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Abstract

Financial benchmarks estimate market values or reference rates used in a wide va-
riety of contexts, but are often calculated from data generated by parties who have
incentives to manipulate these benchmarks. Since the London Interbank Offered Rate
(LIBOR) scandal in 2011, market participants, scholars, and regulators have scrutinized
financial benchmarks and the ability of traders to manipulate them. We study the im-
pact on market welfare of manipulating transaction-based benchmarks in a simulated
market environment. Our market consists of a single benchmark manipulator with
external holdings dependent on the benchmark, and numerous background traders un-
affected by the benchmark. We explore two types of manipulative trading strategies:
zero-intelligence strategies and strategies generated by deep reinforcement learning.
Background traders use zero-intelligence trading strategies. We find that the total sur-
plus of all market participants who are trading increases with manipulation. However,
the aggregated market surplus decreases for all trading agents, and the market surplus
of the manipulator decreases, so the manipulator’s surplus from the benchmark sig-
nificantly increases. This entails under natural assumptions that the market and any
third parties invested in the opposite side of the benchmark from the manipulator are
negatively impacted by this manipulation.

JEL Classification: C63; G17; G18.
Keywords: financial benchmark manipulation; algorithmic trading; agent-based modeling; deep

reinforcement learning
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1. Introduction

A financial market benchmark is a summary statistic over market variables, such as prices
of specified securities at designated times. Benchmarks are employed by market participants
for various purposes, including as reference measures for asset values (e.g., the S&P 500),
interest rates (LIBOR), and market volatility (VIX); to define derivative instruments; or as
price terms in contracts (Gellasch and Nagy, 2019). Benchmarks in the form of reference
measures can provide a concise reflection of market realities, thereby supporting decision
making in the real economy. As such, accurate benchmark prices constitute a positive
externality from functional financial markets (Bond et al., 2012). Their use in financial
instruments and contracts also serves a valuable function in commerce and risk management.

Given their role in market decisions and contracts, some entities may have stakes in bench-
mark values, and hence incentives to try to influence or manipulate them. For instance, the
London Interbank Offered Rate (LIBOR), an estimate of the rate at which banks can borrow
from each other, supports more than $300 trillion worth of loans around the world (McBride,
2016). Several major banks have been implicated in schemes to manipulate LIBOR in the
last decade, and criminal charges have been brought against over twenty individuals in the
U.S. and U.K. since 2015 (McBride, 2016). February 2018 saw accusations of manipulation
in the Chicago Board Options Exchange (CBOE) Volatility Index (VIX), a measure of U.S.
stock market volatility based on the cost of buying certain options (Banerji, 2018). LIBOR
has been particularly vulnerable to manipulation because it is calculated using self-reported
data provided by parties with conflicts of interest regarding the benchmark’s value (Duffie
and Dworczak, 2018; Gellasch and Nagy, 2019). In the wake of the LIBOR scandal, regu-
lators, academics, and market participants lobbied for a transaction-based replacement for
LIBOR, such as the Secured Overnight Finance Rate (SOFR) or the U.S. Dollar Intercon-
tinental Exchange (ICE) Bank Yield Index (Duffie and Dworczak, 2018; ICE Benchmark
Administration Limited, 2019). Whereas it may be harder to manipulate transaction-based
benchmarks, it is still possible, as in the alleged manipulation of the VIX in 2018 and the
World Markets/Reuters Closing Spot Rates (WM/R FX rates) in 2014 (Boyle, 2014).

Prior work has employed theoretical models and historical data to study benchmark ma-
nipulation in financial markets (Bariviera et al., 2016; Duffie and Dworczak, 2018; Duffie,
2018; Eisl et al., 2017; Rauch et al., 2013). Using a simulated market allows us to incorpo-
rate complex details of market microstructure, representing the actual mechanics of trade,
interactions among market participants, and the structure of the market. By combining
the agent-based model with game-theoretic reasoning, we can also consider the response of
strategic agents to the presence of a benchmark manipulator, and consider a wide range of
market settings, benchmark designs, and trading strategy options.

Our model employs a standard market mechanism organized around a limit order book
for a single security. We assume a benchmark defined by transaction prices in this market.
Trading agents may submit buy and sell orders, with orders executing immediately when
matched, otherwise resting in the order book pending execution against a subsequent order.
The market includes a manipulator agent, with external holdings of a contract tied to the
benchmark. The rest of the market comprises background agents who have private reasons
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to trade, and a market maker who seeks profit by connecting these traders across time.
We consider three types of manipulation strategies. The first is a simple hand-crafted

strategy, which extends the behavior of simple background traders by adjusting offers sys-
tematically in order to influence the benchmark in a certain direction. The other two types of
benchmark manipulator generate their trading strategies through deep reinforcement learn-
ing (DRL). The two types correspond to qualitatively different RL algorithms, called deep
Q-network (DQN) (Mnih et al., 2015) and deep deterministic policy gradient (DDPG) (Lil-
licrap et al., 2016). In both cases, the agent is not explicitly instructed to manipulate,
but rather learns a policy (mapping from market state to orders submitted) that effectively
achieves manipulation. These policies are derived through simulated experience with the
market model, given a reward function that credits the agent for its profits from the market
combined with profits from its contract holdings tied to the benchmark.

We determine the impact of benchmark manipulation by comparing market outcomes
with and without manipulation. These comparisons reflect strategic responses of the back-
ground traders to the presence or absence of the manipulator. We find across a variety
of settings that manipulation is profitable overall to the manipulators. The manipulation
activity itself is costly, in that the manipulator must sacrifice trading profit to move the
benchmark. The background traders actually benefit from the manipulation, as their ag-
gregate gains from trading increase. The external parties dependent on the opposite side
of the benchmark are the real losers from the manipulation, with their losses captured in
part by the manipulator and in part by the background agents whose trading is effectively
subsidized.

The key contributions of this paper are:

• A model of financial benchmark manipulation, instantiated in an agent-based simula-
tion environment.

• Trading strategies that effectively and profitably manipulate the benchmark in this
model, including techniques for automatically generating manipulation strategies using
deep reinforcement learning. We demonstrate successful learning to manipulate using
two qualitatively different RL algorithms, with and without the presence of market
makers.

• Analysis of the impact of benchmark manipulation on market efficiency and on the
welfare of respective participants, accounting for some variation in market structure
and strategic response.

This paper is organized as follows. Following a discussion of related work in the next sec-
tion, we describe the market environment in Section 3. Section 4 introduces the benchmark
manipulator and methods for learning to manipulate. Section 5 describes our experimental
design, and Section 6 presents the results and our analysis of the effect of benchmark manip-
ulation. As the ability to automatically generate manipulation strategies presents significant
new challenges for financial regulation, Section 7 provides commentary on how this study
can inform policy. We conclude in Section 8.
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2. Related Work

Mart́ınez-Miranda et al. (2016) studied market manipulation using a Markov decision model,
identifying conditions that are relatively favorable for manipulative strategies. Wang et al.
(2021) developed an agent-based model of market manipulation, demonstrating settings
where a spoofer can effectively influence market prices despite the presence of rationally
responding traders. The current work builds on this agent-based approach, employing a
similar market model extended to include a financial benchmark.

Mizuta (2020) showed that a genetic algorithm combined with agent-based simulation
can learn a sequence of actions that profits in a specified simulation scenario by influencing
the prices offered by other trading agents following a fixed market-sensitive strategy.

Significant attention has been paid to the potential of automating market manipulation
through misinformation campaigns, in social media and other forums. Yagemann et al.
(2021) study the potential for conductingmarket-based manipulation at scale, through botnet
hijacking of brokerage accounts. On the basis of SEC data and agent-based simulation, they
find that such attacks appear to be quite feasible.

The majority of prior research on benchmark manipulation is either theoretical or based
on analysis of historical market data. Duffie and Dworczak (2018) introduce a theoretical
model to analyze the robustness and bias of alternative benchmark constructions, and find
that volume-weighted average price (VWAP) is optimal among linear benchmarks. Duffie
(2018) also considers robustness to manipulation in design of an auction mechanism to
convert LIBOR-based contracts to employ the replacement SOFR benchmark.

Bariviera et al. (2016) and Eisl et al. (2017) use historical data to find instances of ma-
nipulation of interest-rate benchmarks and provide suggestions for more robust benchmarks
and regulation. Rauch et al. (2013) also use historical data to find instances of benchmark
manipulation in LIBOR and investigate which banks were potentially involved in the 2011
scandal. Griffin and Shams (2018) examine spikes at time of settlement as evidence for
possible manipulation of the VIX benchmark. Such findings have underscored concerns and
contributed to policy discussions around reforms of financial benchmarks (Duffie and Stein,
2015; Gellasch and Nagy, 2019; IOSCO, 2013; Verstein, 2015).

There exists a significant amount of prior work that focuses on the goal of developing
trading strategies using reinforcement learning (RL). Previous studies address this in agent-
based simulation and with historical data. Numerous simulation-based studies demonstrate
the learning of profitable trading studies from a discrete or continuous observation space
and an action space (Amrouni et al., 2021; Rummery and Niranjan, 1994; Schvartzman and
Wellman, 2009; Sherstov and Stone, 2004; Wright and Wellman, 2018). Likewise many have
demonstrated successful RL of trading strategies using historical data. Most employ DRL
with a discrete or continuous observation space and discrete action space (Deng et al., 2017;
Li et al., 2019; Moody et al., 1998; Nan et al., 2020; Nevmyvaka et al., 2006; Théate and
Ernst, 2020; Wu et al., 2020; Zhang et al., 2020), but some recent work considers continuous
observation and action spaces (Liu et al., 2020; Ponomarev et al., 2019; Wu et al., 2020;
Xiong et al., 2018; Yang et al., 2020). Not surprisingly, given the profit potential of any
advantage in trading strategy, advances in RL and DRL are quickly implemented in this
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domain. What is reported in public research is undoubtedly just the tip of an iceberg.

3. Market Environment

Our model comprises a single security traded through a limit order book, with a transaction-
based benchmark calculated at the end of the trading period. This model is implemented in
market-sim, a market simulation platform originally developed by Wah (2016) and employed
in many agent-based finance studies (Wright and Wellman, 2018; Wah et al., 2017; Wang
et al., 2021).

3.1. Benchmark

The benchmark we employ is volume-weighted average price (VWAP), which Duffie and
Dworczak (2018) showed should be hardest to manipulate among a class of transaction-
based benchmarks. As its name suggests, VWAP sums the prices weighted by quantity of
transactions. Suppose there are N transactions at quantity and price (qi, pi) over the trading
horizon T . Then VWAP is given by:

βT =

∑N
i=1 qipi∑N
i=1 qi

.

In our market scenario, agents submit only single-unit orders, thus the VWAP benchmark
becomes:

βT =

∑N
i=1 pi
N

.

3.2. Agents in the Market

The benchmark manipulator operates in a market populated by background agents employ-
ing the zero intelligence (ZI) trading strategy (Gode and Sunder, 1993) in a version described
by Brinkman (2018). ZI background traders arrive according to a Poisson process, and on
each arrival perceive the market state (current price quote, recent transaction prices, plus a
noisy observation of the fundamental),1 and submit a buy or sell order (decided by coin-flip)
for a single unit. The new order replaces its previous offer, if any, on the order book. The
price of the limit order at time t is set at the agent’s estimated valuation for the good,
v(t), offset by a requested surplus ζt. Valuation v(t) is the sum of the security’s common
fundamental value, and an agent-specific private value. Private values are vectors expressing
diminishing marginal value for units of the security, drawn i.i.d. from a specified distribution
for each agent at the start of the market. The requested surplus ζt is chosen for each order

1Trading based on a combination of market information and noisy fundamental information is a common
feature in agent-based finance studies (Bloembergen et al., 2015; Shearer et al., 2021). Trader attention to
market information is necessary for the possibility of spoofing (Wang et al., 2021), and may also provide a
channel facilitating benchmark manipulation.
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uniformly at random, from an interval whose endpoints are parameters of the ZI strategy.
The ZI agent employs one additional strategic parameter, η ∈ [0, 1], in deciding to submit
an executable order instead if it would be able to obtain at least fraction η of its requested
surplus from the current order book.

Some market instances also include amarket maker (MM), which follows the MM strategy
described by Wah et al. (2017).

4. Benchmark Manipulation Strategies

Like the background traders, the benchmark manipulator operates in the market by sub-
mitting single-unit limit orders to buy and sell the market security. Also like these traders,
the manipulator accrues profit from the market as the sum of trading cash flow and value
of terminal holdings, where this value in turn is the sum of common and private value ele-
ments. What distinguishes the manipulator is that it also obtains payoff based on holdings
of a contract tied to the benchmark. An example of a manipulator’s contract holdings may
be the stake they have in a publicly traded company the manipulator is trying to sell. If the
contract for the manipulator to sell the company is tied to the value of the stock, then the
manipulator may benefit by trying to buy shares in the stock market to increase the value of
the contract. The benchmark in this example is the trade price of the stock, and the contract
holdings is the coefficient of the benchmark to find the manipulator’s final payoff from the
contract. Specifically in our model, an agent with ψ units of contract holdings receives a
payment of ψβT when the market ends with final benchmark value βT .

Let V (t) denote the value of the agent’s market position at time t, defined as valuation
of current market holdings plus cash flow from transactions to that time. The total profit of
a benchmark manipulator B(t) is:

B(t) = V (t) + ψβt. (1)

If sign(ψ) is positive (negative), then the manipulator benefits from higher (lower) bench-
mark levels. By choosing higher or lower order prices than it would otherwise, it may be able
to influence the benchmark in the direction it would benefit. Doing so entails some loss of
profit in the securities market, but may be worthwhile if the gain in payment from contract
holdings is sufficient.

4.1. Zero Intelligence Manipulation

The first manipulation strategy we consider is ZIM, an adjusted version of the ZI strategy
that attempts to influence the benchmark. A standard ZI agent arriving at time t submits
orders priced at pZI(t) = v(t) ± ζt, where ζt is the requested surplus. A ZIM agent offsets
pZI(t) by sign(ψ)χ, where χ is a strategic parameter:

pZIM(t) = pZI(t) + sign(ψ)χ. (2)

This manipulator also employs the strategic parameter η ∈ [0, 1] to submit a marketable
order if the current quote is sufficiently favorable. However, there is a subtle difference in how
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η applies for ZIM compared to ZI. For a ZI agent, it is always the case that requested surplus
ζt ≥ 0. However, the offset requested surplus for a ZIM agent may be negative in some cases.
If the ZIM agent’s total requested surplus ζt± sign(ψ)χ < 0, then the manipulator is willing
to accept any portion of its requested surplus, rather than just a fraction it like the ZI agent.
If buying, the manipulator prices its order at the best available sell order ASKt rather than
pZIM(t) if:

ASKt ≤ v(t) + max
{
η
(
sign(ψ)χ− ζt

)
,
(
sign(ψ)χ− ζt

)}
.

If selling, it prices its order at the best available buy order BIDt rather than p
ZIM(t) if:

BIDt ≥ v(t) + min
{
η
(
sign(ψ)χ+ ζt

)
,
(
sign(ψ)χ+ ζt

)}
.

4.2. Manipulation with Deep Reinforcement Learning

We also develop manipulative strategies using DRL. We applied the DRL algorithms deep Q-
network (DQN) (Mnih et al., 2015) and deep deterministic policy gradient (DDPG) (Lillicrap
et al., 2016) to learn trading strategies that maximize combined payoff from the market and
benchmark. We refer to the trading strategies learned through DQN and DDPG as the DQN
agent and DDPG agent, respectively.

Deep Q-Network DQN is a model-free, off-policy value learning algorithm. Value learn-
ing is the task of inducing a function representing the value of relevant situations. DQN is
model-free as it does not incorporate explicit representations of the environment dynamics
in value learning. A policy defines the agent’s behavior and is a mapping from states to
actions. In the value-based approach, the learned policy is implicit in the learned value
function. DQN is off-policy as the learned policy may be unconnected from the policy used
to generate experiences. Off-policy learning is imperative in our context, as the interface
to market-sim does not permit updating the policy while the market is active. Thus all
training occurs between market runs.

DQN combines Q-learning and deep neural networks (DNNs) to learn Q-values in en-
vironments with rich sensory data. A Q-value is the estimated value of total discounted
reward for the remainder of an episode, for a given state-action pair (s, a). Suppose the
agent arrives to the market in state s and takes action a, leading to state s′ and producing
immediate reward ρ. We record the experience tuple (s, a, s′, ρ) to learn from and update
Q-values once the episode is complete. DQN uses a DNN to learn a hierarchical abstract
representation of a complex state space. This DNN estimates Q-values over a discrete action
space. DQN updates the DNN parameters θ using the stochastic gradient descent updating
rule:

∆θ = α
[
(ρ+ γmax

a′
Qθ(s

′, a′))−Qθ(s, a)
]
∇θQθ(s, a),

where Qθ(s, a) is the estimated Q-value given the current DNN parameters and state-action
pair, α is the learning rate, and γ is the discount factor.
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Deep Deterministic Policy Gradient DDPG is a model-free, off-policy actor-critic
algorithm. An actor-critic algorithm combines policy learning and value learning. Policy
learning tries to directly learn a policy function that maximizes the agent’s reward. The
actor maintains a parametrized policy function and the critic a value function, represented
as a DNN (like DQN). The actor is updated given the learned parameters from the critic θQ,
and by applying the chain rule to the expected return from the distribution J with respect
to the parameters of the actor θµ:

∆θµJ ≈ Est∼νπ
[
∆θµQ(s, a | θQ) |s=st,a=µ(st|θµ)

]
= Est∼νπ

[
∆aQ(s, a | θQ) |s=st,a=µ(st) ∆θµµ(s | θµ) |s=st

]
,

where νπ is the discounted state visitation distribution for a stochastic behavior policy π.
The actor learns a distribution over the action space, which is mapped to a continuous action
space. Noise N is added to the actor’s policy for exploration:

µ′(st) = µ(st | θµt ) +N .

State Space The benchmark manipulator’s state space includes all the agent’s private
information. This includes its private valuation of the traded security, contract holdings,
and current holdings of the security. We also include the side of the current order (buy or
sell).

The agent’s state space also includes publicly available information in the market, such
as the remaining time in the trading period and time since the last trade. We also include
features from the market’s order book, such as size, spread, and currently listed order prices.
The state must be a constant size, but the order book is dynamic throughout the trading
period. We address this problem by specifying a limited fixed-size depth of book. We pad
or truncate the fixed-depth order book as necessary. For padding, we set prices at estimated
final fundamental, plus or minus three standard deviations of the observation noise.

We also include the omega ratio, a metric that determines the favorability of submitting
an order. Lastly, we include the number of transactions and their prices. We pad or truncate
the transaction price history as necessary to fit the fixed length, similar to our handling of
the order book.

Appendix A provides a table of detailed descriptions of the features included in the
agent’s state space.

Action Space The benchmark manipulator’s learned policy selects the price of the order
to submit. Upon each arrival, the manipulator perceives the observable state and submits
an order. It determines whether to buy or sell by flipping a coin, then submits a single-unit
orders for the selected side. There is no option to refrain from submitting an order, but
the same effect can be achieved by submitting a noncompetitive orders, far from the current
price quotes.

For the DQN agent, the action space is a discrete set of ZIM strategies, each defined by
a setting of the ZI parameters plus the offset parameter χ. The set of such ZIM strategies to
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choose from is specified by the agent designer. On each market arrival, the agent observes
state s and evaluates the available actions using the DNN representation of the Q-function.
The optimal action a∗ = argmaxaQθ(s, a)—one of the available ZIM strategies—is selected,
and applied to the current market state to generate an order for the market.

When the benchmark manipulator uses a policy learned through DDPG to select an
action, it directly selects a value A ∈ [0, 1]. Our agent then maps this action to a price at
time t:

pDDPG
t = r̂t +

(
C − sign(ψ)χ

)
A, (3)

Where C is some constant treated as a hyperparameter during training, sign(ψ) is the
direction of the agent’s contract holdings, and χ is an offset parameter. This mapping
function is very similar to (2), though rather than randomly selecting a requested profit
from a uniform distribution, the agent learns the requested profit directly. After the agent
calculates the price, it submits its order containing the price, side, and size.

Reward Function The benchmark manipulator designs its reward function to maximize
its profit B from both the market and benchmark (1). We define the agent’s reward for the
action taken at time t as the difference between the total profit at its next arrival at time t′

and the total profit at time t:
ρt = B(t′)−B(t).

We capture the total realized profit from the agent’s action at time t by calculating the
reward as the difference between the total profit at the next arrival and current arrival. This
reward cannot be immediately calculated, since the order placed at time t can match with
another anytime between t and t′ (it is replaced by a new order at t′). Thus, we wait until
t′ to calculate the reward for the action at time t.

At the end of the market at time T , the summation of the rewards is equivalent to the
manipulator’s final payoff: market and benchmark:

B(T ) =
∑
t∈Arr

ρt, where Arr denotes the agent’s market arrivals.

5. Experiments

We test the efficacy and implications of benchmark manipulation strategies through agent-
based simulation, employing a simplified form of empirical game-theoretic analysis (EGTA)
(Tuyls et al., 2020; Wellman, 2016) to identify approximate equilibria among the available
strategies. The first question is to what extent agents employing benchmark manipulation
strategies—hand-crafted or learned—can influence the benchmark to enhance profit. The
second is what are the ramifications for market performance and agent welfare. We evalu-
ate these questions in multiple market environments, employing a variety of strategies for
the background agents and benchmark manipulator. In each case, we find the combina-
tion of strategies that background traders play in equilibrium in the presence or absence of
manipulation. We then evaluate the outcomes in each case, from the perspectives of the
manipulator, background agents, and aggregate market.
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Table 1: Strategies employed by the background traders (ZI).

Strategy Rmin Rmax η

ZI1 0 450 0.5
ZI2 0 600 0.5
ZI3 90 110 0.5
ZI4 140 210 0.5
ZI5 190 210 0.5
ZI6 280 380 0.5
ZI7 380 420 0.5
ZI8 380 420 1.0
ZI9 460 540 0.5
ZI10 950 1050 0.5

5.1. Market Environment Settings

Our test environments have fifteen background agents and one benchmark manipulator.
The market settings are the same as employed by Wright and Wellman (2018). The market
fundamental time series has mean r̄ = 105, mean reversion κ = 0.01, and market shock
variance σs = 2 × 104. The maximum number of units all agents can hold at any time is
qmax = 10. Lastly, the private value variance is σ2

PV = 2 × 107. The finite time horizon of
the market is T = 2, 000 time steps. The background agents and manipulator arrive to the
market according to a Poisson distribution with rate λa = 0.012.

We consider instances of this market with and without a market maker. If the MM is
present, its arrival rate is λmm = 0.05. The market maker submits 100 buy orders and 100
sell orders at each market arrival. The spread the market maker uses is 1024 and each order
is spaced by 100. The market maker is not considered a player in the market game as its
parameters are fixed.

Table 1 specifies the strategies used by the background traders, which are the same as
those employed by Wright and Wellman (2018). We use the pure-strategy equilibrium among
background traders found by these authors as the baseline no-manipulation case.

In each environment the benchmark manipulator is assigned contract holdings ψ = 40.
The ZIM agent chooses between the ZI7 and ZI8 strategies with possible offsets χ ∈
{0, 250, 500, 750}. Selecting χ = 0 is tantamount to not manipulating. We also examine
environments where the manipulator learns trading strategies with DQN or DDPG, using
the methods described in Section 4.2. Appendix B presents the hyperparameters selected
for DQN and DDPG.

5.2. Simplified EGTA Process

We model the market as a role-symmetric game and partition the agents into two roles:
background traders and a single benchmark manipulator. Starting with the baseline no-
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manipulation equilibrium identified by Wright and Wellman (2018), we replace one of the
background traders with a manipulator: implemented as a ZIM, DQN, or DDPG agent. For
the ZIM agent, we try each ZIM candidate against the baseline equilibrium and select the
most profitable. For the DRL (DQN or DDPG) agents, we likewise train in the context of
this baseline.

Once the benchmark manipulation strategy is selected, it is likely that the background
traders are no longer in equilibrium. Therefore, we test single-player strategy deviations of
the background traders, holding the manipulator strategy fixed. If there is a beneficial single-
player deviation, we test a variety of mixed strategies containing the original equilibrium
strategy and the strategy of the best deviation s2. If the original equilibrated strategy is
a pure strategy s1 then this mixed strategy exploration may include the mixture Pr(s1) =
Pr(s2) = 0.5. If the background traders deviated to an alternative strategy, we repeat the
manipulator strategy optimization (enumerated selection for ZIM, or retraining for the DRL
agents). We then repeat the process with another single-player deviation for background
traders. If the original equilibrium strategy was pure, the background agents now explore
deviating to mixed strategies distributed over three strategies. If the background traders
again deviated to another strategy profile, we once again repeat the manipulator strategy
optimization. A detailed description of the strategy profiles chosen during this process are
presented in Appendix C.

6. Results

We analyze the performance of ZI, ZIM, DQN, and DDPG manipulators. Environment A is
the market environment where the background agents are equilibrated for no manipulation in
a pure strategy equilibrium found by Wright and Wellman (2018). Environment B refers to
the market environment where the background agents are calibrated to the ZIM manipulator
using the single-player deviation method. Environment C denotes the market environment
where the background agents are calibrated to the DQN manipulator using the single-player
deviation method. We include the label “ZI” to signify the case when the agent does not
manipulate. We study the welfare impacts of the three manipulators by examining agent
and aggregate market payoffs. Specifically, we calculate the market profit and total profit
of the benchmark manipulator where total profit aggregates the profit from market trading
(i.e., market profit) and profit from the benchmark holdings. We also find the profit of the
background traders. The total profit and market profit are the same for the background
traders because they are indifferent to the final benchmark calculation. Lastly, we study
the aggregate market profit and aggregate total profit. The aggregate market profit is the
summation of the background traders’ profit and the benchmark manipulator’s market profit.
The aggregate total profit of the system, which we define as the summation of the background
traders’ profit and the benchmark manipulator’s the total profit. If a MM is present, then
its profit is also included in the aggregate total and market profits.

Fig. 1 depicts the total profit and market profit of the benchmark manipulator, respec-
tively. In most cases, the total profit of the benchmark manipulator increases when it
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(a) MM present.

(b) No MM present.

Fig. 1. Profit of the manipulator. In both figures, the x-axis represents which strategy the
manipulator uses and in which environment. Each point shows the average payoff of the
manipulator with standard error bars.
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(a) MM present.

(b) No MM present.

Fig. 2. The aggregate total profit of the fifteen background agents deploying a ZI strategy.
The total and market profit is the same for background agents. The x-axis represents which
strategy the manipulator uses and in which environment. Each point shows the average
aggregate background trader payoff with standard error bars.
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(a) MM present.

(b) No MM present.

Fig. 3. Aggregate total and market profit of all agents. In both figures, the x-axis represents
which strategy the manipulator uses and in which environment. Each point shows the average
aggregate payoff with standard error bars.
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(a) MM present.

(b) No MM present.

Fig. 4. The VWAP benchmark under different manipulation strategies and environments.
Each point shows the average VWAP with standard error bars.
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manipulates the benchmark. When a MM is present, the ZIM agent and DQN agent in
B and C increased their average total profit from the non-manipulative case, but not by a
significant amount. These manipulators’ market profit decreases from the non-manipulative
case. It is worthwhile for the successful manipulator to endure the decrease in market profit
because its profits from the change in benchmark more than cover the loss. Also when a
MM is present, the DQN agent in Environment A and DDPG agent successfully increases
its total profit and is the only strategy to do so by a significant amount compared to the
non-manipulative agent. When a MM is not present all of the manipulators significantly
increase their total profit and decrease their market profit. It is easier for the manipulator
to increase its total profit when there is no MM because it does not need to trade through
the MM’s many orders in the book to change the price.

Fig. 2 shows the profit of the background agents. The background agents benefit from
benchmark manipulation as the average payoff of the background agents increases for each
manipulative agent compared to the non-manipulative agent. The background agents are
significantly better off when there is no MM; this is likely because the manipulator trades with
the background agents more in that case. The manipulator’s orders are priced to influence
the benchmark, which tends to divorce them from market values and in many cases make
them more attractive to background traders. The poorly priced orders lead to an increased
number of trades. Background traders benefit from the manipulative activity, both from the
increase in profitable trades, and from the opportunity to demand higher surplus on orders
that would have traded anyway.

Fig. 3 shows the aggregate total profit and aggregate market profit, respectively. The
aggregated total profit, which we find by summing the total profit of the benchmark ma-
nipulator and background traders. The aggregate total profit increases with benchmark
manipulation. The aggregated market profit we find by summing the market profit of the
benchmark manipulator and background traders. The aggregate market payoff decreases
with market manipulation. The market becomes less efficient when the manipulator is more
successful. Benchmark manipulation impacts the benchmark enough that the manipulator’s
gain from the benchmark exceeds its losses from trading in the market. The background
traders gain at most the manipulator’s loss from the market, but the manipulator’s resulting
gain from the external contract exceeds that of the background traders. Therefore, the coun-
terparty to the manipulator in the benchmark contract loses precisely what the benchmark
manipulator gains from the benchmark contract.

Fig. 4 depicts the VWAP benchmark in each market environment. The benchmark
increases by a significant amount when there is manipulation compared to when there is no
manipulation. The benchmark increases more when there is no MM present, though the
manipulator is still able to successfully influence the benchmark in both cases. Therefore,
the manipulator is able to successfully shift the benchmark in the direction of its contract
holdings.
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7. Policy Analysis

Following the LIBOR scandal, regulators investigated other benchmarks that had allegedly
been manipulated and imposed some of the largest penalties ever paid by financial institu-
tions. Given the important role of benchmarks as financial infrastructure, regulators also
turned to potential policy measures to avoid manipulation. The International Organization
of Securities Commissions published its Principles for Financial Benchmarks IOSCO (2013)
and the European Union adopted its Benchmarks Regulation. Both documents stress the
governance obligations of benchmark administrators, the quality of benchmark data, and
most relevantly, robust methodological design of benchmarks. Nonetheless, regulators have
neither suggested, nor mandated benchmark design features at a microstructure level of
granularity. International regulators’ interest in developing best practices for benchmark
methodology means there should be substantial interest in results along the lines developed
here.

The role of regulation is also important because we should expect markets to fail to
produce optimal benchmarks themselves. In general, index providers do not operate in fully
competitive markets or internalize the full costs and benefits of the indices they produce.
There are several reasons for this fact. First, indices are subject to network effects that can
cause them to gain a significant degree of lock-in, giving the index provider market power.
Second, many widely used benchmarks are produced as a side-effect of other financial activity
and do not provide their administrators with a robust revenue stream, notwithstanding
that the benchmark can have significant effects on the welfare of counterparties Rauterberg
and Verstein (2013). To illustrate, LIBOR originally arose to serve as a reference rate for
banks’ own lending activities, but came to play a pivotal role in the enormous interest rate
derivatives market, without generating any direct revenue for the LIBOR panel banks. As a
result of these forces, administrators’ private incentives to ensure optimal benchmark design
are frequently weaker than what would be socially desirable.

8. Conclusion

We analyze the effectiveness and impact of financial benchmark manipulation, in a simulated
market with a single traded security. The manipulator’s objective is to shift the benchmark
up or down, in order to profit from holdings of a contract tied to the benchmark. The
benchmark is transaction-based (VWAP in this study), so potentially influenced by market
actions. These actions are costly in that they entail reduced profits or even losses in the
primary market. We design and implement three types of benchmark manipulator: one
simple hand-crafted strategy, and two derived using deep reinforcement learning.

We find that all three strategies succeed in profitable benchmark manipulation. Presence
of a market maker makes manipulation more difficult, and reduces but does not eliminate
the manipulative effect. With or without MM, the manipulative activity increases profits of
background traders, who thus have no incentives to help mitigate this type of manipulation.
Though the aggregate total profit of the market participants increases when the benchmark is
manipulated, the aggregate market profit decreases. As the profit of all market participants
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increases, it is the non-market counterparties to the benchmark contracts who bear the
burden of the manipulation costs. All of these results hold consistently across a range of
experimental market environments.

The DRL agents (DQN and DDPG) effectively learn to manipulate, even though they
are not given direct instructions to manipulate, or objectives with explicit reference to ma-
nipulation. The manipulative strategies emerge naturally from the selection of standard
market actions to maximize profits. This learning takes place in an environment of other
rationally derived trading strategies, and subjected to adjustment based on presence of the
manipulator. To our knowledge, this is the first such demonstration of automated learning
of market manipulation strategies.

The apparent ease of learning to manipulate presents serious challenges for financial
market regulation. Current manipulation law in the US stock market requires establishment
of intent to manipulate, which is arguably not present in this scenario. Given the growing
accessibility of DRL technique, it may be worth revisiting these laws to address what might
be a seen as a “machine learning loophole” for manipulation (Azzutti et al., 2021).

This study is limited in considering only one particular benchmark, VWAP. Although
prior work suggests VWAP is especially robust to market-based manipulation (Duffie and
Dworczak, 2018), it may be worthwhile to explore a broader variety of benchmark contexts,
including those that employ more complex calculations or are derived from market activity
in a qualitatively different way.

Another limitation is that we explore only a short sequence of single-player deviations,
rather than using full-blown EGTA to find equilibria. Following a standard iterative EGTA
approach like PSRO (Lanctot et al., 2017), we would start from small initial strategy sets
for background agents and manipulator, and estimate an empirical game model by simu-
lating combinations of strategies from these sets. At each iteration we extend the sets by
computing a best-response to a solution of the current game model. For DRL manipulation,
the best response is exactly how we perform strategy generation in this study, training the
manipulator against a fixed profile of background traders. We could similarly generate ZI or
ZIM agents through a best-response search to expand those sets.

In our current study, we observe that even short sequence of responses produces a rela-
tively stable strategic configuration. We thus consider our results sufficient to demonstrate
the essential feasibility of learning to manipulate a transaction-based benchmark, and to
support our basic evaluation of the impact of benchmark manipulation on the market.
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Appendix A. Table of the Benchmark Manipulator’s

State Space

Table 2: Description of each state space feature utilized by our DQN and DDPG manipula-
tors.

Feature Description

Private bid The private value of the next unit bought.

Private ask The private value of the next unit sold.

Market holdings The agent’s current holdings of the traded asset.
(If > 0, then bought more units than sold, and
if < 0, then sold more units than bought.)

Contract holdings The agent’s holdings from an external contract
whose valuation depends on this market.
(Multiplied by the direction the agent is more
profitable in, i.e. if the agent is better off if the
valuation goes up, then this value is positive. If
it’s better off if the valuation goes down, this
value is positive.)

Side If the agent will submit a buy or sell order
(currently all agents flip a coin in market-sim to
determine the side).

Final fundamental estimate An estimate of the final fundamental. (A noisy
observation of the mean reverting time series
representing the fundamental value of the traded
asset.)

Time until end The number of time steps remaining in the
trading period.

Bid omega ratio Estimates the “favorability” of submitting a buy
order at the current time. Ratio of (recent trade
prices) higher than (the agent’s estimated value of
the asset) to (recent trade prices) lower than (the
agent’s estimated value of the asset). Only
considers the last X trades.
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Table 2: Description of each state space feature utilized by our DQN and DDPG manipula-
tors.

Feature Description

Ask omega ratio Estimates the “favorability” of submitting a sell
order at the current time. Ratio of (recent trade
prices) higher than (the agent’s estimated value of
the asset) to (recent trade prices) lower than (the
agent’s estimated value of the asset). Only
considers the last X trades.

Bid size Depth of book, bid. The number of active buy
orders in the market.

Ask size Depth of book, ask. The number of active sell
orders in the market.

Spread The difference in price between the best available
ask and the best available bid in the book.
min (sell price)−max (buy price)

Bid vector An ordered, padded vector of the difference
between the price of all active buy orders and the
estimated value. Organized in ascending order by
price, then time, i.e. the highest-priced bid is the
last element, and if two orders have the same
price, then the order that arrived first has the
higher index. If there are fewer active buy orders
than the length of the vector, then it is padded
with very low bid prices.

Ask vector An ordered, padded vector of the difference
between the estimated value and the price of all
active sell orders. Organized in descending order by
price, then time, i.e. the lowest-priced ask is the
first element, and if two orders have the same
price, then the order that arrived first has the
lower index. If there are fewer active sell orders
than the length of the vector, then it is padded
with very high sell prices.

Number of transactions The current number of trades that have occurred
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Table 2: Description of each state space feature utilized by our DQN and DDPG manipula-
tors.

Feature Description

in the market.

Transaction history A padded ordered list of the difference between
the estimated value and the price trades.
Organized in descending order by time, i.e. the
most recent trade is the first element. If there are
fewer trades than the length of the vector, then it
is padded with zeros.

Appendix B. Deep Reinforcement Learning Hyperpa-

rameters

Tables 3–6 list the hyperparameters used to train our DQN and DDPG agents when MMs
are present and when MMs are not present.

Table 3: The hyperparameters of DQN when a MM is present.

Hyperparameter Value

Number of episodes 2,500
Batch size 1,024
Replay capacity 20,000
Minimum replay size 2,500
Number of gradient steps per update 5
Target updated period 30
Polyak update True
Error clipping 100.0
Size of network 26
Learning rate 1e-6
Exploration schedule Constant = 0.2
Reward clipping 100
Omega depth 5
Length of bid vector 5
Length of ask vector 5
Length of transaction vector 5
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Table 4: The hyperparameters of DDPG when a MM is present.

Hyperparameter Value

Number of episodes 70,000
Batch size 512
Replay capacity 20,000
Minimum replay size 10,000
Number of gradient steps per update 10
Target updated period 30
Target network weight 0.005
Discount factor 0.99
Error clipping 1.0
Reward clipping 10,000
Size of network 128
Learning rate 3e-5
Exploration noise 0.1
Action coefficient C 1,050
Benchmark impact χ 500
Omega depth 5
Length of bid vector 5
Length of ask vector 5
Length of transaction vector 5
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Table 5: The hyperparameters of DQN when a MM is not present.

Hyperparameter Value

Number of episodes 2,500
Batch size 1,024
Replay capacity 20,000
Minimum replay size 2,500
Number of gradient steps per update 5
Target updated period 30
Polyak update False
Error clipping False
Size of network 26
Learning rate 1e-5
Exploration schedule Constant = 0.2
Reward clipping False
Omega depth 5
Length of bid vector 5
Length of ask vector 5
Length of transaction vector 5

26

Electronic copy available at: https://ssrn.com/abstract=4219227
27

Shearer et al.:

Published by University of Michigan Law School Scholarship Repository, 2022



Table 6: The hyperparameters of DDPG when a MM is not present.

Hyperparameter Value

Number of episodes 110,000
Batch size 1,024
Replay capacity 20,000
Minimum replay size 2,500
Number of gradient steps per update 10
Target updated period 30
Target network weight 0.005
Discount factor 0.99
Error clipping 1.0
Reward clipping 40,000
Size of network 64
Learning rate 3e-5
Exploration noise 0.3
Action coefficient C 1,050
Benchmark impact χ 1,250
Omega depth 5
Length of bid vector 5
Length of ask vector 5
Length of transaction vector 5
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Appendix C. Equilibria and Deviations in Benchmark

Manipulation Games

Tables 7–15 show the strategy deviations from the equilibrated game generated by Wright
and Wellman (2018).

Table 7: Environment B with a ZIM manipulator. Benchmark manipulator deviation.

Payoff
Benchmark Manipulator

ZIM1 ZIM2 ZIM3 ZIM4 ZIM5 ZIM6 ZIM7 ZIM8

1084.79 1 0 0 0 0 0 0 0
1274.31 0 1 0 0 0 0 0 0
1288.53 0 0 1 0 0 0 0 0
1191.94 0 0 0 1 0 0 0 0
1106.50 0 0 0 0 1 0 0 0
1228.72 0 0 0 0 0 1 0 0
1310.98 0 0 0 0 0 0 1 0
1188.44 0 0 0 0 0 0 0 1

Table 8: Environment B with a ZIM manipulator. Single player deviation.

Payoff
Background

ZI1 ZI2 ZI3 ZI4 ZI5 ZI6 ZI7 ZI8 ZI9 ZI10

1057.98 1 0 0 0 0 0 14 0 0 0
1053.16 0 1 0 0 0 0 14 0 0 0
1061.28 0 0 1 0 0 0 14 0 0 0
1053.04 0 0 0 1 0 0 14 0 0 0
1071.51 0 0 0 0 1 0 14 0 0 0
1061.73 0 0 0 0 0 1 14 0 0 0
1058.02 0 0 0 0 0 0 15 0 0 0
1055.22 0 0 0 0 0 0 14 1 0 0
1054.44 0 0 0 0 0 0 14 0 1 0
1059.99 0 0 0 0 0 0 14 0 0 1
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Table 9: Environment B with a ZIM manipulator. Mixed player deviation.

Payoff
Background

ZI1 ZI2 ZI3 ZI4 ZI5 ZI6 ZI7 ZI8 ZI9 ZI10

1055.32 0 0 0 0 12 0 3 0 0 0
1046.07 0 0 0 0 10 0 5 0 0 0
1043.70 0 0 0 0 8 0 7 0 0 0
1051.70 0 0 0 0 7 0 8 0 0 0
1049.55 0 0 0 0 5 0 10 0 0 0
154.03 0 0 0 0 3 0 12 0 0 0
1071.51 0 0 0 0 1 0 14 0 0 0

Table 10: Environment B with a ZIM manipulator. Benchmark manipulator deviation.

Payoff
Benchmark Manipulator

ZIM1 ZIM2 ZIM3 ZIM4 ZIM5 ZIM6 ZIM7 ZIM8

1030.30 1 0 0 0 0 0 0 0
1179.88 0 1 0 0 0 0 0 0
1302.12 0 0 1 0 0 0 0 0
1065.72 0 0 0 1 0 0 0 0
1065.54 0 0 0 0 1 0 0 0
1275.00 0 0 0 0 0 1 0 0
1191.44 0 0 0 0 0 0 1 0
1222.44 0 0 0 0 0 0 0 1

Table 11: Environment B with a ZIM manipulator. Second single player deviation.

Payoff
Background

ZI1 ZI2 ZI3 ZI4 ZI5 ZI6 ZI7 ZI8 ZI9 ZI10

1049.47 1 0 0 0 1 0 13 0 0 0
1050.23 0 1 0 0 1 0 13 0 0 0
1055.74 0 0 1 0 1 0 13 0 0 0
1057.71 0 0 0 1 1 0 13 0 0 0
1061.30 0 0 0 0 2 0 13 0 0 0
1066.48 0 0 0 0 1 1 13 0 0 0
1062.47 0 0 0 0 1 0 14 0 0 0
1058.84 0 0 0 0 1 0 13 1 0 0
1053.99 0 0 0 0 1 0 13 0 1 0
1054.64 0 0 0 0 1 0 13 0 0 1
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Table 12: Environment B with a ZIM manipulator. Three strategy mixed player deviation.

Payoff
Background

ZI1 ZI2 ZI3 ZI4 ZI5 ZI6 ZI7 ZI8 ZI9 ZI10

1048.60 0 0 0 0 5 5 5 0 0 0
1057.09 0 0 0 0 1 4 10 0 0 0
1048.97 0 0 0 0 4 1 10 0 0 0
1052.14 0 0 0 0 1 2 12 0 0 0
1049.40 0 0 0 0 2 1 12 0 0 0
1066.48 0 0 0 0 1 1 13 0 0 0

Table 13: Environment B with a ZIM manipulator. Benchmark manipulator deviation.

Payoff
Benchmark Manipulator

ZIM1 ZIM2 ZIM3 ZIM4 ZIM5 ZIM6 ZIM7 ZIM8

1096.57 1 0 0 0 0 0 0 0
1235.81 0 1 0 0 0 0 0 0
1330.30 0 0 1 0 0 0 0 0
1212.72 0 0 0 1 0 0 0 0
1120.04 0 0 0 0 1 0 0 0
1117.93 0 0 0 0 0 1 0 0
1225.45 0 0 0 0 0 0 1 0
1132.41 0 0 0 0 0 0 0 1

Table 14: Environment B with a DQN manipulator. Single player deviation.

Payoff
Background

ZI1 ZI2 ZI3 ZI4 ZI5 ZI6 ZI7 ZI8 ZI9 ZI10

1055.01 1 0 0 0 0 0 14 0 0 0
1064.48 0 1 0 0 0 0 14 0 0 0
1053.80 0 0 1 0 0 0 14 0 0 0
1053.39 0 0 0 1 0 0 14 0 0 0
1053.09 0 0 0 0 1 0 14 0 0 0
1059.18 0 0 0 0 0 1 14 0 0 0
1053.44 0 0 0 0 0 0 15 0 0 0
1064.49 0 0 0 0 0 0 14 1 0 0
1064.99 0 0 0 0 0 0 14 0 1 0
1051.96 0 0 0 0 0 0 14 0 0 1
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Table 15: Environment B with a DQN manipulator. Mixed player deviation.

Payoff
Background

ZI1 ZI2 ZI3 ZI4 ZI5 ZI6 ZI7 ZI8 ZI9 ZI10

1058.95 0 0 0 0 0 0 3 0 12 0
1042.39 0 0 0 0 0 0 5 0 10 0
1061.90 0 0 0 0 0 0 7 0 8 0
1054.41 0 0 0 0 0 0 8 0 7 0
1054.43 0 0 0 0 0 0 10 0 5 0
1054.01 0 0 0 0 0 0 12 0 3 0
1064.99 0 0 0 0 0 0 14 0 1 0
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