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Abstract: In the last three decades, the development of new kinds of textiles, so-called smart and
interactive textiles, has continued unabated. Smart textile materials and their applications are set
to drastically boom as the demand for these textiles has been increasing by the emergence of new
fibers, new fabrics, and innovative processing technologies. Moreover, people are eagerly demanding
washable, flexible, lightweight, and robust e-textiles. These features depend on the properties of the
starting material, the post-treatment, and the integration techniques. In this work, a comprehensive
review has been conducted on the integration techniques of conductive materials in and onto a textile
structure. The review showed that an e-textile can be developed by applying a conductive component
on the surface of a textile substrate via plating, printing, coating, and other surface techniques, or by
producing a textile substrate from metals and inherently conductive polymers via the creation of
fibers and construction of yarns and fabrics with these. In addition, conductive filament fibers or
yarns can be also integrated into conventional textile substrates during the fabrication like braiding,
weaving, and knitting or as a post-fabrication of the textile fabric via embroidering. Additionally,
layer-by-layer 3D printing of the entire smart textile components is possible, and the concept of 4D
could play a significant role in advancing the status of smart textiles to a new level.
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1. Introduction

Clothing has been one of the three basic human needs since the beginning of our species. In the
primitive age, textile was used for clothing purposes and progressively extended to household and
domestic applications. Textile was also used for technical applications such as sailcloth, tent, protective
garments, ropes, etc., which leveraged the textile properties to create a technical performance advantage.

Smart textiles are materials and structures that sense and react to environmental conditions or
stimuli, such as those from mechanical, thermal, chemical, electrical, magnetic, or other sources [1].
Textiles are materials that can react on themselves, unlike ordinary clothes. The expressions of “smart”
and “intelligent” textiles or “wearable electronic” textiles, are commonly used interchangeably. The term
“smart textile” may refer to either a “smart textile material” or a “smart textile system”. The definition
is determined only by the context. Smart (intelligent) textile materials are functional textile materials
actively interacting with their environment, i.e., responding or adapting to changes in the environment
and smart (intelligent) textile system are textile system exhibiting an intended and exploitable response
as a reaction either to changes in its surroundings/environment or to an external signal/input [2].
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For instance, Steele et al. developed a bionic bra (Figure 1) using electro-material sensors and artificial
muscle technology to detect the increase in breast motion and then respond with increased breast
support to improve active living [3].
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Figure 1. Bionic bra [3].

Smart textiles integrate a high level of intelligence and can be classified into three subgroups: passive,
active, and very active or intelligent smart textiles [4]. They can be made by incorporating electronic
materials, conductive polymers, encapsulated phase change materials, shape memory polymers and
materials, and other electronic sensors and communication equipment. As Dadi 2010 studied, these
materials interact according to their designed feature with the stimuli in their environment [5]. As an
example of a very active smart textile, the first generation of wearable motherboards—which has sensors
integrated inside garments that can detect injury and health information of the wearer and transmit
such information remotely to a hospital—has already been developed [6].

Building Blocks of Smart Textile Systems

Smart textiles with sensing and actuating capabilities for the desired use have been produced as a
single purpose textile. However, the entire smart textile system could have specific function building
blocks such as sensor, actuator, interconnection, controlling unit, communication device, and power
supply. The schematic representation of a smart textile system is shown in Figure 2.
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Sensor: A sensor is an electronic component that detects or measures a physical property and
tracks and records, indicates, or otherwise responds to it. Typical textile-integrated sensor types
include textile electrodes for strain [7–11], electrocardiography [12–16], electromyography [17–19],
electroencephalography [20–22], humidity [23–26], temperature [27,28], pressure [28–30], light [31,32],
and molecule detection [33,34].

Actuator: An actuator is a building component that can influence its environment. A typical use
is to move or control other parts, but also light or sound generating parts are actuators. Common
examples of textile actuators introduced are, organic light-emitting diodes [35–37], phase changing
materials [5,38,39], temperature regulating textiles [40–42], and sound generating textile [43–45].

Interconnection: The interconnection is the part that links two or more functional components to
one another. A lot of conductive textiles have been introduced for interconnection purposes [4,46,47].

Control Unit: The control unit is an electric board that directs the operation of the processor and is
responsible for interpreting the signals from the sensor, ordering the actuator to react and commanding
the communication device to transmit necessary messages. Specific examples of control units that can
be integrated into textile system are Arduino [14,48,49], OpenBCI board [50], etc.

Communication Device: This is a unit integrated to transmit and receive electronic data and/or
information from and to another system, respectively. A microstrip textile patch antenna [51–54] is a
typical example.

Power Supply: The entire smart textile system must get the power to perform its task; the component
included to provide power to the system is the power supply unit. For smart textiles, lithium polymer
(LiPo) batteries are commonly used due to their size convenience. However, recently introduced
textile-based energy harvesting devices [48,55–57] and storage capacitors [58–61] could replace these
for some applications.

2. Search Method

A comprehensive electronic document search according to the PRISMA guidelines was conducted
from February 2018 to September 2020 from the web of science in particular and Google databases,
in general, using “building blocks of smart textiles” and “components of smart textiles” or
“manufacturing of smart textiles” or “integration techniques of smart textiles” or “weaving + smart
textiles” or “knitting + smart textiles” or “braiding + smart textiles” or “printing + smart textiles” or
“embroidering + smart textiles” or “plating + smart textiles” or “coating + smart textiles” or “spinning
+ smart textiles” as keywords turn by turn. After duplicates were removed, 1166 articles remained.
Articles were then screened by their title and abstract for relevance looking for a reference to integration
techniques. After screening by title and abstract, we excluded 870 articles. Full text for the remaining
396 articles was accessed. Articles were included if they used any element of smart textile building
block integration (including manufacturing options of smart textiles) and if the techniques used a
textile-based and smart textile building block. However, articles were excluded if they were reviews,
discussions, or commentary on integration and/or manufacturing of smart components, and if they
did not use e-textile technology (most commonly these were studies using functional technology or
wearable electronics). A total of 138 articles met the inclusion criteria and have been included in this
review. It is worth noting that as e-textiles integration techniques are not entirely different from the
conventional textile manufacturing and new ways of e-textile integration into a textile structure might
still be under development, researchers with commercial links may have subsequent restrictions on
publications of their findings, therefore, there may be some risk of bias in the studies found.

3. Conductive Materials for Textiles

Electrical conductive textiles are used in many applications of smart textile materials. However
conventional textile materials are usually insulating materials, where they cannot be used directly
for smart textile applications that require electrical conductivity. It is possible to obtain electrically
conductive textile by integrating metallic wires, conductive polymers, or other conductive compounds
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into the textile structure at different stages, such as fiber construction, yarn spinning, or fabric creation
stages. To impart conductivity, non-textile metallic filament wires made from silver, stainless steel,
nickel, aluminum and copper can be inserted into the textile structure. Metals provide high conductivity
which is very important for some smart textile applications but increases the weight of the material
and affects their flexibility. Moreover, some metals are prone to corrosion. Apart from using metal
wires, metal-based conductive textiles can also be produced by coating metal ink on the surface of
textile materials, but these have limitations in wash stability. This leads to the search for alternative
conductive compounds to produce reliable conductive textiles with better flexibility. Up to now,
the conductive materials for textile materials can be categorized as conductive inks, carbon-based
conductive polymers, intrinsically conductive polymers and conductive polymer composites.

3.1. Conductive Inks

The success of inkjet printing for printed electronics has attributed to the emergence of functional
printable inks with different nanoscale sizes and structures. Based on their constituents, conductive
inks can be categorized into three-dimensional nanostructured materials as nanoparticles, nanowires,
nanotubes or they may exhibit plate-like shapes. The printable ink has a wide range of choices such as
conductive, semi-conductive, and dielectric inks. The conductive inks can be prepared from conductive
metal nano-particles and micro-particles. The semi-conductive inks can be prepared from metal-oxides,
organic polymers and inorganic semiconductors. The dielectric inks are organic polymers in solvents,
organic polymer thermosets or ceramic-filled organic polymers. Therefore, the functional conductive
inks can be developed from metals, metal oxides, conductive polymers, organometallic inks, graphene,
carbon nanotubes and a mixture of the different inks. Some examples of the conductive inks employed
for the development of conductive textile are reactive silver [62], graphene ink [63], and carbon
nanotube [64], etc. For instance, Liang et al. used a silver nanoparticle-based conductive ink that was
configured with poly(styrene-block-ethylene-ran-butylene-blockstyrene) to develop a skin-inspired
ultra-sensitive pressure sensor [65].

3.2. Carbon-Based Conductive Materials

As the need for conductive textiles gains importance, carbon-based materials such as graphene [66],
carbon nanotube (CNT) [67], carbon black [68], graphene oxide [69], and reduced graphene oxides [70]
have been investigated to develop electrically conductive textiles. These carbon materials are
preferable for producing conductive textiles as most of them are relatively inexpensive, and they
are corrosion-resistant and flexible [71]. In [72] graphene-based polyester conductive fabric was
developed and used for bio-potential monitoring application. Rahman and Mieno have also developed
an electro-conductive cotton textile by multiple dip-coating of the cotton fabric in a multi-walled
carbon nanotubes solution. The surface resistance of the coated fabric decreased as the amount
of carbon loading increased, which depends on the number of dippings [73]. The carbon-based
conductive fabric is shown in Figure 3. Therefore, these materials can be used to produce a conductive
textile with different ranges of conductance, up to more than 0.20 S/m depending on the load content.
Other integration techniques like plating, transfer printing, inkjet printing, solution and electrospinning
of carbon-based conductive materials could also provide a textile material with better conductivity and
bulk property. For instance, Zhu et al. single-walled carbon nanotubes to fabricate machine-washable
conductive textiles via dip-coating and spray coating [74]. The developed conductive textiles exhibit a
high electrical conductivity of up to 7.4 × 102 S/m.
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effect loading of multi-walled carbon nanotube in the cotton textile on sheet resistance [73].

3.3. Intrinsically Conductive Polymers

At present, intrinsically conductive polymers are widely used in the development of electro-
conductive textiles. Traditional organic polymers are electrical insulators or semiconductors, so the
discovery of conductive polymers in 1970s [75], opened a new opportunity to produce electro-conductive
textiles. Conductive polymers are polymers that contain a conjugated molecular structure that is
having alternative single and double bonds between carbon atoms. They can combine the electrical
property of metals or semiconductors with the benefit of conventional polymers such as price, structural
diversity, flexibility and durability [76], which makes them an ideal choice for textile-based electrodes.
Among the conductive polymers, polypyrrole (PPy), polyaniline (PANI) and polythiophene derivative
poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) are the most successful in the
production of conductive textile [77]. The conductivity of the polymers can be enhanced by adding
organic solvents called dopants, for instance, the conductivity of PEDOT:PSS can be enhanced from one
to three orders of magnitude by adding polar organic solvents like ethylene glycol, dimethyl sulfoxide,
glycerol [78–81]. Therefore, these conductive polymers can be used to develop all building blocks of
the smart textile system as a wide range of electrical properties could be achieved by playing with the
polymer add-on, and the extent of dopant. The chemical structure of some conductive polymers is
shown in Figure 4.
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3.4. Conductive Polymer Composites

Metal-based conductive textiles have the highest conductivity but are often not flexible enough.
While, the existing conductive polymers show a promising conductivity, their mechanical properties
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need improvements. This has led to conductive polymeric composites with improved electrical
conductivity and mechanical stability. Electrically conductive polymer composites are polymers
consisting of single or hybrid conductive fillers such as carbonaceous, metallic, and conducting
polymeric particles dispersed in a polymer matrix. They can be produced based on a single polymer or
a multi-phase blend depending upon the electrical and mechanical properties required. Conductive
polymer composites have been growing steadily and are being exploited for academic and industrial
applications. [82–85]. As a result, a lot of conductive polymer composites have been introduced
and used in developing conductive textiles. For instance, PEDOT:PSS-polydimethylsiloxane [84],
PPy-silver nanocomposites [86], PANI-copper [87], graphene-PPy [88], PEDPT:PSS–CNT-Gr [89] have
been reported as conductive polymer composites.

4. Integration Techniques of Conductive Materials on/into a Textile Structure

Smart materials are incorporated into the textile structure by different technologies;
embroidering [90], knitting [91], weaving [92], spinning [93], braiding [94], coating [66], printing [84],
plating [95] and chemicals that provide specific features such as controlled hydrophobic behavior [4].
The techniques of integrating a conductive material in/onto a textile structure can be categorized based
on the form of the starting conductive material they use. The starting conductive materials can be
conductive compounds, fibers, yarns, or sheets. The integrating techniques of these starting conductive
materials are therefore different, we will present each of them in next sections.

4.1. Integration of Conductive Compounds

Conductive polymers and inks can be incorporated on textile materials by an in-situ polymerization
of monomers on the textile substrate or by applying the conductive polymers and inks onto a textile
substrate surface. In general, to produce a required e-textiles different approaches can be taken, such
as adding the monomer, polymer or ink into a polymer solution during fiber spinning, during the
coating/dyeing of textile substrates (fibers, yarns, fabrics) and/or in a printing stage on textile fabrics
and garments.

In electrospinning, smart textiles can be also produced by adding sensor materials to a polymer
spinning solution in nanotechnology level and microencapsulation and/or electrospinning technology.
A process to encapsulate tiny particles or droplets into wall materials is quickly becoming a well-used
technology for use in smart textiles [38]. Research is going into modifying fiber surfaces, such as
grafting materials onto fibers to create multi-functional, responsive, and adaptive fibers, in order to
tailor a hybrid nanolayer of polymer film that will afford several functions and properties through
nanotechnology [96]. Printing is a common method to deposit a conductive layer on flexible fabrics and
or garments fabric. Direct-write printing is defined as an additive manufacturing method in which the
deposited patterns directly follow a pre-designed layout without utilizing masks or subsequent etching
processes. Direct-write printing can deposit and pattern different thin film materials necessary for the
fabrication of components and systems such as those found in electronic devices, sensors, and other
systems. In the development of conductive textiles via printing, the conductive compound can be
deposited or transferred to the textile substrate such as in screen and transfer printing, respectively.
Inkjet printing and 3D printing can be potentially used to inject conductive materials over the surface
of the textile fabrics layer by layer using a nozzle.

4.1.1. Fiber Spinning

Conductive components can be integrated into the textile structure at the fiber spinning stage
by adding a conductive component into the polymer solution which are then extruded together to
produce conductive fibers or filament. In [97], a conductive PANI fiber was reported using modified
carbon black materials as conductive fillers via the wet-spinning process. The conductivity and tensile
strength of the fiber were improved after annealing. Liu et al. developed electrically conductive
composite fiber from a blend of PEDOT:PSS and PANI using a conventional wet-spinning process
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having a diameter of 30–60 µm. They reported that the electrical conductivity of the composite fiber
increased as the content of PEDOT:PSS increased, where the highest conductivity was 5.0 S/cm when
the PEDOT–PSS content was 1.83 wt % [98]. The PEDOT:PSS content does not show any relation to
fiber mechanical performance, but it did cause an increase in surface roughness. Radzuan et al. also
reported a PPy reinforced carbon fiber developed by the melt-spinning process [99]. The electrical
conductivity of the fiber was 0.56 to 3.66 S/cm based on the die configurations. Zheng et al. used the
wet-spinning method to fabricate hybrid microfibers composed of hyaluronic acid and multi-walled
carbon nanotubes. The obtained hybrid microfibers presented excellent tensile properties with Young’s
modulus of 9.04 ± 1.13 GPa and tensile strength of 130.25 ± 10.78 MPa, and excellent flexibility
and stability [93]. Åkerfeldt et al. also used the melt spinning technique to produce a fully textile
piezoelectric strain sensor, consisting of bi-component fiber yarns of β-crystalline poly(vinylidene
fluoride) sheath and conductive high-density polyethylene/carbon black core as insertions in a woven
textile, with conductive PEDOT:PSS coatings developed for textile applications [100]. The absence
of the binder leads to one order of magnitude less in the surface resistivity, 12.3 Ω/square. However,
the surface resistivity increases more upon abrasion when compared against fabric coated with binder
added to the solution. Schematic illustration of the wet and melt spinning are shown in Figure 5.
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4.1.2. Dip-Coating

In this technique, textile materials such as fiber, yarn or fabric are immersed for a certain duration
of time in a bath contain conductive dispersion. The process can be discontinuous or continuous as the
schematics shown in Figure 6a,b, respectively. In the discontinuous process, the fabric is batched for
some time in a solution containing conductive components and other auxiliaries. This method can
be used for any form of textile. Whereas in the continuous process, a batch fabric passes through a
padding mangle containing a conductive solution and drying unit as a roll. This method is suitable for
fabric processing but can be used for a yarn too.
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Many conductive textiles made by dip-coating have been reported. For instance, Liu et al.
used the technique to fabricate a highly electrically conductive and excellent washing fast cotton
fabric [95]. Liu et al. also reported a polypyrrole dip-coated electro-conductive cotton fabric developed
by immersing the fabric in a solution containing polypyrrole at room temperature for 30 min [101].
The surface conductivity of the polypyrrole coated cotton fabric depended on the concentration of
pyrrole in the solution, and better conductivity was obtained at 0.5 mol/L. Ankhili et al. dip-coated
cotton, polyester and polyamide fabrics in a solution containing PEDOT:PSS dispersion. The cotton
fabric gives better electrical conductivity because its good hydrophilic character caused a higher
adsorption of PEDOT:PSS than the other fabrics [102]. Tseghai et al. have also used the dip-coating
technique to develop a textile-based strain sensor by in-situ polymerization of PPy on cotton fabric.
The sheet resistance of the dip-coated fabric was 60 Ω/sq [103]. The PPy dip-coated cotton fabric used
for the construction of a strain sensor is shown in Figure 7.
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Furthermore, Mule et al. used this technique to fabricate a conductive and robust PPy-coated
cotton triboelectric nanogenerators (TENGs) device which was flexible and wearable [104]. The device
efficiently converts mechanical energy into electricity while making a continuous touch-release with
counter friction objects like human skin, i.e., tibo-friction layers. It shows strong characteristics even
after long-term cyclic operations and conjointly produced an electrical yield under tender touching with
the human hand. It can hence be utilized as a self-powered source to drive convenient electronic gadgets
and light-emitting diodes. The photographic image of the PPy-based wearable single-electrode-mode
TENG is shown in Figure 8.

1 
 

  

a b 

 
Figure 8. (a) Photographic image of a real polypyrrole-based wearable single-electrode-mode
triboelectric nanogenerators (PPy- WSEM-TENG) device; (b) estimated peak power density values
of the PPy-WSEM-TENG device under the applied pressing force and frequency of 10 N and 5 Hz,
respectively [104].

4.1.3. Plating

In this overview, plating is a process of adding a layer of metal components on the surface of textile
materials. Before plating, the substrate must be cleaned to remove impurities, which offer assistance
for effective attachment of the metal particles to the surface of the substrate [105]. There are different
ways of plating, mostly categorized as electroplating or electroless plating.

In electroplating, metals are plated on a surface of the conductive fabric by using electric current.
A clean substrate can be immersed in a solution of metal plating particles and an electric current is
applied to make the metals deposited to the surface. Hence, this way works only for conductive surfaces
as otherwise the current cannot flow. The conventional textiles are not electrically conductive, therefore,
it is not possible to use the electroplating, unless the material is prior conductive. However, this way can
be used to improve the conductivity and stability of conductive textiles using metals particles. As an
example of electroplated textiles, a carbon fiber electroplated with nickel for thermoelectric energy
harvesting application was explored in [106]. A schematic representation of copper electroplating to a
prior conductive cotton fabric is shown in Figure 9a.

Electroless plating is a chemical process to create metal coatings on various textile materials by
an autocatalytic reaction, a chemical reduction of metal cations in a liquid bath. Electroless plating
depends on chemical reaction to coat the metals on the surface of a material rather than using electric
current. In this way, the plating is first performed by cleaning unnecessary components and impurities
with chemical cleansers that are able to remove oils and other corrosive elements from the textile,
then dip the substrate into an aqueous solution and add anti-oxidation chemicals. The schematic
representation of electroless plating is shown in Figure 9b.
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process depending on the substrate and the property of the conductive compound used. It is among 
the highly recommended methods of printing since it can simplify the fabrication [53]. Therefore, 
screen printing is the widely used printing techniques [110] to realize textile electronics as one can 
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Among the ways of plating, the electroless plating is more convenient for the traditional textile
fabrics as it gives a high friction and corrosion resistance to the resulting conductive textiles, and can
be used for non-conductive textile. Because of these, a lot of electroless plated conductive textiles
have been developed and reported. For instance, Kumar and Thilagavathi developed a copper plated
polyester fabric by using this technique. They reported that the plated polyester fabric provides
good electrical conductivity with 300 kΩ/sq surface resistance [107]. Ma et al. used electroless silver
plating to develop a conductive cotton/spandex blended fabric having robust electrical conductivity,
15.7 S/m [108]. The resultant fabric has high flexibility and stretchability due to the presence of spandex
which could make it suitable as a strain sensor while obtaining an anti-bacterial property due to the
presence of the silver. Therefore, this silver electroless plated textile could have a good potential
prospect for wearable textiles. In addition, Root et al. reported copper electroless plated cellulose-based
woven lyocell fabrics [109]. The resultant fabric was subjected to cyclic tensile tests; the resistance
of the coated fabric (19 × 1.5 cm2) dropped from 13.2 to 3.7 Ω at 2.2% elongation. This work could
attribute to a better understanding of conductive copper coating on textiles and their applicability as
strain sensors. The schematic representation of the copper deposition and the electrical response to
stretching of the fabric are shown in Figure 10.
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4.1.4. Screen Printing

As a feasible practical solution, screen printing is one of the most efficient and cost-effective
methods of creating conductive patterns on different textile substrates. The screen-printing process
consists of printing a viscous conductive paste through a patterned stencil followed by a curing process
depending on the substrate and the property of the conductive compound used. It is among the highly
recommended methods of printing since it can simplify the fabrication [53]. Therefore, screen printing
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is the widely used printing techniques [110] to realize textile electronics as one can easily deposit a
pattern of conductive paste onto fabric to form a flexible strong and suitably thick functional layer after
curing. The printing technique seems to be equal with dip-coating, but actually it is different. Printing
is a structured application of the conductive components on a selected or localized area whereas,
dip-coating is unstructured application of conductive materials to the textile material similar to the
conventional dyeing of textiles.

Screen printing has powerful potential for manufacturing wearable electronics [111]. This technique
can be used to apply conductive polymers and metallic and electrolyte inks onto textile substrates.
For instance, screen-printed silver ink on cotton and polyester for ECG electrode [112], dispersion of
carbon nanotubes on cotton and polyester fabrics [113], and PEDOT:PSS-based conductive polymer on
cotton fabric [114] have been reported.

A lot of research effort is put into obtaining textile electronic components with smaller dimensions
and with improved performance. It has been reported that electronic textiles like antennas have been
screen printed on a polyester fabric and also transmission lines for RF and microwave systems have
been screen printed on cotton [115]. Roshni et al. used the technique to develop an E-shaped microstrip
patch antenna designed on polyester fabric for WiMAX applications [53]. Since the fabricated antenna
was thin, flexible and water resistant, it can be easily integrated into any textile structure and garments
which like this are able to sense and communicate data in a non-intrusive way. Liu et al. reported
screen printed dye-sensitized solar cells (DSSCs) on woven polyester/cotton and Kapton fabrics for
wearable energy harvesting applications. The screen-printed DSSCs on Kapton and polyester/cotton
fabrics gave a photovoltaic efficiency of 7.03% and 2.78%, respectively [56]. Tseghai et al. exploited
the screen printing of PEDOT:PSS- polydimethylsiloxane to develop a conductive cotton fabric [84].
A wide range of sheet resistance, i.e., 24.8 to 90.8 kΩ/sq was achieved by varying the proportion of the
conductive polymer and elastomer. The schematic illustration of a typical flat screen printing is shown
in Figure 11 together with sheet resistance results.
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4.1.5. Spray-Coating

In spray-coating, a spray of conductive particles or droplets are deposited to a textile substrate.
A screen mesh or frame can be used to apply the conductive components at required locations.
This technique has also extensively investigated in textile applications. For instance, Li et al. used
the spray-coating to develop a textile based organic solar cells [116]. A power conversion efficiency
of 0.4% was achieved. Arumugam et al. [117] also spray-coated silver single nanowire, zinc oxide
nanoparticle, poly (3-hexylthiophene): indene-C60 bisadduct and PEDOT:PSS layer-by-layer on a
woven polyester/cotton substrate for a solar cells as shown in Figure 12. A power conversion efficiency
of 0.1% was achieved.
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4.1.6. Transfer Printing

In transfer printing, the required design is first printed on a non-textile substrate called print
master and then transferred by a separate process to a textile fabric or garment upon the application
of heat and pressure. This route would be chosen if direct printing on the fabric is not suitable.
In most cases, such difficulties may arise from the rough surface of the textile fabric or the migration
of the conductive component with solvent to undesired parts of the fabric due to the wicking effect.
The particles can be transferred from the pre-printed master to the textile by sublimation, melt, film
release and wet transfer.

The sublimation transfer is suitable for volatile compounds that can be preferentially adsorbed
in a vapor phase by the textile material from a print master during heating. Though this method is
commercially the most important of the transfer-printing methods, it is not well employed for the
development of conductive textiles as volatile conductive compounds able to sublime during heating
are not commercialized yet. The melt transfer can be used to print designs to a fabric with compounds
that are able to melt on to the fabric in contact with the print master. This method is also not convenient
for conductive polymers as they do not have a melting point. Metal conductive inks could be possible
but commercial textiles could discompose before the melting point of the metal particles is reached.
In the wet transfer, the design is transferred from print master to a moistened textile under a carefully
controlled contact pressure. The conductive particles could then transfer by diffusion through the
aqueous medium. However, the method is not used to any significant extent at the present time.
The film release transfer printing is a little bit similar to melt transfer except the design is held in an ink
layer which is transferred to the textile from a release paper using heat and pressure. Adhesion forces
stronger than between the conductive film and the paper in the print master are developed between
the conductive particles and the textile substrate. Therefore, this method can be potentially used to
develop conductive textiles as the heating weakens the adhesion between the conductive film and the
paper but not to melt the conductive components in the film.

The film release transfer printing is already commonly used to develop conductive textiles.
For instance, Maheshwari et al. used the film release transfer printing of silver nanowire conductive
ink to textile fabric surface e-textile [118]. The resultant sheet resistance of the conductive fabric was
small, i.e., 3 Ω/sq, and had a light weight and more mechanical flexibility than other conductive fabrics.
Shin et al. also used transfer printing to develop a textile-based flexible circuit for a wristwatch that
is shown in Figure 13 [119]. The transfer-printed textile circuit showed no change of resistance after
folding while its equivalent screen printed circuit changed from 0.73 Ω/cm to 12.85 Ω/cm. Therefore,
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this is a promising integrating technique for any conductive particle in the form of a film to produce
flexible and lightweight conductive textiles for different wearable applications.Sensors 2020, 20, x FOR PEER REVIEW 13 of 29 
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based humidity sensor that has satisfying metrological parameters [24]. This work demonstrated a 
prospective opportunity of integration with smart wearable electronics used for making medical 
applications. The photographic image of the humidity sensor and some results are shown in Figure 
14. 
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4.1.7. Inkjet Printing

Inkjet printing is a widely used direct-write deposition tool that has rapidly migrated to electronics
fabrication in recent years. It is a key printing technique that has not been widely applied to wearable
textiles fabrication. In inkjet printing, images and structures are built up in a droplet-by-droplet fashion.
The user may make a change to the jetting parameters or to the ink. The technique of inkjet printing
structures can be an advantageous manufacturing technique as the functional component can be created
within minutes of finalizing the design; the finish is aesthetic and has excellent resolution; it requires
minimal material consumption and as no mask is required there is the flexibility to change the design
regularly. The process is an additive process that does not require environmentally harmful etching
chemicals while minimizing the amount of waste produced and has a high degree of reproducibility as
the droplet production allows a user to treat the droplets as building blocks. It is possible to print the
ink directly on to the fabric, but Chauraya et al., 2013 argued that the pattern would dissipate into the
textile and cannot produce a continuous conducting track without many layers being printed due to
the high solvent content (~85%) of the inks required to ensure inkjet printability [115]. Inkjet printing
requires the use of a special liquid, usually referred to as ink, which contains the smallest possible
electrically conductive particles (their dimensions are usually counted in tens of nanometers at the
most). For the stability of such a suspension in time, each of the conductive particles (mostly silver or
gold) is covered with a protective organic layer. Carbon nanotube and graphene inks are also used but
typically have lower conductivities than metallic inks [120].

Al-naiemy et al. used the inkjet printing technique to develop a microstrip antenna based on
nano-silver inkjet material [121]. The developed antenna operated more efficiently than its identical
antenna made by screen printing at 2.44 GHz. This indicates that the integration of microstrip antennas,
electronic circuits, and sensors to the panels of photovoltaic cells using inkjet printing is considered as
a successful and promising design approach for the future. Inkjet printing of sol-gel derived tungsten
inks on glass and transparent conductive tungsten oxide and functionality of these transparent WO3

layers were successfully demonstrated in an electrochromic device [122]. He et al. reported fully
printed humidity sensors from graphene oxide and few-layered black phosphorus flakes dispersion
printed silver nanoparticle electrodes via inkjet printing [123]. The sensor can give an electrical response
from 11% to 97% relative humidity. In addition, the capacitance sensitivity was also high in both the
graphene oxide (4.45× 104 times) and the black phosphorus (5.08× 103 times) sensor at 10 Hz operation
frequency. Weremczuk et al. also used this technique to produce a textile-based humidity sensor that
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has satisfying metrological parameters [24]. This work demonstrated a prospective opportunity of
integration with smart wearable electronics used for making medical applications. The photographic
image of the humidity sensor and some results are shown in Figure 14.Sensors 2020, 20, x FOR PEER REVIEW 14 of 29 
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4.2. Integration of Conductive Yarn and Conductive Filament Fiber

Conductive filament fibers, yarns, and metallic wires can be integrated into/onto a textile structure
by weaving, knitting, embroidery, and braiding techniques. Though a conductive and functional
e-textile can be developed via these techniques, the electrical and mechanical properties of the textile
substrate could significantly vary from the initial conductive material. This is because of the way the
conductive materials placed, the structure of the textile substrate, the density of the conductive fabrics
on the substrate, and other factors that could potentially determine the end-product properties.

4.2.1. Weaving

Weaving produces textiles that need work before they are usable in an end-product. The benefit is
that there are more possibilities for integrating the active elements during the fabrication. As weaving
typically utilizes a two-yarn system, i.e., it has a separate warp and weft, this naturally supports the
use of different yarns. These can be varied, and even though looms require considerably more time
and effort to set up, they seem to provide a reliable base for building electronic systems. As weaving
is suitable for embedding electronic components into the textile during the weaving process, it also
allows the encapsulation of the components between different layers. The woven textile forms a
combination of thousands of threads in the warp and the weft. The warp has considerable tension,
and warp threads move up and down during the weaving process, according to the harnesses they are
connected to. The programmed pattern, which dictates how the threads connect within the weave,
is realized with the weft. These yarns move orthogonally to the warp, and have typically low tension,
with only the forces from the warp threads pressing against the weft.

For the case of developing e-fabric, conductive yarn or filament can be integrated as warp and
weft. It is also possible to insert conductive threads along with non-conductive warp and/or weft yarns.
Therefore, the pattern designs possible to produce a convention textile fabric could be used to produce
an entirely conductive fabric or a fabric with incorporated conductive threads or wires.

Mikkonen and Pouta developed a wire component suitable for direct integration into the textile
during weaving like a normal yarn and successfully demonstrated the weaving [92]. Gidik et al.
used weaving technology to develop a textile heat fluxmeter [124]. The textile fluxmeter was used
as a base to produce a textile radiative heat fluxmeter, i.e., to transform a textile heat fluxmeter
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to a textile radiative heat fluxmeter. Park et al. also used the weaving as a simple fabrication
procedure to develop a flexible single-strand fiber-based woven-structured triboelectric nano-generator
for self-powered electronics [125]. This device converts mechanical energy from living/working
environments into electrical energy. The schematic illustration of the fiber-based woven-structured
triboelectric nano-generator and its dependence of the output power on external load resistances is
shown in Figure 15.
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Figure 15. Schematic illustration of a fiber-based woven-structured triboelectric nano-generator (TENG)
and its dependence of the output power on external load resistances [125].

4.2.2. Knitting

Knitting is a continuous and efficient fabric manufacturing process. Apart from creating the
textile as a substrate, knitting allows the inclusion of active elements and conductive yarns during
the fabrication process, making them integral to the textile structure. As knitting costs relatively
less to fabricate than weaving for small samples, it is a good candidate for the rapid prototyping of
smart clothing and wearable textiles. In addition, the existing industrial knitting machines are also
already able to create entire and complete knitted ready-to-wear structures. Recent advancements in
conductive yarns and fabrication technologies offer exciting opportunities to design and knit seamless
garments equipped with sensors. For instance, Patron et al. used this technique to produce a wearable
antenna for wearable applications [126]. This knit antenna works as a strain sensor taking advantage
of the intensity variations of the backscattered power from an inductively-coupled radio-frequency
identification (RFID) tag under physical stretching. The actual image of the knit e-fabric and its return
loss as an antenna is shown in Figure 16.

A computerized flatbed knitting method was also used to fabricate elliptical waveguide [91]. It is
a conductive textile sleeve filled with knitted polyester inside. A silver-coated polyamide conducting
yarn was used. The same technique was also used to manufactured a microwave high impedance
surface from a combination of both conducting and insulating yarns [127]. The entire structure of the
high impedance surface—the conducting ground plane, spacer layer, conducting pattern top surface
and the vias—is knitted. Such a continuous development of an e-textile obviously has low cost and
is highly efficient in terms of manufacturing time. Fan et al. also used the knitting technique to
produce a machine washable textile-based triboelectric sensor array [128]. The sensor array exhibits
a fast response time and wide working frequency bandwidth up to 20 Hz and stays functional for
multiple machine washings. This textile-based sensor array was incorporated into a sweater as shown
in Figure 17 to monitor the arterial pulse waves and respiratory signals simultaneously. The knitted
triboelectric all-textile sensor array was also used to measure the cardiovascular pulse of different
age groups.
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Figure 16. (a) The knitted e-fabric; (b) return loss of the radio-frequency identification (RFID) tag
antenna for different distances [126].
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 Figure 17. (a) Schematic illustration of the combination of triboelectric all-textile sensor array
(TATSA): (b) photograph of two TATSAs completely and seamlessly stitched into a sweater; (c) output
characteristics of the TATSA after washing; (d) pulse waveforms of TATSAs for different ages [128].
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4.2.3. Embroidery

Embroidery is applying conductive yarns or filament fibers on a textile fabric or other materials
using a needle. It gives the flexibility to design and embroider traces of required shapes or contours on a
plane. Compared to other textile production technologies, such as knitting or weaving, embroidery is a
convenient alternative for complex and labor-intensive design and production processes. This technique
enables one to integrate additional conductive threads into a finished fabric or readymade garment.
Embroidery has been exploited to develop e-textiles. For instance, Moradi et al. embroidered an
e-textile metamaterial transmission line for a signal propagation control for wearable applications [129].
It was a fully-embroidered conductive thread transmission line loaded with conductive yarn split-ring
resonators on a felt fabric substrate.

Martinez-Estrada et al. also used the technique to embroider an interdigitated textile sensor
over a cotton substrate with silver-plated nylon yarns [130]. The result showed the usefulness of
the proposed sensors at the kHz range to develop a wearable application over textiles for moisture
detection as shown in Figure 18. Besides, Alharbi et al. introduced and validated a novel class of
origami dipole antennas fabricated via adaptive embroidery of conductive e-threads [131]. A shift in
resonant frequency from 760 to 1015 MHz was observed, while 84% of the original 10 dB bandwidth
was retained, which shows an excellent agreement against a copper-based equivalent dipole.
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Figure 18. (a) Embroidered capacitive sensor; (b) measured sensor impedance from 25% to 65% relative
humidity (RH) at different frequencies (T = 20 ◦C) [130] CC BY 4.0.

Embroidering has been also used to develop a textile-based sensor and antenna as shown in
Figure 19a,b, respectively. The technique seems very promising to produce an entire set smart textile as
the sensors, actuators, capacitors, energy harvesting devices and interconnections can be embroidered
step by step or one at a time.
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4.2.4. Braiding

Braided conductive fabrics can be made by interlacing conductive yarns or strips of fabric.
An entirely conductive braided fabric or partly conductive can be made. This technique produces
a wide range of structures. For example, Pragya et al. used the braiding technique to produce a
conductive yarn by introducing conductive copper filament as the core and polyester multifilament
yarn as the sheath. The resultant braided yarn was used to fabricate an e-heating fabric via interweaving.
The electro-mechanical tests on the braided conductive yarn and e-heating fabric revealed superior
tensile performance and heat trapping with increasing the number of ends [94]. The braided conductive
yarn and temperature variation around its immediate environment is shown in Figure 20. The braiding
process is quite adaptable, however, there are certain inherent limitations related to the process
itself, the input materials, geometry of the part, and the specific needs and standards for material
characteristics and uniformity [133].
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4.3. Integration of Conductive Sheets: Laminating

In this technique, a conductive sheet or stripe can be placed on textile fabrics by stacking and
laminating via welding, an adhesive, or through the use of heat or pressure. Therefore, this technique can
be used to produce e-fabric quickly. For instance, Vanveerdeghem et al. [134], Sorti and Company [135].
Choi et al. [136], etc., have reported e-textiles by conductive sheet lamination. As a specific example,
Wagih et al. also used the technique to develop a textile-based patch antenna based on coplanar
waveguide [137]. The efficiency of the coplanar waveguide monopole was independent of the thickness
of the substrate and type of fabric. The fabricated antenna and the performance of the coplanar
waveguide textile monopole are shown in Figure 21.
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5. Outlook and Future Prospects

As aforementioned, a lot of techniques can be used to develop an e-textile. However, the standard
textile production techniques may not be suitable to develop an e-textile of specific form. Weaving,
knitting, embroidery, and braiding methods are nevertheless suitable to produce an e-fabric, or maybe
a braided yarn in the case of braiding, by integrating a conductive yarn or filament fiber during the
fabrication or post-fabrication. Coating and electroless plating on the other hand are convenient to
produce all forms of e-textile by applying conductive polymers, inks, and their composites. However,
the electroplating can only be used for prior conductive textiles. The melt and solution spinning
method are suitable to produce e-fibers by adding conductive compounds or particles into the spinneret
during the production of manmade fibers. Electrospinning can be used to fabricate e-fibers or e-webs
on demand. The printing methods are convenient to produce an e-fabric. Lamination is suitable to
place conductive sheets on a textile fabric. Therefore, all the methods can be exploited to develop
required e-textile. However, the form of the textile, the form of the conductive material, the form of the
required final product determines which technique to use.

Apart from that, all the methods have their own pros and cons [138]. The electrospinning allows
the production of very thin fibers and webs with large surface area, however, it is problematic to obtain
3D structures or to control the pore structures. Wet spinning enables producing a wide variety of
conductive fiber cross-sectional shapes and sizes, but, the method needs post-processing to remove
impurities and solvents. Melt spinning has high production speed and is a simple process, but works
only with thermoplastic polymers. Coating and plating methods are possible on any form of textile
but they are slow and end with more waste. Weaving can obtain higher production rates but is more
unreliable since it may sometimes cause wrinkling of the textile material. Machine embroidering is
another successful technique to fabricate electronic circuits on textile substrates and garments, but it
offers high tension in the yarn and causes yarn fraying which may adversely affect the quality of
the circuit.

Functional electronic patterns can be easily laminated on to the textile substrate using suitable
polymer adhesives but the high dielectric loss factor caused by the adhesive may also deteriorate
the dielectric properties of the textile substrate, besides, delamination of the conductive film occurs
during bending which is not recommended for flexible electronics [53]. Knitting is a fast fabrication
method and can enable the fabrication of seamless stretchable e-fabrics but dimensional stability is
poor. Braiding can be used to produce e-yarns and/or fabric for technical textile applications but
results in a much heavier weight. Automatic screen printing enables to develop lightweight, flexible
and foldable e-fabrics but much higher initial setup cost. Transfer printing enables textile printing to
be carried out using simple and relatively inexpensive equipment with modest space requirements.
Moreover, it allows us to produce complex designs more easily and accurately on paper than on textiles.
Inkjet printing enables in-situ design and rapid printing of good quality complex designs but it needs
special formulation of inkjet inks which are quite expensive. Ink bleeding and blockage of the printer
nozzle is also a problem. In general, conventional textile manufacturing techniques are not sufficient
enough for the production of e-textiles. Therefore, there is a high demand for more modified and
improved integration techniques for electronic components on/into a textile structure. This needs a
comprehensive integration among textile, electrical, mechanical, and chemical experts.

Recently, researchers are demanding that fabricating prototypes or producing complex structures
can be done fast and at a low cost, but not many of the aforementioned fabrication techniques can offer
this. However, as is well known, 3D printing can be a very cost-effective solution; as reported by [139],
it can reduce lead times, improve the design, and/or lower the weight of the structure. Today, people
are coming up with new and exciting uses for 3D printers all the time. Here are just a few examples
that show what these machines can do. The airplane company Airbus is trying to figure out a way to
make a 3D printer that is as big as an airplane hangar [140]. Currently, 3D printers use designs made
on computers to make three-dimensional objects right before your eyes. For instance, Bellacicca et al.
produced all-printed monolithic functional devices with designed 3D geometry and embedding passive



Sensors 2020, 20, 6910 20 of 28

electrical components [141]. Kuang et al. developed a 3D-printed shape memory elastomer that has
potential application for biomedical devices, such as vascular repair devices, 3D printing of highly
stretchable, shape-memory, and self-healing elastomer toward novel 4D printing [142]. Agarwalaa, et al.
described the design, fabrication, and characterization of a microchannel-based strain sensor using
flexible material [143]. The work explores the use of 3D printing, to fabricate the sensor in an easy
and cost-effective way. It is shown that 3D printing can print complex designs with ease and fabricate
objects with embedded features. Microchannels with dimensions of 500-micrometer diameter are
printed within the sensor structure and filled with conductive silver nanoparticle ink. The printed
sensor can measure normal (orthogonal to channels) and in-plane (parallel to channels) tensile forces
and is tested using a custom-built test rig. Muth et al. also used 3D printing to develop a three-layer
strain and pressure sensor within highly stretchable elastomers [144]. A multi-component materials
system composed of ink, reservoir, and filler fluid were used to enable an e-3D printed strain and
pressure sensor. A carbon conductive grease, i.e., carbon black particles in silicone oil functional ink
was used to pattern the sensing elements. The actual image of the three-layer strain and pressure
sensor is shown in Figure 22.
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The concept of 4D printing may seem like something way beyond our time and factious, but
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Figure 22. (a) Photograph of a three-layer strain and pressure sensor in the unstrained state (left) and
stretched state (right). The top layer consists of a spiral pressure sensor, below which lies a two-layer
biaxial strain sensor that consists of two square meander patterns (20 × 20 mm) oriented perpendicular
to each other; (b) electrical resistance change as a function of elongation for sensors subjected to
cyclic deformation, in which each sensor is cycled 5 times to 100% strain at a crosshead speed of 2.96
mm/s [144].

3D printing technology can be used to print objects through the use of a lot of materials. However,
the objects have usually fixed geometrical structures, and are not helpful for multifunctional uses.
For these reasons, researchers are also working to realize 4D printing in which stimuli-responsive
active smart materials can be used to produce a 3D static structure [145]. The static structure is then
able to convert or reconfigure into another new structure in the presence of a stimulus. Light, heat, pH,
water, a magnetic field, or other means can be used as a stimulus based on the material chosen for the
3D printing. The concept behind 4D printing is what happens after the 3D printing is processed. A 4D
material is able to transform from static, 3D structures into other smart objects that can grow, change
shape, and move by themselves under a stimulus. Thus, 4D printing could be a promising approach to
develop dynamic structures for smart textiles. To cope up with 4D printing, it is important to know
about the chemistry and physics of smart materials and their behavior in-depth.

The concept of 4D printing may seem like something way beyond our time and factious, but
many labs around the globe are already thriving to the futuristic prospects of this impressive approach.
Most importantly, 4D printers do not exist as a separate or special functioning machine. Instead,
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the 3D printer is used to create the initial static object and include all the necessary 4D coding prior to
subjecting the object to the elements that encourage the shape to vary. One of the main advantages of
the concept of 4D is that you can create large 3D objects that would be too big to fit into an ordinary 3D
printer. In the 4D printing technique, it should be possible to develop a smaller object in its first form
which is then able to expand, bend, or fold-out into a larger object in its secondary form. 4D printing
can be used on lots of different types of materials than originally thought, also textiles. Therefore,
this approach could go to show that elements of science fiction are not too far away and lead to a new
explosion of types of intelligent textiles.

In general, the development of 2D and 3D structures in conventional textiles will continue for
integrated smart textiles, and 4D printing techniques will evolve further in the near future. Introducing
new and advanced integration techniques will obviously speed up the realization of self-powered and
computerized textiles; for example, to create smart clothing that makes soldiers invisible and invincible
on the battlefield. Chemical, material, electrical, material, textile, computer, software, and medical
experts should work in a team so that they can come up with efficient, effective, biocompatible,
and long-lasting conductive materials and introduce scientific designs and integration approaches
in/onto a textile structure, leading to a new generation of smart textile applications.

6. Conclusions

In this work, we have given a comprehensive review of the approaches of integrating electronic
components on/into the textile structure. The review revealed that there are no specific processes that
have been designed for smart textiles, instead, existing processes are being modified. It is convincible
that the goal of smart textile development can only be achieved by using appropriate and convenient
e-textile integration techniques. For that matter, all production technologies require further progress in
all aspects. Knitting, weaving, embroidery, braiding, and laminating are mostly used, but the flexibility
of the final product is unsatisfactory. Printing, plating, fiber spinning and coating methods are suitable
if the starting conductive materials are a compound or ink. However, there is a technological challenge
in printing thin conductive compounds on textile fabrics that have rough, uneven, or porous surfaces.
Printing the entire components of the smart textile layer-by-layer via 3D printing and realizing 4D
structures would lead to an evolution of completely new smart textile materials.

From a textile perspective, the overall aim for smart textiles is to convert all required components,
like sensors, actuators, transmission lines, etc., into 100% textile material. To achieve this aim, we must
tackle a big challenge from a technological point of view, that is, concepts, materials, and integration
techniques must be made appropriate for use in, on, or as textile materials. Hence, the focus should be
directed to improve the existing techniques and introducing new approaches that are able to cope with
the advancement of material science and electronics.
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