18,662 research outputs found

    Can maker-taker fees prevent algorithmic cooperation in market making?

    Full text link
    In a semi-realistic market simulator, independent reinforcement learning algorithms may facilitate market makers to maintain wide spreads even without communication. This unexpected outcome challenges the current antitrust law framework. We study the effectiveness of maker-taker fee models in preventing cooperation via algorithms. After modeling market making as a repeated general-sum game, we experimentally show that the relation between net transaction costs and maker rebates is not necessarily monotone. Besides an upper bound on taker fees, we may also need a lower bound on maker rebates to destabilize the cooperation. We also consider the taker-maker model and the effects of mid-price volatility, inventory risk, and the number of agents

    QLAMMP: A Q-Learning Agent for Optimizing Fees on Automated Market Making Protocols

    Full text link
    Automated Market Makers (AMMs) have cemented themselves as an integral part of the decentralized finance (DeFi) space. AMMs are a type of exchange that allows users to trade assets without the need for a centralized exchange. They form the foundation for numerous decentralized exchanges (DEXs), which help facilitate the quick and efficient exchange of on-chain tokens. All present-day popular DEXs are static protocols, with fixed parameters controlling the fee and the curvature - they suffer from invariance and cannot adapt to quickly changing market conditions. This characteristic may cause traders to stay away during high slippage conditions brought about by intractable market movements. We propose an RL framework to optimize the fees collected on an AMM protocol. In particular, we develop a Q-Learning Agent for Market Making Protocols (QLAMMP) that learns the optimal fee rates and leverage coefficients for a given AMM protocol and maximizes the expected fee collected under a range of different market conditions. We show that QLAMMP is consistently able to outperform its static counterparts under all the simulated test conditions

    Learning to Manipulate a Financial Benchmark

    Get PDF
    Financial benchmarks estimate market values or reference rates used in a wide variety of contexts, but are often calculated from data generated by parties who have incentives to manipulate these benchmarks. Since the London Interbank Offered Rate (LIBOR) scandal in 2011, market participants, scholars, and regulators have scrutinized financial benchmarks and the ability of traders to manipulate them. We study the impact on market welfare of manipulating transaction-based benchmarks in a simulated market environment. Our market consists of a single benchmark manipulator with external holdings dependent on the benchmark, and numerous background traders unaffected by the benchmark. We explore two types of manipulative trading strategies: zero-intelligence strategies and strategies generated by deep reinforcement learning. Background traders use zero-intelligence trading strategies. We find that the total surplus of all market participants who are trading increases with manipulation. However, the aggregated market surplus decreases for all trading agents, and the market surplus of the manipulator decreases, so the manipulator’s surplus from the benchmark significantly increases. This entails under natural assumptions that the market and any third parties invested in the opposite side of the benchmark from the manipulator are negatively impacted by this manipulation
    • …
    corecore