mammographic risk is correlated to the density of

linear structures (see Chapter 3), however it has been suggested that risk may also

be related to the distribution of those structures [21, 22]. In order to further study

the distribution of linear structures in mammographic images a 3–dimensional

graph–like network representation of the linear structure distribution would be

beneficial. A network representation would allow for factors related to the dis-

tribution of linear structures to be measured, such as the length and number of

edges and nodes. The development of this method would be beneficial over a more

statistical approach because with further study it has the potential for greater use

beyond the scope of this project, including areas such as abnormality detection.
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4.4.2 Method

The complete process of the detection of linear structures and the production of

the 3D network representation can be summarised as follows:

1. A background mask is produced to identify the non–breast area

2. The image volume is scaled by blurring and subsampling the image

3. The Line Operator method is performed, providing a resulting line strength

image

4. The non–breast area is removed by applying the mask produced in stage 1

5. The line strength image is thresholded using the double–threshold approach

6. The directional Z–profile non–maximum suppression method is applied to

reduce the effects of distortions and artefacts

7. Nodes are identified by locating line strength maxima

8. The line strength image is merged with the unenhanced, unthresholded im-

age produced in step 3

9. The A* search algorithm is used to connect neighbouring nodes, producing

a 3D network of nodes and edges

The development of this method is discussed in this section.

4.4.2.1 Network Extraction

Left and right 3–dimensional tomosynthesis images were captured and recon-

structed for 39 women (see Sec. 4.3.2). The line operator method described in

Sec. 4.3.3 was performed on each image resulting in a measure of line strength for

Edward Hadley 107



CHAPTER 4. 3D RISK ASSESSMENT

each voxel in the 3D volume. A mask was applied to remove parts of the image

outside of the breast area, and the resulting line strength values were thresholded

to remove low–level responses from background tissue.

The network was produced in several stages. Firstly, nodes were identified

in the 3D line strength volume. It was discovered that the linear structures in

the line strength volume were not sufficiently well–defined for junction detection

to be effective. Instead, line strength maxima (voxels where the line strength

values were greater than all surrounding voxels) were identified and used as initial

nodes. Since the network representation was intended to provide an insight into

the relative distributions of linear structures it was felt that the line strength

maxima would make suitable nodes since the resulting effects at junctions would

be similar in all images.

For each node, the 8 nearest nodes by direct Euclidean distance were identified,

and the edges connecting each of these nearest nodes with the target node were

added to a map of potential edges. An A* search was used to attempt to join each

of the pairs of nodes along each potential edge. The search path was constrained

such that the path could not pass through any voxel with a line strength below

the threshold, or outside of the masked breast area. In addition, any path that

exceeded 1.5 × d, where d is the direct Euclidean distance between the start and

end points, was discarded in order to improve performance by limiting the search

space for each potential edge.

The line strength was given a penalty in order to discourage the search path

from straying away from high–line strength areas. The purpose of this was to

encourage the search path to follow to the linear structures as closely as possible.

The path distance PD between starting voxel V0 and a given voxel Vp along the

Edward Hadley 108



CHAPTER 4. 3D RISK ASSESSMENT

path is given by

PD (V0, Vp) = PD (V0, Vp−1) + d (Vp−1, Vp) +

(

L (V0) + L (Vn)

2
− L (Vp)

)

(4.2)

where d is the direct Euclidean distance between two voxels, L is the line strength

value for a given voxel and Vn is the ending voxel.

This line strength penalty permitted the path to enter low–line strength areas

(subject to the threshold) where necessary, but encouraged this to remain limited

and to seek a high–response path if possible. This is important because the level

of the line strength response fluctuated along the linear structures due to many

factors including the type of surrounding tissue (and hence the contrast between

the linear structure and the background), capture and reconstruction and artefacts

and junctions and other variations of the linear structures themselves. Figure 4.11

shows an example of a linear structure containing an area of low line strength

response between two areas of high response.

Figure 4.11: An example showing a linear structure with two nodes (A & B) and
an area of low line strength response (C) between them.

A 3–dimensional network was constructed using the nodes identified from the

line strength volume, joined by edges where connections could be made using the

A* approach. All nodes that had no edges connecting to them were assumed to

be background noise and discarded. Due to the approach of using line strength

maxima as nodes and fluctuations in the line strength responses due to background

tissue, other linear structures, reconstruction artefacts and other factors, a typical

linear structure could feature many nodes along its length. In order to minimise
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this effect, any node joined by exactly two edges was removed and the two edges

combined to form a single edge (see Fig. 4.12).

Figure 4.12: An example of a node (B) connected by exactly two edges (D & E).
Node B is removed and edges D & E are replaced by a single edge (F) connecting
nodes A & C.

4.4.2.2 Initial Network Results

Figures 4.13–4.14 show the results of the network extraction algorithm described

in Sec. 4.4.2.1 applied to the image volume shown in Fig. 4.9.

These initial results were quite poor because the purpose of this experiment

was to create a realistic network representation of the network of linear structures,

however the network results show little relation to the linear structures visible in

the line detection results (see Fig. 4.9). Typically, linear structures were not

represented in the network, whilst the network contained many erroneous edges

that could not be related to visible linear structures in the line detection results.

It is believed that two principal factors have contributed to the poor results

demonstrated. The first of these is that breaks often occur in linear structures

where the line strength response has dipped below the threshold used to remove

background tissue, and as a result the A* search algorithm cannot complete a
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Figure 4.13: Rendering of a typical 3–dimensional network shown at various ori-
entations (continued in Fig. 4.14).
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Figure 4.14: Rendering of a typical 3–dimensional network shown at various ori-
entations (continued from Fig. 4.13).
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link between two nodes where a linear structure exists. The second factor is the

considerable distortions and artefacts present in the image as a result of the recon-

struction and image capture, which may be a result of perorming 3D resonstruction

from a small number of images across a relatively small arc.

4.4.2.3 Artefacts and Distortions

A significant problem encountered during the network extraction process was the

widespread presence of distortions and artefacts in the reconstructed tomosynthe-

sis volumes. This was probably due to the difficulty of reconstructing a complete

3D volume from only a small number of raw images across a narrow arc. Typi-

cally, linear and other structures within the breast appear ‘stretched’ in the Z–axis

such that they are visible across many more image slices than would be correct

for their actual dimensions. An example of this effect is show in Fig. 4.15, where

the highlighted linear structure is becoming visible in the first slice (9mm), is

strongly visible in the slices at 15mm and 20mm, and is finally fading in the slice

at 24mm. This would indicate that the structure is approximately 15mm wide,

which is unlikely to be true.

Figure 4.16 shows a graph of the Z–axis grey–scale profile of a similar dis-

torted linear structure, showing its visibility through the image volume. It may

be hypothesised that this effect could be beneficial for some applications (such as

abnormality detection), however it makes the process of extracting a network that

is representative of the linear structure distribution very difficult.

Two principal factors are known to affect the magnitude of the distortions

in the reconstructed tomosynthesis volumes: the overall acquisition angle of the

raw image sequence and the reconstruction algorithm used [109, 110]. Whilst the

simultaneous algebraic reconstruction technique (SART) has been shown to per-

form better than the filtered–backprojection approach [109], the overall acquisition
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Figure 4.15: Slices from the line operator results for typical mammogram high-
lighting a distorted linear structure (indicated by white rectangle). Slices from
top left to bottom right are at 9mm, 15mm, 20mm and 24mm.
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angle is the predominant effect on the level of interslice blurring [109, 110].

Figure 4.16: A graph showing the Z–axis grey–scale profile of a distorted linear
structure.

Initial attempts to reduce the effects of distortions revolved around the ap-

plication of a line thinning algorithm. An algorithm based on one described by

Pálágyi and Kuba [111] was implemented and applied to the line operator result

volumes. The selected algorithm was chosen because it reduces 3–dimensional

shapes to a medial skeleton line structure without creating a medial surface. It is

also straightforward to implement, efficient for use with datasets of large images

and performs well in noisy cases [111].

The thinning algorithm defines a set of twelve 3×3×3 deletion masks. Voxels

within each mask may be defined as either linear structure or background, such

that each of the masks will match border voxels in a particular direction. Border

voxels are voxels which are classified as belonging to a linear structure but where

one or more neighbouring voxel is classified as background.

During each iteration of the algorithm, the twelve deletion masks are applied

to each linear structure voxel in the image and the voxel removed (changed to

background) if at least one mask matches its 3 × 3 × 3 neighbourhood. The

algorithm continues until no further border voxels are removed.

Edward Hadley 115



CHAPTER 4. 3D RISK ASSESSMENT

The algorithm was applied to the thresholded line detection results (see Fig. 4.17).

Figure 4.17: The slices previously shown in Fig. 4.15 after processing the line oper-
ator results using the line thinning algorithm. Slices from top left to bottom right
are at 9mm, 15mm, 20mm and 24mm. Images have been enhanced to improve
visualisation.

The results in Fig. 4.17 show that the proportion of voxels classified as linear

structures has been reduced considerably, with the skeleton lines difficult to trace

when viewing individual slices of the image volume. However, two principal prob-

lems were identified which ultimately led to the approach being deemed unsuitable

for this application.

The first problem discovered when using this approach was that the previously–

mentioned problem of breaks occurring in linear structures where the line strength
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dipped below the background threshold (see Sec. 4.4.2.2) was exacerbated by the

thinning algorithm. Where a small break occurred within a broad linear structure,

the border voxels were removed not just along the side edges of the linear structure

but also at the ‘broken’ ends, thus increasing the size of the break. This effect

can be seen in Fig. 4.18. Although at this stage the principal factor affecting the

ability of the A* search in the network extraction method to trace along a linear

structure is simply the presence of breaks rather than their size, the large breaks

made efforts to overcome these breaks considerably more difficult.

Figure 4.18: A diagram showing a broad linear structure (black) with a break
(A). Following application of the thinning algorithm the broad linear structure is
reduced to the skeletal lines (white) separated by a larger break (B).

Problems with the thinning algorithm were also present where either the dis-

tortions in the Z–axis were very large relative to the overall dimensions of the

linear structure or where (often due to distortions in the Z–axis) different linear

structures crossed. It was discovered that a short section of linear structure may

be ‘stretched’ in the Z–axis such that it becomes longer in the Z–axis than in its

true direction. As a result, the medial line produced by the thinning algorithm will

follow the direction of the ‘stretching’ in the Z–axis rather than the true direction

of the linear structure. This effect is illustrated in Fig. 4.19.

Edward Hadley 117



CHAPTER 4. 3D RISK ASSESSMENT

Figure 4.19: A diagram showing a short linear structure (A). The linear structure
visible in the reconstructed tomosynthesis volume has been stretched in the Z–axis
by more than the length of the linear structure (B). This results in the thinning
algorithm producing a medial line (C) approximately perpendicular to the original
linear structure.

The thinning algorithm also produced anomalous results in cases where two

linear structures that do not intersect, when stretched in the Z–axis do intersect.

This led the thinning algorithm to view the two structures as a single 3D structure

and extract a medial line for the entire structure. This medial line would inevitably

bear little resemblance to the two original linear structures.

These limitations and anomalous results led to the abandonment of the thin-

ning algorithm and the development of an alternative approach. It was realised

that a thinning algorithm that attempted to reduce the 3–dimensional structure

in all three dimensions was not desirable since the distortions only occurred in the

Z–axis, and the X and Y –axis information was correct. The devised approach

was to use a form of non–maximal suppression (NMS) in the Z–axis.

For each voxel in theX−Y plane a grey–scale profile of voxels in the Z axis was
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examined. A typical Z–profile is shown in Fig. 4.16, showing a ‘stretched’ linear

structure. The NMS approach was performed on the thresholded line strength

volumes, as such there are no voxels with line strength values below a threshold

value.

Each Z-profile was smoothed using a 7–voxel Gaussian mask to reduce the

effects of local maxima and minima. Individual structures were identified by lo-

cating continuous sections of the Z–profile that were above zero (i.e. above the

line strength threshold, and so had not been removed during thresholding). For

each structure the median voxel was located and the structure was reduced to a

maximum of 5 voxels centred on the median voxel. All voxels that were part of

the structure but not within this central section were given a grey–level value of

zero (background tissue).

The result of performing this algorithm on the Z–profile shown in Fig. 4.16 is

shown in Fig. 4.20. The ‘stretched’ structure has been reduced to a narrow core

around its centre.

Figure 4.20: A graph showing the Z–axis grey–scale profile of a distorted linear
structure as shown in Fig. 4.16 after processing the line operator results using the
Z–profile NMS approach.

Further investigation revealed that although the Z-profile had been success-
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fully reduced to a narrow core, the images still displayed signs of blurring and

‘stretching’ around the visible structures in the images. It was discovered that

this was due to the shape of the reconstructed data within the image volumes.

It was assumed that the breast data was in a cubic shape within the image vol-

ume, i.e. the reconstructed breast data would be the same size across all slices,

however this was not correct. Due to the image capture geometry the breast data

was trapezoid in shape when viewed across the slices, with the area of the recon-

structed breast data in each slice becoming progressively larger through the image

volume as if projected from a single point. This is illustrated in Fig. 4.21.

It was suggested that since the reconstruction was not cubic, the ‘stretching’ of

structures between slices was not occurring in a line parallel to the Z axis but was

occurring in a line directed at the ‘projection origin’. It was therefore proposed

that the Z-profile non-maximum suppression be modified such that instead of

using profiles parallel with the Z axis, the profiles should be in the direction of

the ‘projection origin’.

For each image volume, the ‘projection origin’ point was calculated by measur-

ing the maximum extent of the reconstructed data area of each slice and projecting

a line along the corners of this area until they intersected. For each pixel in the

outermost slice, a line of pixels was extracted along a path in the direction of

the origin point and the same Z-profile NMS algorithm described above was per-

formed. Where a pixel was extracted in more than one line, the maximum value

was used as its final value.

The resulting images (examples shown in Fig. 4.22) demonstrated a signifi-

cantly reduced level of blurring and stretching artefacts.
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Figure 4.21: An illustration of the reconstructed data within a set of image slices.
A shows a Z-profile parallel to the Z axis, whereas B shows a Z profile directed
at the projection origin.
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Figure 4.22: The slices previously shown in Fig. 4.15 after processing the line
operator results using the Z–profile NMS approach. Slices from top left to bottom
right are at 9mm, 15mm, 20mm and 24mm.
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4.4.2.4 Areas of Low Line Strength in Linear Structures

Once the problem of artefacts and reconstruction distortions had been addressed,

the remaining problem identified (see Sec. 4.4.2.2) was the issue of ‘gaps’ in linear

structures. Various factors could lead to the line strength values in localised areas

reducing significantly. Such factors include dense tissue (and hence low contrast)

in the surrounding area and intersecting or nearby lines. These caused gaps to

appear in the thresholded line strength images where the line strength periodically

dropped below the threshold, leading to the failure of the A* search algorithm to

follow the linear structure correctly.

A simple reduction in the threshold was deemed to be unsuitable since the

background noise would no longer be suitably removed, so a more complex thresh-

olding approach was used. The technique developed was modelled on that used

in the Canny Edge Detector [112], whereby two thresholds are used.

Previously a single threshold T was be used, where all voxels of line strength

greater than or equal to T would be included whilst all voxels of line strength

less than T would be excluded. This was replaced by both an upper threshold

TU and a lower threshold TL. All voxels of line strength greater than or equal

to TU would be included, whilst all voxels of line strength less than TL would be

excluded. Voxels of line strength greater than or equal to TL but less than TU

were included only if they were connected, directly or indirectly, to a voxel of of

line strength equal or greater than TU (see Fig. 4.23).

The described approach has the advantage of permitting a low threshold within

linear structures, where the line strength will invariably rise above TU , whilst

continuing to exclude background noise.

The principal disadvantage of this approach is its computational complexity.

Whilst it is easy to identify all voxels with line strength above a particular thresh-
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Figure 4.23: An illustration of the effects of the bi–threshold approach. In the left
image, dark grey squares represent pixels of line strength greater than or equal to
TU and light grey squares represent pixels of line strength greater than or equal to
TL but less than TU . Light grey squares include several pixels with linear structures
and several background pixels. The right image shows the result after processing,
showing that the light grey squares that were connected to dark grey squares have
been included whereas isolated light grey squares have been excluded.

old, or even between two thresholds, it is more time consuming to identify only

those connected to voxels above the higher threshold. An iterative approach was

used whereby all voxels of line strength greater than or equal to TU were identified

and included in the resulting image, we shall call these included voxels VI , and all

voxels of line strength greater than or equal to TL but less than TU were identified,

we shall call these candidate voxels VC .

During the course of a single iteration, each voxel in VI was visited its 26

neighbouring voxels were checked. Any of the neighbouring voxels that had been

marked as candidate voxels VC were added to VI . During the next iteration,

the voxels that were added to VI in the previous iteration were visited and their

neighbouring voxels were checked. This continued until no voxels were added to

VI .

Example results are shown in Figs. 4.24–4.25. The images clearly show the

linear structures in a more pronounced and more complete state when using the
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double thresholding approach.

Figure 4.24: Images on the left are those previously seen in Fig. 4.22 and show a
selection of slices of Line Operator results that have been subjected to standard
thresholding and processing using the Z–Profile NMS approach (see Sec. 4.4.2.3).
Images on the right show the same slices where the double thresholding approach
has been used, followed by processing with the Z–Profile NMS technique. Slices
at top are at 9mm and at bottom are at 15mm. Slices at 20mm and 24mm are
shown in Fig. 4.25.

Although the new approach resulted in fewer breaks in the linear structures

than the previous approach, breaks remained in the thresholded image that caused

the A* search to fail to connect nodes that ought to have been connected. Reducing

the minimum threshold further was not deemed to be a viable option due to the

inclusion of background noise resulting in spurious ‘structures’ in the network.
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Figure 4.25: Continued from Fig. 4.24. Images on the left are those previously
seen in Fig. 4.22 and show a selection of slices of Line Operator results that have
been subjected to standard thresholding and processing using the Z–Profile NMS
approach (see Sec. 4.4.2.3). Images on the right show the same slices where the
double thresholding approach has been used, followed by processing with the Z–
Profile NMS technique. Slices at top are at 20mm and at bottom are at 24mm.
Slices at 9mm and 15mm were shown in Fig. 4.24.
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A solution was devised that involved merging the thresholded image with the

unenhanced, unthresholded Line Operator results image at a stage after network

nodes have been identified but before the A* search is performed. The merge was

performed on a voxel–by–voxel basis subject to the following criteria:

• Voxels outside of the masked breast area are discarded,

• Voxels classified as part of a linear structure in the thresholded image use

their grey–scale value from the thresholded image,

• Voxels not classified as part of a linear structure in the thresholded image use

their grey–scale value from the unenhanced, unthresholded image subject to

a multiplier (0.5).

The effect of performing the A* search on the merged image was that small

gaps in a linear structure could be overcome, although this would be at a penalty

to the search algorithm.

Figures 4.26–4.27 show a 3D rendering of a typical network structure produced

using the full enhanced process described.

4.5 Classification

4.5.1 Introduction

The purpose of this experiment is to investigate how the distribution of linear

structures might be related to mammographic risk. The method described in

Sec. 4.4 is applied to extract a network representation for each of a set of to-

mosynthesis images, and data from these networks relating to the distribution of

linear structures is used to classify the images according to mammographic risk.
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Figure 4.26: Rendering of a typical 3–dimensional network shown at various ori-
entations (continued in Fig. 4.27).
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Figure 4.27: Rendering of a typical 3–dimensional network shown at various ori-
entations (continued from Fig. 4.26).
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4.5.2 Data

The tomosynthesis image volumes described in Sec. 4.2.2 and Sec. 4.3.2 were used

during this classification experiment. This dataset consisted of 80 image volumes

comprising left and right tomosynthesis images from 40 women.

The images have been classified according to BIRADS density classes by an

expert radiologist. Of the 80 images, there were no images in BIRADS class 1, 21

in BIRADS class 2, 55 in BIRADS class 3 and 4 in BIRADS class 4.

4.5.3 Method

The purpose of this experiment is to identify whether data contained within the

3D network representations produced in Sec. 4.4 can be used in mammographic

risk classification to produce an automatic classifier. A non–linear Support Vector

Machine (SVM) based classifier was used (see Sec. 3.5.2.4) since this produced the

best results during classification of 2D images.

Several features were measured from the network representations produced

from each image volume. These attempt to represent not only the density of

linear structures present, but also their distribution. They were as follows:

• total number of nodes connected to at least one edge,

• total number of edges,

• mean edge length (distance between connected nodes),

• standard deviation of edge lengths,

• total length of edges.

Edward Hadley 130



CHAPTER 4. 3D RISK ASSESSMENT

The feature factors were initially normalised with respect to the breast area.

In order to give values for each feature factor that are in similar range so as not

to bias a classifier towards particular factors, the values for each factor were then

normalised such that the mean value was 0 and the standard deviation was 1.

The normalised values were used in a leave–one–woman–out classification ex-

periment.

4.5.4 Results

The results of the classification are shown in Tab. 4.1. The results show that there

is a considerable variation in the performance for different BIRADS classes. In an

attempt to explain the observed results, a graph is plotted in Fig. 4.28 showing

two feature factors and points grouped by BIRADS class.

Table 4.1: Classification according to BIRADS class using the full dataset.

Placed Class
True Class

2 3 4
2 11 3 2
3 10 52 2
4 0 0 0

Proportion correct
0.5238 0.9455 0.0000

0.7875
κ coefficient 0.68

The limitations of the dataset become apparent from the scatter–plot. The

dataset is very uneven in that approximately one quarter of the images belong

to BIRADS class 2, almost three quarters belong to class 3 whilst only 4 images

(from two women) belong to class 4 and no images belong to class 1. The graph in

Fig. 4.28 shows clearly why the classification for BIRADS class 4 is so poor, since

the four images were from two women and each pair of images were a considerable

distance from the other pair on the graph. Since the classification experiment was

a leave–one–woman–out classification, the remaining pair of images were classified
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Figure 4.28: A graph comparing two feature factors showing the distribution of
BIRADS classes (2, 3 and 4).

as those surrounding them. Similarly, 21 images belonging to class 2 represents a

small training set for classification purposes.

In order to remove the effects of the very small set of class 4 images, the images

were grouped into high and low risk groups as is common in risk classification. The

low risk group comprised BIRADS class 2, whilst the high risk group comprised

BIRADS classes 3 and 4. The results of this classification are shown in Tab. 4.2.

Table 4.2: Classification according to high and low risk groups using the full
dataset.

Placed Class
True Class
Low High

Low 12 8
High 9 51

Proportion correct
0.5714 0.8644

0.7875
κ coefficient 0.58

Normalised by class proportion 0.7179
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The grouping of images into low and high risk categories gave the same overall

classification result, however the results for the individual groups were more closely

aligned than with the three BIRADS classes.

Since the left and right images are known to be similar, it was felt that this

could have effects on the development of a training set by the classifier. Al-

though the experiment was performed in a leave–one–woman fashion such that

both images for each woman were removed from the training set when perform-

ing a classification on either image, the remaining data was likely to be largely

grouped in pairs such that each data point may be almost duplicated. In order to

investigate any effects of this, the dataset was divided into left and right images

and a classification experiment was conducted using each half of the dataset. The

results of the classification using left images are show in Tabs. 4.3–4.4 and the

results of the classification using right images are shown in Tabs. 4.5–4.6.

Table 4.3: Classification according to BIRADS class using left images.

Placed Class
True Class

2 3 4
2 6 0 1
3 5 27 1
4 0 0 0

Proportion correct
0.5455 1.0000 0.0000

0.8250
κ coefficient 0.74

Table 4.4: Classification according to high and low risk groups using left images.

Placed Class
True Class
Low High

Low 5 3
High 6 26

Proportion correct
0.4545 0.8966

0.7750
κ coefficient 0.55

Normalised by class proportion 0.6755

The division of the dataset resulted in even smaller sets of images in each

category, particularly the BIRADS class 2 / low risk group, resulting in gener-

ally poor performance for this group, however the overall classification results are
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Table 4.5: Classification according to BIRADS class using right images.

Placed Class
True Class

2 3 4
2 4 0 1
3 6 28 1
4 0 0 0

Proportion correct
0.4000 1.0000 0.0000

0.8000
κ coefficient 0.70

Table 4.6: Classification according to high and low risk groups using right images.

Placed Class
True Class
Low High

Low 4 3
High 6 27

Proportion correct
0.4000 0.9000

0.7750
κ coefficient 0.55

Normalised by class proportion 0.6500

comparable to those using the full dataset.

In order to further the investigation into the effects of abnormalities (see

Sec. 3.3.4) the image volumes were grouped based on the presence of abnormal-

ities. This resulted in a group of 40 normal images (of which 10 were classified

as BIRADS class 2, 28 as BIRADS class 3 and 2 as BIRADS class 4) and 40

abnormal images (of which 11 were classified as BIRADS class 2, 27 as BIRADS

class 3 and 2 as BIRADS class 4). The classification results for the normal set of

images are shown in Tabs. 4.7–4.8 and the results for the abnormal set are shown

in Tabs. 4.9–4.10.

Table 4.7: Classification according to BIRADS class using normal images.

Placed Class
True Class

2 3 4
2 6 1 1
3 4 27 1
4 0 0 0

Proportion correct
0.6000 0.9643 0.0000

0.8250
κ coefficient 0.74
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Table 4.8: Classification according to high and low risk groups using normal im-
ages.

Placed Class
True Class
Low High

Low 5 2
High 5 28

Proportion correct
0.5000 0.9333

0.8250
κ coefficient 0.65

Normalised by class proportion 0.7167

Table 4.9: Classification according to BIRADS class using abnormal images.

Placed Class
True Class

2 3 4
2 4 1 1
3 7 26 1
4 0 0 0

Proportion correct
0.3636 0.9630 0.0000

0.7500
κ coefficient 0.63

Table 4.10: Classification according to high and low risk groups using abnormal
images.

Placed Class
True Class
Low High

Low 4 2
High 7 27

Proportion correct
0.3636 0.9310

0.7750
κ coefficient 0.55

Normalised by class proportion 0.6473
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Results in Tabs. 4.11–4.10 show the linear structure detection and risk clas-

sification experiments described in Chapter 3 performed on the set of 80 cor-

responding 2D mammograms. Results using the full dataset of 80 images are

shown in Tab. 4.11. These indicate overall classification accuracies of 71.3% for

the 2D mammograms compared with 78.8% for the 3D tomosynthesis image vol-

umes, suggesting that more accurate risk classification may be possible using 3D

tomosynthesis images.

Table 4.11: Classification according to BIRADS class using the full dataset of 2D
mammograms.

Placed Class
True Class

2 3 4
2 10 6 0
3 11 47 4
4 0 2 0

Proportion correct
0.4762 0.8545 0.0000

0.7125
κ coefficient 0.57

Figure 4.29: A graph comparing two feature factors extracted from 2D mammo-
grams showing the distribution of BIRADS classes (2, 3 and 4).
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The graph shown in Fig. 4.29 compares two classification feature factors ex-

tracted from each image set. It can be seen that the class 2 data points are more

tightly clustered for the 2D images than for the 3D images (see Fig. 4.28), leading

to poorer classification accuracy.

Table 4.12 shows the experiment repeated by low/high risk groups. The low

risk group comprises BIRADS classes 1 and 2 (although there are no BIRADS

class 1 images in this dataset) and the high risk group comprises BIRADS classes

3 and 4. The results show an improved overall classification accuracy for 2D

mammograms of 77.5%, although this could at least partially be attributed to a

greater imbalance between the results of the two classes.

Table 4.12: Classification according to high and low risk groups using the full
dataset of 2D mammograms.

Placed Class
True Class
Low High

Low 8 5
High 13 54

Proportion correct
0.3810 0.9153

0.7750
κ coefficient 0.55

Normalised by class proportion 0.6481

Tables 4.13–4.14 show the classification experiments performed on the subset of

left breast images. In both the BIRADS class and low/high risk group experiments

the 3D tomosynthesis images provided improved classification accuracy.

Table 4.13: Classification according to BIRADS class using left 2D images.

Placed Class
True Class

2 3 4
2 6 2 0
3 5 24 2
4 0 1 0

Proportion correct
0.5455 0.8889 0.0000

0.7500
κ coefficient 0.63

Tables 4.15–4.16 show the classification experiments performed on the subset

of right breast images. The classification according to BIRADS class showed
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Table 4.14: Classification according to high and low risk groups using left 2D
images.

Placed Class
True Class
Low High

Low 5 4
High 6 25

Proportion correct
0.4545 0.8621

0.7500
κ coefficient 0.50

Normalised by class proportion 0.6583

improved accuracy using the 3D tomosynthesis images, however when combined

in to low/high risk groups, the 2D and 3D images achieved the same overall

classification accuracy.

Table 4.15: Classification according to BIRADS class using right 2D images.

Placed Class
True Class

2 3 4
2 3 2 0
3 7 23 2
4 0 3 0

Proportion correct
0.3000 0.8214 0.0000

0.6500
κ coefficient 0.48

Table 4.16: Classification according to high and low risk groups using right 2D
images.

Placed Class
True Class
Low High

Low 3 2
High 7 28

Proportion correct
0.3000 0.9333

0.7750
κ coefficient 0.55

Normalised by class proportion 0.6167

The dataset was divided in to subsets of normal and abnormal images and the

experiments were repeated on each subset. Table 4.17 shows the results of the clas-

sification according to BIRADS class performed on the subset of normal images.

Table 4.18 shows the same experiment classified in to low/high risk groups. In

both experiments, the 3D tomosynthesis images provided improved classification

accuracy.
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Table 4.17: Classification according to BIRADS class using normal 2D images.

Placed Class
True Class

2 3 4
2 3 6 0
3 7 21 2
4 0 1 0

Proportion correct
0.3000 0.7500 0.0000

0.6000
κ coefficient 0.40

Table 4.18: Classification according to high and low risk groups using normal 2D
images.

Placed Class
True Class
Low High

Low 3 6
High 7 24

Proportion correct
0.3000 0.8000

0.6750
κ coefficient 0.35

Normalised by class proportion 0.5500

Tables 4.19–4.20 show the results of experiments performed on the subset of

abnormal images classified according to BIRADS class and low/high risk groups

respectively. The 3D tomosynthesis images provided improved classification accu-

racy in both experiments.

Table 4.19: Classification according to BIRADS class using abnormal 2D images.

Placed Class
True Class

2 3 4
2 5 6 0
3 6 19 2
4 0 2 0

Proportion correct
0.4545 0.7037 0.0000

0.6000
κ coefficient 0.40

4.5.5 Discussion

The classification results shown in Tab. 4.1 show a high degree of classification

accuracy (78.75%) especially given the small dataset of 80 images involved in
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Table 4.20: Classification according to high and low risk groups using abnormal
2D images.

Placed Class
True Class
Low High

Low 5 7
High 6 22

Proportion correct
0.4545 0.7586

0.6750
κ coefficient 0.35

Normalised by class proportion 0.6066

this experiment. This would suggest that features relating to the density and

distribution of linear structures can be extracted from digital breast tomosynthesis

images and used as a good indicator for mammographic risk. This result would

seem to support recent studies showing a strong correlation between parenchymal

patterns and breast density in breast tomosynthesis images [60].

Other studies involving automated risk assessment have generally been per-

formed using 2D mammograms and are typically density or texture–based, and

so it is not straightforward to make a comparison with these results. The classi-

fication based on 2D mammograms presented in Sec. 3.5.2.4 achieved a BIRADS

classification accuracy of 74%, however this involved a considerably larger dataset

of 320 images.

He et al. [113, 114] achieved a BIRADS classification accuracy of 75% when

using a texture–based classifier on a set of 320 mammograms, whereas Oliver et

al. [97] achieved a classification accuracy of 86% using a density–based features in

a Bayesian classifier, also on a set of 320 mammograms.

A problem with the results shown in Tab. 4.1 is the imbalance in the clas-

sification accuracy of the different classes. The BIRADS class 4 images can be

effectively discounted since the dataset contains only four class 4 images from two

women. The graph in Fig. 4.28 shows that the class 4 images are grouped in pairs,

which correspond to each woman, and that the pairs of images are some distance
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from one another. As such, when both images from one woman are removed to

create a training set, there is little chance of those images being correctly placed

in BIRADS class 4 since the only remaining class 4 images in the training set are

a considerable distance away. As such, the results for the high/low risk groups

may be more appropriate, since the small number of class 4 images are absorbed

in to the high risk group along with the class 3 images. In order to make any sat-

isfactory analysis of the performance within class 4, a significantly larger dataset

would be required.

The classification accuracy of BIRADS class 2 images is also poor when com-

pared with the class 3 accuracy. Fig. 4.28 shows that whilst there is a substantial

group of the class 2 images in the lower left of the graph, there are also several

spread throughout the graph in areas surrounded by class 3 images. These dis-

tributed images are likely to be classified as class 3 images. Unfortunately, the

available dataset contained only a very small set of class 2 images (21) and so

it would be desirable to repeat the experiment using a larger and more balanced

dataset before conclusions about the accuracy of the classification of class 2 images

can be made.

A clear deficiency of the available dataset was the complete lack of BIRADS

class 1 images. This has two principal effects on the results, firstly that we are

unable to assess BIRADS class 1 classification, and secondly that this may have

improved the performance of the remaining classes since it has effectively removed

one the the four possible classification options.

Table 4.2 shows the results of the classification when the images are combined

into low (BIRADS 1–2) and high (BIRADS 3–4) risk groups. The overall accuracy

remains unchanged although the performance of the two classes is slightly more

balanced. Since the only change is that the four BIRADS class 4 images are

combined with the BIRADS class 3 images, it was expected that the difference
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would be limited. Absorbing the small number of class 4 images in to a larger

class allows for a more meaningful normalisation according to relative class size,

yielding an overall classification accuracy of 72%.

Since many of the shortcomings of this experiment are due to the limited

dataset available, further investigation would ideally involve a repeat of this ex-

periment using a larger and more balanced dataset. Such data is currently difficult

to obtain due to the experimental nature of digital breast tomosynthesis imaging

[115, 116].

Tables 4.3–4.6 show the results of classification experiments performed on the

subsets of left and right images. This was intended to examine any possible effects

of including two images from each woman in the training dataset. Although the

classification was performed in a leave–one–woman out fashion, whereby both

images for a woman are removed when building a training set for placing each

image for the given woman, it was suggested that since there is known to be a

high degree of similarity between left and right mammographic images for the same

woman that this may have a distortive effect on the training set and subsequent

classification.

The results shown in Tabs. 4.3–4.6 are similar to the results shown in Tabs. 4.1–

4.2 for the full dataset, with any differences unlikely to be significant when con-

sidering the very small datasets now involved. This suggests that there are no

distortive effects created by including both images for each woman in the dataset.

The final results matrices, shown in Tabs. 4.7–4.10, show the results of the

classification performed on the subsets of normal and abnormal images. The in-

vestigation in Sec. 3.3.4 concluded that there was no difference in the performance

of a classification performed on 2D mammograms when using normal or abnor-

mal images. This experiment intended to investigate whether the same conclusion

could be drawn from a classification performed on 3D tomosynthesis images.
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The results in Tabs. 4.7 and 4.9 show an improved classification accuracy

when using normal images compared with abnormal images (82.5% vs. 75%).

Whilst the results for BIRADS class 3 images were almost identical, with 27

(96.4%) of 28 normal images correctly classified and 26 (96.3%) of 27 abnormal

images correctly classified, the results for BIRADS class 2 images showed a marked

difference. The results showed that 6 (60%) of 10 normal BIRADS class 2 images

were correctly classified whilst only 4 (36.4%) of 11 abnormal class 2 images were

correctly classified.

Unfortunately due to the very small numbers of images involved it is not plau-

sible to draw any firm conclusions from these results, and a repeat of the experi-

ment using a substantially larger dataset would be required before such conclusions

could be made. As is shown in Tabs. 4.8 and 4.10 displaying results of the same

dataset grouped into low and high risk groups, a change in the classification re-

sults of a very small number of images can make an apparently large difference to

the classification results. The low risk classification of abnormal images remained

that 4 (36.4%) of 11 images were correctly classified, however only 5 (50%) of

10 normal low risk images were correctly classified, suggesting that the observed

differences are unlikely to be significant given the small datasets.

The classification results shown in Tab. 4.11 show an overall classification ac-

curacy of 71.3% for 2D mammograms compared with the result of 78.8% for 3D

tomosynthesis image volumes shown in Tab. 4.1. Overall, ten classification exper-

iments were performed on each dataset when taking in to account the experiments

performed on the full dataset and the subsets of left, right, normal and abnormal

images, and for each of these the classification in to BIRADS class and low/high

risk groups. In nine of ten experiments the 3D tomosynthesis images provided

improved classification accuracy whilst the two datasets performed equally in the

remaining one experiment. This would suggest that the method of extracting

linear structure information from 3D tomosynthesis images has the potential to
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provide more accurate risk assessments than a classifier based on 2D mammo-

grams.

Recent studies have suggested that 3D tomosynthesis images may provide im-

proved sensitivity to breast cancer detection and improved performance in screen-

ing to detect possible abnormalities [117, 118, 116], however there has been rel-

atively little work performed investigating risk assessment using tomosynthesis

volumes. It had been hypothesised that since tomosynthesis has the potential

to provide more information on the parenchymal patterns within the breast that

tomosynthesis could provide more accurate automated risk assessment, and the

results shown in Tabs. 4.11–4.20 would appear to support this, although further

studies using larger datasets would be required before any reliable conclusions

could be made.

The graphs shown in Figs. 4.29 and 4.28 provide an overview of the data

points for the 2D and 3D datasets respectively. It is clear from Fig. 4.29 that

the BIRADS class 2 images are more spread out than those in Fig. 4.28, which

are predominantly contained within a well–defined cluster. This could be due

to the inherent limitations of 2D mammography such that when a 3D breast is

projected on to a 2D image the differences in linear structure density will be less

well–defined than when the breast is viewed in a 3D image volume, since all linear

structures in the Z–axis will appear overlapping. The effect of this can be seen in

the consistently poorer classification accuracy for BIRADS class 2 images in the

2D mammograms compared with the 3D tomosynthesis image volumes.

There is a notable difference between the results based on classification accord-

ing to BIRADS class and the results based on classification according to low/high

risk groups. The experiments using the 2D mammograms generally show improved

performance when classified in to low/high risk groups (77.5% for low/high risk

groups, 71.3% for BIRADS class using full dataset), whereas the experiments using
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3D tomosynthesis images show similar or equal performance (78.8% for both ex-

periments using full dataset). An improvement in performance would be expected

since the dataset is classified in to fewer classes, however it would be expected in

both datasets. Since the only difference between the results for these two classifi-

cation approaches is the placement of four images from two women, it is impossible

to draw any conclusions from this observation at present, and further study in-

volving a larger and more evenly distributed dataset would be required in order

to investigate whether this is a general trend or simply an anomaly in the current

dataset.

The experiments performed on the subset of left images showed similar results

to those performed on the full dataset. The 2D mammograms provided a classi-

fication accuracy of 75.0% (for both BIRADS and low/high risk groups) and the

3D tomosynthesis volumes provided a classification accuracy of 82.5% (77.5% for

low/high risk groups). The experiments performed on the subset of right images

again showed similar results, with the 2D mammograms providing a classification

accuracy of 65.0% (77.5% for low/high risk groups) and the 3D tomosynthesis im-

ages providing a classification accuracy of 80.0% (77.5% for low high risk groups).

The difference between the BIRADS class and low/high risk group classification

experiments is particularly apparent in these results, where there is a large differ-

ence between the 2D and 3D datasets when classified according to BIRADS class

(65.0% and 80.0% respectively), whereas both datasets performed equally when

classified according to low/high risk groups (77.5%).

The experiments performed on subsets of normal and abnormal images were

also similar. The slight difference between normal and abnormal subsets in the 3D

dataset (82.0% for normal, 75.0% for abnormal) is not present in the 2D dataset

(60.0% for both subsets), however the difference present in the 3D dataset is very

small considering the size of the subsets, representing a difference of only a few

images.
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A trend can be seen when examining the classification accuracy of individual

BIRADS classes (or low/high risk groups). The BIRADS class 2/low risk group

performs consistently poorer when compared with the BIRADS class 3/high risk

group, across both 2D and 3D datasets. This could be at least partly due to

the uneven nature of the dataset, which contains only 21 BIRADS class 2 (low

risk) images compared with 55 BIRADS class 3 and 4 BIRADS class 4 images (59

high risk images in total). Further investigation using a larger and more balanced

dataset would be a considerable improvement and would be required in order to

draw more substantive conclusions.
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Chapter 5

Conclusions

5.1 Evaluation of Aims & Objectives

Section 1.2 referred to six principal research objectives within the project:

1. select a suitable mammographic line detection methodology,

2. investigate the relationship between the density of linear structures in 2D

mammograms and mammographic risk,

3. detect mammographic linear structures in raw tomosynthesis images,

4. detect mammographic linear structures in reconstructed tomosynthesis im-

ages,

5. develop a model of the distribution of linear structures, and

6. investigate how the distribution of mammographic linear structures might

be related to risk.

The first research objective involved the detection of linear structures. This

work was important since it forms the foundations for all subsequent experiments,
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the success of which depend on the accurate detection of linear structures. Section

3.3 described the implementation of the Line Operator method to detect linear

structures in 2D mammographic images, a method that was shown to perform well

in its application in subsequent experiments. The only significant challenge faced

was that due to lower contrast the linear structure detection was less accurate in

dense tissue areas than in non–dense areas, which caused problems for risk clas-

sification. This was overcome by the incorporation of dense tissue segmentation

and separating linear density into two separate feature factors: linear density in

dense tissue and linear density in non–dense tissue. The linear structure detection

methodology that was eventually developed was applied successfully in subsequent

experiments, suggesting that the first research objective was achieved.

The second research objective involved investigating the relationship between

linear density and mammographic risk. Early experiments in Sec. 3.3 demon-

strated a significant difference between the linear density in different risk cat-

egories of images, suggesting that the relationship between linear density and

mammographic risk described by Tabár [20, 21, 22] could be used in automated

risk assessment.

Section 3.5 investigated the automatic classification of 2D mammograms into

risk categories. The investigation involved the use of two different classifiers:

linear discriminant analysis and a non–linear support vector machine–based clas-

sifier, and compared results of classification based on linear structure information

alone, density information alone and a combination of linear structure and den-

sity information. The classification based on linear structure information was

shown to out–perform the classification based on density information (64% cor-

rect BIRADS classification using linear density compared with 53% using breast

density), whilst the combined classification out–performed both individual clas-

sifications (74% correct BIRADS classification). This suggests that there exists

a relationship between linear structure information and mammographic risk that
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can provide useful information for mammographic risk assessment, and therefore

that the second research objective has been achieved.

Research objective 3 described an intermediate step prior to investigations

using 3D tomosynthesis images. Since ‘raw’ 2D images used to construct 3D to-

mosynthesis image volumes are commonly captured using a significantly lower

x–ray dose than is used for conventional mammograms, concern was raised that

the lower–contrast images may not contain sufficient detail for accurate linear

structure detection. An investigation described in Sec. 4.2 applies the technique

developed in Chapter 3 for detecting linear structures in 2D mammograms to the

2D ‘raw’ tomosynthesis images. The experiment used mammograms and ‘raw’

tomosynthesis images from the same patients acquired during the same screening

session and showed that the linear densities measured from the two sets of im-

ages were well–correlated (0.866). This suggested that sufficient linear structure

information was captured using the lower x–ray dose and therefore that there was

likely to be sufficient linear structure information present in 3D tomosynthesis

image volumes.

Section 4.3 described the development of a modified Line Operator for use in

3D tomosynthesis image volumes. The detection of linear structures in 3D images

proved to be less straightforward than previously expected, and initial results were

poor (see Sec. 4.4.2.2). This was largely due to artefacts and distortions in the

images introduced in the reconstruction process and required the incorporation

of several additional steps into the detection algorithm (see Secs 4.4.2.3–4.4.2.4).

The developed approach was used successfully in further experiments, suggesting

that research objective 4 has been achieved.

The fifth research objective was to investigate the modelling of the distribution

of linear structures. The investigation was described in Sec. 4.4 and involved cre-

ating a three–dimensional graph representation of the linear structure tree found
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within the 3D tomosynthesis image volumes. From this graph representation,

information could be extracted describing the distribution of the linear struc-

tures. The developed approach used maximum line strength points as nodes in

the graph, since these proved relatively straightforward to detect. These nodes

were then connected to nearby nodes using an A*–based search algorithm. During

the experiment significant shortcomings were identified in the quality of the line

detection results as described in research objective 4 above, largely as a result of

artefacts and distortions in the 3D tomosynthesis image volumes. This necessi-

tated the introduction of several additional steps to minimise the effect of these

distortions on the linear structure detection results so that a graph representa-

tion could be extracted. The development of the graph model of linear structure

distribution in preparation for its application in mammographic risk classification

suggests that the fifth research objective has been achieved.

The final research objective was to investigate how the distribution of linear

structures might be related to mammographic risk. The investigation described in

Sec. 4.5 used information from the 3D graph representation described in research

objective 5 (see Sec. 4.4) as feature factors for a support vector machine–based clas-

sifier. The set of images was classified according to the BIRADS metric and overall

results obtained showed a high degree of classification accuracy (79% correct BI-

RADS classification), suggesting that the incorporation of information relating to

the distribution of linear structures might further improve risk assessment. The

application of the graph model in the classification according to mammographic

risk suggests that the sixth research objective has been achieved, with the conclu-

sion that the experiments suggest a link between the density of linear structures

and mammographic risk and that this relationship can be used to provide useful

information for automated mammographic risk assessment.

Section 4.5 includes results to compare the classifier based on 2D mammograms

(using information about breast density and the density of linear structures) with
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the classifier based on 3D tomosynthesis images (using information about the

distribution of linear structures). Results showed that the classifier based on

3D tomosynthesis images outperformed the 2D classifier (79% correct BIRADS

classification using 3D tomosynthesis images compared with 71% using 2D mam-

mograms), suggesting that the method of extracting linear structure information

from 3D tomosynthesis images has the potential to provide more accurate risk

assessments than a classifier based on 2D mammograms.

5.2 Discussion & Future Work

Overall conclusions of this study suggest that mammographic risk and linear struc-

ture information are related as suggested by Tabár [20, 21, 22]. The investigations

described in Chapter 3 demonstrated that the density of linear structures can be

used in a risk classifier to place mammographic images into risk categories with

a reasonably high degree of precision. The comparison between classification ex-

periments based on breast density segmentation, linear density and a combination

of breast density and linear density showed that the classification was improved

substantially by the inclusion of linear structure information. This suggests that

linear structure information may provide improved risk assessment when com-

pared with conventional density–based classifiers and that the incorporation of

linear structure information brings additional risk–related information that was

not identified using density segmentation alone.

The classification experiments using information on the distribution of linear

structures extracted from 3D tomosynthesis images achieved more accurate clas-

sification results, suggesting that the distribution of linear structures is related to

mammographic risk and provides additional useful information for risk classifica-

tion. The experiments based on 2D mammograms showed that a combination of

linear structure and density information outperformed each individual factor, so

Edward Hadley 151



CHAPTER 5. CONCLUSIONS

further work may involve the inclusion of information relating to the volume of

dense tissue as a feature factor in the classifier.

The investigations using 3D Tomosynthesis Images involved the development

of the graph model to represent linear structures within a breast (see Chapter 4).

The graph representation was used to extract information on the distribution of

linear structures for use in risk classification, however an avenue that was beyond

the scope of this project would be to investigate how the 3D graph of linear struc-

tures might be used to assist with the computer–aided detection and classification

of abnormalities. Since some abnormalities such as spiculated lesions feature pat-

terns of linear structures, some computer–aided detection systems have used linear

structure information to help detect these abnormalities [119, 120]. It is possible

that the 3D graph representation may improve the detection of certain abnormal-

ities by providing improved information on the distribution of linear structures.

Further work in this area could investigate how the presence of abnormalities af-

fects the distribution of linear structures and whether this information can be used

to improve computer–aided detection systems. This work may involve the develop-

ment of a 3D probability map of the distribution of linear structures to investigate

how abnormalities could be detected by their effect on the linear structures.

One of the principal limitations of the classification of 3D tomosynthesis im-

ages according to mammographic risk was the shortage of data available for clas-

sification. At the time of the experiments, tomosynthesis was an experimental

technique and whereas there are several large datasets of 2D mammograms avail-

able [104, 23] for research use, no similar datasets of 3D tomosynthesis images

existed. This may improve in time as since these experiments were conducted, the

first breast tomosynthesis systems have been approved for clinical use in the USA,

which may allow for further investigation to be conducted using larger datasets to

achieve more reliable conclusions.
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Further work in the area of mammographic risk assessment may involve inves-

tigating different classifiers. Oliver et al. [96] found that an SVM–based classi-

fier did not perform as well as expected during a classification experiment based

on texture information from 2D mammograms, and that a classifier based on

K–Nearest–Neighbour with Sequential Forward Selection (SFS) feature selection

substantially outperformed all others used, including an SVM–based classifier and

Linear Discriminant Analysis. As such, it may be possible to improve the observed

classification accuracy by investigating similar classifiers.

A worthwhile experiment may be to investigate the combination of 2D and 3D

results in a risk classifier. Although this is not a realistic clinical option, since

the patient would be subjected to double the normal x–ray dose, it may provide

additional information as to the relative performance of the 2D and 3D classifiers

and would provide additional validation as to whether 3D tomosynthesis images

are able to provide more useful information than 2D mammograms.

An additional improvement would be to develop a more principled approach to

determining suitable thresholds. This could be conducted by analysing the grey–

level histogram of an image and determining the threshold automatically using a

method such as minimum error thresholding [82] or similar. This approach would

remove any subjective judgement from the threshold selection process, and may

produce more standardised results across different datasets.

The 3D network representation has the potential to be useful in computer–

aided diagnosis of breast cancer. Some breast cancers, such as spiculated lesions,

may be visible as patterns of linear structures which would be visible in the lin-

ear structure network. Some may be difficult to see but may cause architectural

distortions [121, 122]. These architectural distortions are difficult to detect, how-

ever it is possible that they may affect the distribution of the surrounding linear

structures which may be reflected in the 3D network model. As such, further work
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may investigate the application of the 3D network model in the detection of breast

cancers.
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Appendix A

Publications

Work described in Chapter 3 has been previously published in the following papers:

• E. M. Hadley, E. R. E. Denton, and R. Zwiggelaar. Mammographic risk as-

sessment based on anatomical linear structures. Lecture Notes in Computer

Science, 4046:626–633, 2006 [123].

• E. M. Hadley, E. R. E. Denton, and R. Zwiggelaar. Mammographic risk

assessment based on anatomical linear structures: Do mammographic ab-

normalities play a role? In Medical Image Understanding and Analysis 2006,

volume 1, pages 11–15, Manchester, UK, 2006 [124].

• E. M. Hadley, E. R. E. Denton, J. Pont, E. Pérez and R. Zwiggelaar. Risk

classification of mammograms using anatomical linear structure and density

information. Lecture Notes in Computer Science, 4078:186–193, 2007 [106].

• E. M. Hadley, E. R. E. Denton, J. Pont, E. Pérez and R. Zwiggelaar. Anal-

ysis of Anatomical Linear Structure Information in Mammographic Risk

Assessment. Lecture Notes in Computer Science, 5116:483–490, 2008 [107].

• E. M. Hadley, E. R. E. Denton, J. Pont, E. Pérez and R. Zwiggelaar. Mam-

mographic Risk Assessment: Does Anatomical Linear Structure Information
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Improve the Accuracy of a Density–Based Classifier? In Medical Image Un-

derstanding and Analysis 2008, pages 224–228, Dundee, UK, 2008 [125].

The first paper [123] was published in Lecture Notes in Computer Science

and presented orally at the International Workshop for Digital Mammography

(IWDM) 2006 in Manchester on 18th–21st June 2006. This contains the initial

linear structure detection work described in Sec. 3.3. The second paper [124]

was presented orally at Medical Image Understanding and Analysis (MIUA) 2006

in Manchester on 4th–5th July 2006, and published in the conference proceedings.

This second paper contains a more summarised version of the fundamental aspects

of the work described in section 3.3, together with a subsequent investigation in

to the effect of abnormalities in the data set (see section 3.3).

The third paper [106] was presented orally at the 3rd Iberian Conference on

Pattern Recognition and Image Analysis (IbPRIA) 2007 in Girona, Spain on 6th–

8th June 2007 and published in Lecture Notes in Computer Science. This paper

contains the density estimation work described in section 3.4 and the fundamental

linear classification described in section 3.5. Work described in the fourth and

fifth papers [107, 125] builds upon this foundation, using more complex non–linear

classification methods and a larger dataset (see section 3.5).

The fourth paper [107] was published in Lecture Notes in Computer Science

and presented as a poster on 20th–23rd July 2008 at the International Workshop for

Digital Mammography (IWDM) 2008 in Tucson, Arizona, USA. The fifth paper

[125] was be presented as a poster at Medical Image Understanding and Analysis

(MIUA) 2008 in Dundee on 2nd–3rd July 2008 and published in the conference

proceedings.

Work described in Chapter 4 has been published in the following peer–reviewed

papers:
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• E. M. Hadley, P. R. Bakic, A. D. A. Maidment and R. Zwiggelaar. Detec-

tion of anatomical linear structures in mammograms and raw tomosynthesis

images. In Medical Image Understanding and Analysis 2007, 71–75, 2007

[126].

• E. M. Hadley, P. R. Bakic, A. D. A. Maidment and R. Zwiggelaar. Detection

of linear structures in 3D breast tomosynthesis images. In Medical Image

Understanding and Analysis 2009, 194–198, 2009 [127].

The first paper describes initial work involving correspondence between conven-

tional mammograms and ‘raw’ projection (unreconstructed) tomosynthesis im-

ages. This was presented as a poster at Medical Image Understanding and Anal-

ysis (MIUA) 2007 in Aberystwyth on 17th–18th July 2007 and published in the

conference proceedings. The second paper describes the approach taken to detect

linear structures in 3D reconstructed tomosynthesis images, an essential step for

future work in this area. This paper was presented as a poster at MIUA 2009

in Kingston, London on 14th–15th July 2009 and published in the conference pro-

ceedings.
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