581 research outputs found

    Flexible dual-diversity wearable wireless node integrated on a dual-polarised textile patch antenna

    Get PDF
    A new textile wearable wireless node, for operation in the 2.45 GHz industrial, scientific and medical (ISM) band, is proposed. It consists of a dual-polarised textile patch antenna with integrated microcontroller, sensor, memory and transceiver with receive diversity. Integrated into a garment, the flexible unit may serve for fall detection, as well as for patient or rescue-worker monitoring. Fragile and lossy interconnections are eliminated. They are replaced by very short radiofrequency signal paths in the antenna feed plane, reducing electromagnetic compatibility and signal integrity problems. The compact and flexible module combines sensing and wireless channel monitoring functionality with reliable and energy-efficient off-body wireless communication capability, by fully exploiting dual polarisation diversity. By integrating a battery, a fully autonomous and flexible system is obtained. This novel textile wireless node was validated, both in flat and bent state, in the anechoic chamber, assessing the characteristics of the integrated system in free-space conditions. Moreover, its performance was verified in various real-world conditions, integrated into a firefighter garment, and used as an autonomous body-centric measurement device

    User-interactive wirelessly-communicating “smart” textiles made from multimaterial fibers

    Get PDF
    En raison de la nature intime des interactions homme-textiles (essentiellement, nous sommes entourés par les textiles 24/7 - soit sous la forme de vêtements que nous portons ou comme rembourrage dans nos voitures, maisons, bureaux, etc.), les textiles intelligents sont devenus des plates-formes de plus en plus attrayantes pour les réseaux de capteurs innovants biomédicaux, transducteurs, et des microprocesseurs dédiés à la surveillance continue de la santé. En même temps, l'approche commune dans le domaine des textiles intelligents consiste en l'adaptation de la microélectronique planaire classique à une sorte de substrat souple. Cela se traduit souvent par de mauvaises propriétés mécaniques et donc des compromis au niveau du confort et de l'acceptation des usagers, qui à leur tour peuvent probablement expliquer pourquoi ces solutions émergent rarement du laboratoire et, à l'exception de certains cas très spécifiques, ne soit pas utilisés dans la vie de tous les jours. Par ailleurs, nous assistons présentement à un changement de paradigme au niveau de l'informatique autonome classique vers le concept de calculs distribués (ou informatique en nuage). Dans ce cas, la puissance de calcul du nœud individuel ou d'un dispositif de textile intelligent est moins importante que la capacité de transmettre des données à l'Internet. Dans ce travail, je propose une nouvelle approche basée sur l'intégration de polymère, verre et métal dans des structures de fibres miniaturisées afin de réaliser des dispositifs de textiles intelligents de prochaine génération avec des fonctionnalités de niveau supérieur (comme la communication sans fil, la reconnaissance tactile, les interconnexions électriques) tout en ayant une forme minimalement envahissante. Tout d'abord, j'étudie différents modèles d'antennes compatibles avec la géométrie des fibres et des techniques de fabrication. Ensuite, je démontre expérimentalement que ces antennes en fibres multi-matériaux peuvent être intégrées dans les textiles lors d’un processus standard de fabrication de textiles. Les tests effectués sur ces textiles ont montré que, pour les scénarios «sur-corps et hors-corps», les propriétés émissives en termes de perte de retour (S11), le patron (diagramme) de radiation, l'efficacité (gain), et le taux d'erreur binaire (TEB) sont directement comparables à des solutions classiques rigides. Ces antennes sont adéquates pour les communications à courte portée des applications de communications sans fil ayant un débit de données de Mo/s (méga-octets par seconde) (via protocoles Bluetooth et IEEE 802.15.4 à la fréquence de 2,4 GHz). Des simulations numériques de taux d'absorption spécifique démontrent également le plein respect des règles de sécurité imposées par Industrie Canada pour les réseaux sans fil à proximité du corps humain. Puisque les matériaux composites de fibres métal-verre-polymère sont fabriqués en utilisant des fibres de silice creuses de diamètre submillimétrique et la technique de dépôt d'argent à l'état liquide, les éléments conducteurs sont protégés de l'environnement et ceci préserve aussi les propriétés mécaniques et esthétiques des vêtements. Cet aspect est confirmé par des essais correspondant aux normes de l'industrie du textile, l'étirement standard et des essais de flexion. De plus, appliquer des revêtements superhydrophobes (WCA = 152º, SA = 6º) permet une communication sans fil sans interruption de ces textiles sous l'application directe de l'eau, même après plusieurs cycles de lavage. Enfin, le prototype de textile intelligent fabriqué interagit avec l'utilisateur à travers un détecteur tactile et transmet les données tactiles à travers le protocole Bluetooth à un smartphone. Cette démonstration valide l’approche des fibres multi-matériaux pour une variété d'applications.As we are surrounded by textiles 24/7, either in the form of garments that we wear or as upholstery in our cars, homes, offices, etc., textiles are especially attractive platforms for arrays of innovative biomedical sensors, transducers, and microprocessors dedicated, among other applications, to continuous health monitoring. In the same time, the common approach in the field of smart textiles consists in adaptation of conventional planar microelectronics to some kind of flexible substrate, which often results in poor mechanical properties and thus compromises wearing comfort and complicates garment care, which results in low user acceptance. This explains why such solutions rarely emerge from the lab and, with the exception of some very specific cases, cannot be seen in the everyday life. Furthermore, we are currently witnessing a global shift from classical standalone computing to the concept of distributed computation (e.g. so-called thin clients and cloud storage). In this context, the computation power of the individual node or smart textile device in this case, becomes progressively less important than the ability to relay data to the Internet. In this work, I propose a novel approach based on the idea of integration of polymer, glass and metal into miniaturized fiber structures in order to achieve next-generation smart textile devices with higher-level functionalities, such as wireless communication, touch recognition, electrical interconnects, with minimally-invasive attributes. First, I investigate different possible fiber-shaped antenna designs and fabrication techniques. Next, I experimentally demonstrate that such multi-material fiber antennas can be integrated into textiles during standard textile manufacturing process. Tests conducted on these textiles have shown that, for on-body and off-body scenarios, the emissive properties in terms of return loss (S11), radiation pattern, efficiency (gain), and bit-error rate (BER) are directly comparable to classic ‘rigid’ solutions and adequately address short-range wireless communications applications at Mbps data-rates (via Bluetooth and IEEE 802.15.4 protocols at 2.4 GHz frequency). Numerical simulations of the specific absorption rate (SAR) also demonstrate full compliance with safety regulations imposed by Industry Canada for wireless body area network devices. Since metal-glass-polymer fiber composites were fabricated using sub-millimetre hollow-core silica fibers and liquid state silver deposition technique, the conductor elements are shielded against the environment and preserve the mechanical and cosmetic properties of the garments. This is confirmed by the textile industry standard stretching and bending tests. Additionally, applied superhydrophobic coatings (WCA=152º, SA=6º) allow uninterrupted wireless communication of the textiles under direct water application even after multiple washing cycles. Finally, I fabricated a user-interactive and wireless-communicating smart textile prototype, that interacts with the user through capacitive touch-sensing and relays the touch data through Bluetooth protocol to a smartphone. This demonstration validates that the proposed approach based on multi-material fibers is suitable for applications to sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures, suitable for a variety of health and life science applications

    On the Development of Conductive Textile Antennas

    Get PDF
    UWB systems are becoming increasingly utilized due to their use in a variety of applications. Meanwhile, many advances have been achieved in the realm of conductive textiles. These textiles can be used as a sensing system or implemented wearable antennas. Combining these two applications is attractive for a number of reasons. First, wearable antennas constructed entirely from fabric offer a cost- effective, flexible solution when compared to rigid antennas. Second UWB technology is also attractive for body area network applications due to the low power operation and the inherent low radiated power in its system design. In our implementation accurately defined textile antennas have been developed using a laser machine with high precision cutting capabilities. The textile antennas are comprised of a conductive fabric layer that is laser defined and can be easily incorporated into uniforms and garments using a simple iron-on process. We have developed and present a monopole antenna design geared towards UWB applications. We show that these UWB textile antennas can be applied to localization systems and can provide accurate estimation of wearers location. Wide-band textile slot antennas have been developed too. The antennas are composed of three textile layers: the top and bottom are conducting layers and are precisely defined by a laser cutting machine, while the third layer is a textile dielectric layer sandwiched between these two conducting layers. A single, two-element and four-element array slot antennas have been developed and successfully tested. The developed antennas offer flexible, light-weight and bendable properties. The iron-on process allows for the fabric to be washed without losing its adhesion. The antenna fabrication and the capabilities of the laser precision technique and its extension to development of large area antenna arrays will be presented. Conductive textiles can also be implemented to meet the requirements of combat wound detection systems. Using these textiles, a fabric-based sensor can be developed to accurately detect and localize the bullets penetration

    Integration of conductive materials with textile structures : an overview

    Get PDF
    In the last three decades, the development of new kinds of textiles, so-called smart and interactive textiles, has continued unabated. Smart textile materials and their applications are set to drastically boom as the demand for these textiles has been increasing by the emergence of new fibers, new fabrics, and innovative processing technologies. Moreover, people are eagerly demanding washable, flexible, lightweight, and robust e-textiles. These features depend on the properties of the starting material, the post-treatment, and the integration techniques. In this work, a comprehensive review has been conducted on the integration techniques of conductive materials in and onto a textile structure. The review showed that an e-textile can be developed by applying a conductive component on the surface of a textile substrate via plating, printing, coating, and other surface techniques, or by producing a textile substrate from metals and inherently conductive polymers via the creation of fibers and construction of yarns and fabrics with these. In addition, conductive filament fibers or yarns can be also integrated into conventional textile substrates during the fabrication like braiding, weaving, and knitting or as a post-fabrication of the textile fabric via embroidering. Additionally, layer-by-layer 3D printing of the entire smart textile components is possible, and the concept of 4D could play a significant role in advancing the status of smart textiles to a new level

    Development of Robust Transparent Conformal Antennas Based on Conductive Mesh-Polymer Composite for Unobtrusive Wearable Applications

    Full text link
    © 1963-2012 IEEE. In this paper, a detailed investigation of the realization of conformal wearable transparent antennas by integrating conductive mesh with polymer has been presented. The proposed realization method is much simpler and more cost-effective than the existing realization methods of transparent antennas, and the prototype fabricated from the selected composite materials is more flexible and robust in bending operations than other transparent antennas. In this paper, the mechanical, electrical, and optical characteristics of the proposed composite material have been investigated to analyze its suitability for transparent flexible antenna realization. For concept demonstration, a prototype of a dual-band antenna operating at 2.33-2.53 GHz and 4.7-5.6 GHz has been fabricated and tested. These frequencies cover both the instrument, scientific, and measurement (ISM) and the wireless local area network (WLAN) bands. Full ground plane is utilized in the antenna design for on-body operations. The suitability of the antenna for wearable applications has been investigated by measuring its performance under physical deformation and testing its performance on phantom. Next, the RF performance of the antenna has been improved by using two layers of conductor to form the radiating element. Although transparency is slightly compromised, the double-layer element improves the gain and efficiency of the antenna

    Wideband and UWB antennas for wireless applications. A comprehensive review

    Get PDF
    A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB) antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible), and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc.) and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems

    Development of Textile Antennas for Energy Harvesting

    Get PDF
    The current socio-economic developments and lifestyle trends indicate an increasing consumption of technological products and processes, powered by emergent concepts, such as Internet of Things (IoT) and smart environments, where everything is connected in a single network. For this reason, wearable technology has been addressed to make the person, mainly through his clothes, able to communicate with and be part of this technological network. Wireless communication systems are made up of several electronic components, which over the years have been miniaturized and made more flexible, such as batteries, sensors, actuators, data processing units, interconnectors and antennas. Turning these systems into wearable systems is a demanding research subject. Specifically, the development of wearable antennas has been challenging, because they are conventionally built on rigid substrates, hindering their integration into the garment. That is why, considering the flexibility and the dielectric properties of textile materials, making antennas in textile materials will allow expanding the interaction of the user with some electronic devices, by interacting through the clothes. The electronic devices may thus become less invasive and more discrete. Textile antennas combine the traditional textile materials with new technologies. They emerge as a potential interface of the human-technology-environment relationship. They are becoming an active part in the wireless communication systems, aiming applications such as tracking and navigation, mobile computing, health monitoring and others. Moreover, wearable antennas have to be thin, lightweight, of easy maintenance, robust, and of low cost for mass production and commercialization. In this way, planar antennas, the microstrip patch type, have been proposed for garment applications, because this type of antenna presents all these characteristics, and are also adaptable to any surface. Such antennas are usually formed by assembling conductive (patch and ground plane) and dielectric (substrate) layers. Furthermore, the microstrip patch antennas, radiate perpendicularly to a ground plane, which shields the antenna radiation, ensuring that the human body is exposed only to a very small fraction of the radiation. To develop this type of antenna, the knowledge of the properties of textile materials is crucial as well as the knowledge of the manufacturing techniques for connecting the layers with glue, seam, adhesive sheets and others. Several properties of the materials influence the behaviour of the antenna. For instance, the bandwidth and the efficiency of a planar antenna are mainly determined by the permittivity and the thickness of the substrate. The use of textiles in wearable antennas requires thus the characterization of their properties. Specific electrical conductive textiles are available on the market and have been successfully used. Ordinary textile fabrics have been used as substrates. In general, textiles present a very low dielectric constant, εr, that reduces the surface wave losses and increases the impedance bandwidth of the antenna. However, textile materials are constantly exchanging water molecules with the surroundings, which affects their electromagnetic properties. In addition, textile fabrics are porous, anisotropic and compressible materials whose thickness and density might change with low pressures. Therefore, it is important to know how these characteristics influence the behaviour of the antenna in order to minimize unwanted effects. To explain some influences of the textile material on the performance of the wearable antennas, this PhD Thesis starts presenting a survey of the key points for the design and development of textile antennas, from the choice of the textile materials to the framing of the antenna. An analysis of the textile materials that have been used is also presented. Further, manufacturing techniques of the textile antennas are described. The accurate characterization of textile materials to use as a dielectric substrate in wearable systems is fundamental. However, little information can be found on the electromagnetic properties of the regular textiles. Woven, knits and nonwovens are inhomogeneous, highly porous, compressible and easily influenced by the environmental hygrometric conditions, making their electromagnetic characterization difficult. Despite there are no standard methods, several authors have been adapting techniques for the dielectric characterization of textiles. This PhD Thesis focuses on the dielectric characterization of the textile materials, surveying the resonant and non-resonant methods that have been proposed to characterize the textile and leather materials. Also, this PhD Thesis summarizes the characterization of textile materials made through these methods, which were validated by testing antennas that performed well. Further a Resonant-Based Experimental Technique is presented. This new method is based on the theory of resonance-perturbation, extracting the permittivity and loss tangent values based on the shifts caused by the introduction of a superstrate on the patch of a microstrip antenna. The results obtained using this method have shown that when positioning the roughest face of the material under test (MUT) in contact with the resonator board, the extracted dielectric constant value is lower than the one extracted with this face positioned upside-down. Based on this observation, superficial properties of textiles were investigated and their influence on the performance of antennas was analysed. Thus, this PhD Thesis relates the results of the dielectric characterization to some structural parameters of textiles, such as surface roughness, superficial and bulk porosities. The results show that both roughness and superficial porosity of the samples influence the measurements, through the positioning of the probes. Further, the influence of the positioning of the dielectric material on the performance of textile microstrip antennas was analysed. For this, twelve prototypes of microstrip patch antennas were developed and tested. The results show that, despite the differences obtained on the characterization when placing the face or reverse-sides of the MUT in contact with the resonator board, the obtained average result of εr is well suited to design antennas ensuring a good performance. According to the European Commission Report in 2009, “Internet of Things — An action plan for Europe”, in the next years, the IoT will be able to improve the quality of life, especially in the health monitoring field. In the Wireless Body Sensor Network (WBSN) context, the integration of textile antennas for energy harvesting into smart clothing is a particularly interesting solution for a continuous wirelessly feed of the devices. Indeed, in the context of wearable devices the replacement of batteries is not easy to practice. A specific goal of this PhD Thesis is thus to describe the concept of the energy harvesting and then presents a survey of textile antennas for RF energy harvesting. Further, a dual-band printed monopole textile antenna for electromagnetic energy harvesting, operating at GSM 900 and DCS 1800 bands, is also proposed. The antenna aims to harvest energy to feed sensor nodes of a wearable health monitoring system. The gains of the antenna are around 1.8 dBi and 2.06 dBi allied with a radiation efficiency of 82% and 77.6% for the lowest and highest frequency bands, respectively. To understand and improve the performance of the proposed printed monopole textile antenna, several manufacturing techniques are tested through preliminary tests, to identify promising techniques and to discard inefficient ones, such as the gluing technique. Then, the influence of several parameters of the manufacturing techniques on the performance of the antenna are analysed, such as the use of steam during lamination, the type of adhesive sheet, the orientation of the conductive elements and others. For this, seven prototypes of the printed monopole textile antenna were manufactured by laminating and embroidering techniques. The measurement of the electrical surface resistance, Rs, has shown that the presence of the adhesive sheet used on the laminating process may reduce the conductivity of the conductive materials. Despite that, when measuring the return loss of printed monopole antennas produced by lamination, the results show the antennas have a good performance. The results also show that the orientation of the conductive fabric does not influence the performance of the antennas. However, when testing embroidered antennas, the results show that the direction and number of the stitches in the embroidery may influence the performance of the antenna and should thus be considered during manufacturing. The textile antennas perform well and their results support and give rise to the new concept of a continuous substrate to improve the integration of textile antennas into clothing, in a more comfortable and pleasure way. A demonstrating prototype, the E-Caption: Smart and Sustainable Coat, is thus presented. In this prototype of smart coat, the printed antenna is fully integrated, as its dielectric is the textile material composing the coat itself. The E-Caption illustrates the innovative concept of textile antennas that can be manipulated as simple emblems. The results obtained testing the antenna before and after its integration into cloth, show that the integration does not affect the behaviour of the antenna. Even on the presence of the human body the antenna is able to cover the proposed resonance frequencies (GSM 900 and DCS 1800 bands) with the radiation pattern still being omnidirectional. At last, the exponential growth in the wearable market boost the industrialization process of manufacturing textile antennas. As this research shows, the patch of the antennas can be easily and efficiently cut, embroidered or screen printed by industrial machines. However, the conception of a good industrial substrate that meets all the mechanical and electromagnetic requirements of textile antennas is still a challenge. Following the continuous substrate concept presented and demonstrated through the E-Caption, a new concept is proposed: the continuous Substrate Integrating the Ground Plane (SIGP). The SIGP is a novel textile material that integrates the dielectric substrate and the conductive ground plane in a single material, eliminating one laminating process. Three SIGP, that are weft knitted spacer fabrics having one conductive face, were developed in partnership with the Borgstena Textile Portugal Lda, creating synergy between research in the academy and industry. The results of testing the performance of the SIGP materials show that the integration of the ground plane on the substrate changes the dielectric constant of the material, as a consequence of varying the thickness. Despite this, after the accurate dielectric and electrical characterization, the SIGP I material has shown a good performance as dielectric substrate of a microstrip patch antenna for RF energy harvesting. This result is very promising for boosting the industrial fabrication of microstrip patch textile antennas and their mass production and dissemination into the IoT network, guiding future developments of smart clothing and wearables.Os atuais desenvolvimentos socioeconómicos e tendências de estilo de vida apontam para um crescimento do consumo de produtos e processos tecnológicos, impulsionado por conceitos emergentes como a Internet das Coisas, onde tudo tudo está conectado em uma única rede. Por esta razão, as tecnologias usáveis (wearable) estão a afirmar-se propondo soluções que tornam o utilizador possivelmente através das suas roupas, capaz de comunicar com e fazer parte desta rede. Os sistemas de comunicações sem fios são constituídos por diversos componentes eletrónicos, que com o passar dos anos foram sendo miniaturizados e fabricados em materiais flexíveis, tais como as baterias, os sensores, as unidades de processamento de dados, as interconexões e as antenas. Tornar os sistemas de comunicações sem fios em sistemas usáveis requer trabalho de investigação exigente. Nomeadamente, o desenvolvimento de antenas usáveis tem sido um desafio, devido às antenas serem tradicionalmente desenvolvidas em substratos rígidos, que dificultam a sua integração no vestuário. Dessa forma, considerando a flexibilidade e as propriedades dielétricas dos materiais têxteis, as antenas têxteis trazem a promessa de permitir a interacção dos utilizadores com os dispositivos eletrónicos através da roupa, tornando os dispositivos menos invasivos e mais discretos. As antenas têxteis combinam os materiais têxteis tradicionais com novas tecnologias e emergem assim como uma potencial interface de fronteira entre seres humanos-tecnologias-ambientes. Expandindo assim a interação entre o utilizador e os dispositivos eletrónicos ao recurso do vestuário. Assim, através das antenas têxteis, o vestuário torna-se uma parte ativa nos sistemas de comunicação sem fios, visando aplicações como rastreamento e navegação, computação móvel, monitorização de saúde, entre outros. Para isto, as antenas para vestir devem ser finas, leves, de fácil manutenção, robustas e de baixo custo para produção em massa e comercialização. Desta forma, as antenas planares do tipo patch microstrip têm sido propostas para aplicações em vestuário, pois apresentam todas estas características e também são adaptáveis a qualquer superfície. Estas antenas são geralmente formadas pela sobreposição de camadas condutoras (elemento radiante e plano de massa) e dielétricas (substrato). Além disso, as antenas patch microstrip irradiam perpendicularmente ao plano de massa, que bloqueia a radiação da antena, garantindo que o corpo humano é exposto apenas a uma fração muito pequena da radiação. Para desenvolver este tipo de antena, é crucial conhecer as propriedades dos materiais têxteis, bem como as técnicas de fabricação para conectar as camadas, com cola, costuras, folhas adesivas, entre outros. Diversas propriedades dos materiais influenciam o comportamento da antena. Por exemplo, a permitividade e a espessura do substrato determinam a largura de banda e a eficiência de uma antena planar. O uso de têxteis em antenas usáveis requer assim uma caracterização precisa das suas propriedades. Os têxteis condutores elétricos são materiais específicos que estão disponíveis comercialmente em diversas formas e têm sido utilizados com sucesso para fabricar o elemento radiante e o plano de massa das antenas. Para fabricar o substrato dielétrico têm sido utilizados materiais têxteis convencionais. Geralmente, os materiais têxteis apresentam uma constante dielétrica (εr) muito baixa, o que reduz as perdas de ondas superficiais e aumenta a largura de banda da antena. No entanto, os materiais têxteis estão constantemente a trocar moléculas de água com o ambiente em que estão inseridos, o que afeta as suas propriedades eletromagnéticas. Além disso, os tecidos e os outros materiais têxteis planares são materiais porosos, anisotrópicos e compressíveis, cuja espessura e densidade variam sob muito baixas pressões. Portanto, é importante saber como estas grandezas e características estruturais influenciam o comportamento da antena, de forma a minimizar os efeitos indesejáveis. Para explicar algumas das influências do material têxtil no desempenho das antenas usáveis, esta Tese de Doutoramento começa por fazer o estado da arte sobre os pontos-chave para o desenvolvimento de antenas têxteis, desde a escolha dos materiais têxteis até ao processo de fabrico da antena. Além disso, a tese identifica e apresenta uma análise dos materiais têxteis e técnicas de fabricação que têm sido utilizados e referidos na literatura. A caracterização rigorosa dos materiais têxteis para usar como substrato dielétrico em sistemas usáveis é fundamental. No entanto, pouca informação existe sobre a caracterização das propriedades eletromagnéticas dos têxteis vulgares. Como já referido, os tecidos, malhas e não-tecidos são materiais heterogéneos, altamente porosos, compressíveis e facilmente influenciados pelas condições higrométricas ambientais, dificultando a sua caracterização eletromagnética. Não havendo nenhum método padrão, vários autores têm vindo a adaptar algumas técnicas para a caracterização dielétrica dos materiais têxteis. Esta Tese de Doutoramento foca a caracterização dielétrica dos materiais têxteis, revendo os métodos ressonantes e não ressonantes que foram propostos para caracterizar os materiais têxteis e o couro. Além disso, esta Tese de Doutoramento resume a caracterização de dieléctricos têxteis feita através dos métodos revistos e que foi validada testando antenas que apresentaram um bom desempenho. No seguimento da revisão, apresenta-se uma Técnica Experimental Baseada em Ressonância. Esta nova técnica baseia-se na teoria da perturbação de ressonância, sendo a permitividade e tangente de perda extraídas com base nas mudanças de frequência causadas pela introdução de um superstrato no elemento radiante de uma antena patch microstrip. Os resultados de caracterização obtidos através deste método revelam que, ao posicionar a face mais rugosa do material em teste em contato com a placa de ressonância, o valor da constante dielétrica extraída é inferior ao valor extraído quando esta face é colocada ao contrário. Com base nesta observação, as propriedades estruturais da superfície dos materiais têxteis foram investigadas e a sua influência no desempenho das antenas foi analisada. Assim, esta Tese de Doutoramento relaciona os resultados da caracterização dielétrica com alguns parâmetros estruturais dos materiais, como rugosidade da superfície, porosidades superficial e total. Os resultados mostram que tanto a rugosidade como a porosidade superficial das amostras influenciam os resultados, que dependem assim do posicionamento do material que está a ser testado. Também foi analisada a influência do posicionamento do material dielétrico na performance das antenas têxteis tipo patch microstrip. Para isso, foram desenvolvidos e testados doze protótipos de antenas patch microstrip. Os resultados mostram que, apesar das diferenças observadas durante o processo de caracterização, o valor médio da permitividade é adequado para a modelação das antenas, garantindo um bom desempenho. De acordo com o relatório da Comissão Europeia, “Internet das Coisas - Um plano de ação para a Europa”, emitido em 2009, nos próximos anos a Internet das Coisas poderá melhorar a qualidade de vida das pessoas, nomeadamente pela monitorização da saúde. No contexto das Redes de Sensores Sem Fios do Corpo Humano, a integração de antenas têxteis para recolha de energia em roupas inteligentes é uma solução particularmente interessante, pois permite uma alimentação sem fios e contínua dos dispositivos. De fato, nos dispositivos usáveis a substituição de baterias não é fácil de praticar. Um dos objetivos específicos desta Tese de Doutoramento é, portanto, descrever o conceito de recolha de energia e apresentar o estado da arte sobre antenas têxteis para recolha de energia proveniente da Rádio Frequência (RF). Nesta tese, é também proposta uma antena impressa do tipo monopolo de dupla banda, fabricada em substrato têxtil, para recolha de energia eletromagnética, operando nas bandas GSM 900 e DCS 1800. A antena visa recolher energia para alimentar os nós de sensores de um sistema usável para monitorização da saúde. Os ganhos da antena apresentada foram cerca de 1.8 dBi e 2.06 dBi, aliados a uma eficiência de radiação de 82% e 77.6% para as faixas de frequência mais baixa e alta, respetivamente. Para entender e melhorar o desempenho da antena impressa tipo monopolo de dupla banda em substrato têxtil, várias técnicas de fabrico foram testadas através de testes preliminares, de forma a identificar as técnicas promissoras e a descartar as ineficientes, como é o caso da técnica de colagem. De seguida, analisou-se a influência de vários parâmetros das técnicas de fabrico sobre o desempenho da antena, como o uso de vapor durante a laminação, o tipo de folha adesiva, a orientação dos elementos irradiantes e outros. Para isto, sete protótipos da antena têxtil monopolar impressa foram fabricados por técnicas de laminação e bordado. As medições da resistência elétrica superficial, Rs, mostrou que a presença da folha adesiva usada no processo de laminagem pode reduzir a condutividade dos materiais condutores. Apesar disso, ao medir o S11 das antenas impressas tipo monopolo produzidas por laminagem, os resultados mostram que as antenas têm uma boa adaptação da impedância. Os resultados também mostram que a orientação do tecido condutor, neste caso um tafetá, não influencia o desempenho das antenas. No entanto, ao testar antenas bordadas, os resultados mostram que a direção e o número de pontos no bordado podem influenciar o desempenho da antena e, portanto, estas são características que devem ser consideradas durante a fabricação. De um modo geral, as antenas têxteis funcionam bem e seus resultados suportam e dão origem ao um novo conceito de substrato contínuo para melhorar a integração de antenas têxteis no vestuário, de maneira mais confortável e elegante. A tese apresenta um protótipo demonstrador deste conceito, o E-Caption: A Smart and Sustainable Coat. Neste protótipo de casaco inteligente, a antena impressa está totalmente integrada, pois o seu substrato dielétrico é o próprio mat

    A wearable active antenna for global positioning system and satellite phone

    Get PDF
    A wearable multiband circularly polarized active antenna is presented for use in Global Positioning System and Iridium satellite phone applications. The square patch antenna is constructed using flexible foam and fabric substrates and conductors etched on thin copper-on-polyimide films. The feed substrate integrates a compact low-noise amplifier chip directly underneath the antenna patch. The antenna performance is studied under bending conditions and in the presence of a human body. The active antenna exhibits a gain higher than 25 dBi and a 3 dB axial ratio bandwidth exceeding 183 MHz in free-space conditions and is robust to bending and on-body placement

    Conductive Textiles and their use in Combat Wound Detection, Sensing, and Localization Applications

    Get PDF
    Conductive textiles, originally used for electromagnetic shielding purposes, have recently been utilized in body area network applications as fabric antennas and distributed sensors used to document and analyze kinematic movement, health vital signs, or haptic interactions. This thesis investigates the potential for using conductive textiles as a distributed sensor and integrated communication system component for use in combat wound detection, sensing, and localization applications. The goal of these proof-of-concept experiments is to provide a basis for robust system development which can expedite and direct the medical response team in the field. The combat wound detection system would have the capability of predicting the presence and location of cuts or tears within the conductive fabric as a realization of bullet or shrapnel penetration. Collected data, along with health vitals gathered from additional sensors, will then be wirelessly transmitted via integrated communication system components, to the appropriate medical response team. A distributed sensing method is developed to accurately predict the location and presence of textile penetrations. This method employs a Wheatstone bridge and multiplexing circuitry to probe a resistor network. Localized changes in resistance illustrate the presence and approximate location of cuts within the conductive textile. Additionally, this thesis builds upon manually defined textile antennas presented in literature by employing a laser cutting system to accurately define antenna dimensions. With this technique, a variety of antennas are developed for various purposes including large data transmission as would be expected from multi-sensor system integration. The fabrication technique also illustrates multilayer antenna development. To confirm simulation results, electrical parameters are extracted using a single-frequency resonance method. These parameters are used in the simulation and design of single-element and two-element wideband slot antennas as well as the design of a wideband monopole antenna. The monopole antenna is introduced to an indoor ultra-wideband (UWB) localization system to illustrate the capability of pinpointing the wearer of textile antennas for localization applications. A cavity-backed dog-bone slot antenna is developed to establish the ability to incorporate conductive vias by sewing conductive thread. This technique can be easily extrapolated to the development of textile substrate integrated waveguide (SIW) technologies
    corecore