119 research outputs found

    Achieving Frequency Reuse 1 in WiMAX Networks with Beamforming

    Get PDF
    In this chapter, we examine the performance of adaptive beamforming in connection with three different subcarrier permutation schemes (PUSC, FUSC and AMC) in WiMAX cellularnetwork with frequency reuse 1. Performance is evaluated in terms of radio quality parameters and system throughput. We show that organization of pilot subcarriers in PUSC Majorgroups has a pronounced effect on system performance while considering adaptive beamforming. Adaptive beamforming per PUSC group offers full resource utilization without need of coordination among base stations. Though FUSC is also a type of distributed subcarrier permutation, its performance in terms of outage probability is somewhat less than that of PUSC. We also show that because of lack of diversity, adjacent subcarrier permutation AMC has theleast performance as far as outage probability is concerned. Results in this chapter are based on Monte Carlo simulations performed in downlink.</p

    Mobile WiMAX: impact of mobility on the performance of limited feedback linear precoding

    Get PDF

    WIMAX LINK PERFORMANCE ANALYSIS FOR WIRELESS AUTOMATION APPLICATIONS

    Get PDF
    Wireless broadband access technologies are rapidly growing and a corresponding growth in the demand of its applicability transcends faster internet access, high speed file download and different multimedia applications such as voice calls, video streaming, teleconferencing etc, to industrial operations and automation. Industrial and automation systems perform operations that requires the transmission of real time information from one end to another through high-performance wireless broadband communication links. WiMAX, based on IEEE 802.16 standard is one of the wireless broadband access technologies that has overcome location, speed, and access limitations of the traditional Digital Subscriber Line and Wireless Fidelity, and offers high efficient data rates. This thesis presents detailed analysis of operational WiMAX link performance parameters such as throughput, latency, jitter, and packet loss for suitable applicability in wireless automation applications. The theoretical background of components and functionalities of WiMAX physical and MAC layers as well as the network performance features are presented. The equipment deployed for this field experiment are Alvarion BreeZeMAX 3000 fixed WiMAX equipment operating in the 3.5 GHz licensed band with channel bandwidth of 3.5 MHz. The deployed equipment consisting of MBSE and CPE are installed and commissioned prior to field tests. Several measurements are made in three link quality scenarios (sufficient, good and excellent) in the University of Vaasa campus. Observations and results obtained are discussed and analyzed.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    A Technical and Market study for WiMAX

    Get PDF
    Worldwide Interoperability for Microwave Access (WiMAX) is a broadband wireless technology based on IEEE 802.16-2004 and IEEE 802.16e-2005. This thesis is a study of WiMAX technology and market. The background of WiMAX development is introduced and opportunities and challenges for WiMAX are analyzed in the beginning. Then the thesis focuses on an overview of WiMAX technology, which addresses the physical layer, MAC layer and WiMAX network architecture. The deployment status is investigated in the fourth chapter. Both product development situation and market status are discussed in this section. In the last chapter, the future development trend of WiMAX is addressed

    Base station cooperation in multiple input multiple output orthogonal frequency division multiple access systems

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent University, 2009.Thesis (Master's) -- Bilkent University, 2009.Includes bibliographical references leaves 60-62.Newly emerging advancements such as multiple input multiple output (MIMO) and orthogonal frequency division multiple access (OFDMA) techniques become indispensable parts of today’s wireless systems such as WiMAX (IEEE 802.16 standard) since they can increase the supportable data rates significantly. However, achieving the maximum spectral efficiency in a MIMO system requires perfect channel state information (CSI) at the transmitter side and multicarrier nature of OFDMA systems increase the necessary CSI feedback from users to base stations remarkably. To further increase the supportable data rates, using frequency reuse factor of 1 in the system is also mandatory. Unfortunately, this results in significant cochannel interference (CCI) observed especially by the users near cell edges, which can severely degrade the system spectral efficiency. To cope with this problem, base station cooperation may play an important role. In this thesis, the problem of cooperative data transmission from base stations to users in multicellular MIMO-OFDMA systems is considered. An efficient cooperative scheduling and data transmission scheme, requiring limited CSI feedback from users to base stations and also limited information exchange between the base stations, is proposed. The numerical results demonstrate that, the proposed algorithm offers considerable spectral efficiency gains compared to conventional frequency reuse and noncooperative schemes, under severe CCI conditionsTokel, Turgut BarışM.S

    Subcarrier and Power Allocation in WiMAX

    Get PDF
    Worldwide Interoperability for Microwave Access (WiMAX) is one of the latest technologies for providing Broadband Wireless Access (BWA) in a metropolitan area. The use of orthogonal frequency division multiplexing (OFDM) transmissions has been proposed in WiMAX to mitigate the complications which are associated with frequency selective channels. In addition, the multiple access is achieved by using orthogonal frequency division multiple access (OFDMA) scheme which has several advantages such as flexible resource allocation, relatively simple transceivers, and high spectrum efficient. In OFDMA the controllable resources are the subcarriers and the allocated power per subband. Moreover, adaptive subcarrier and power allocation techniques have been selected to exploit the natural multiuser diversity. This leads to an improvement of the performance by assigning the proper subcarriers to the user according to their channel quality and the power is allocated based on water-filling algorithm. One simple method is to allocate subcarriers and powers equally likely between all users. It is well known that this method reduces the spectral efficiency of the system, hence, it is not preferred unless in some applications. In order to handle the spectral efficiency problem, in this thesis we discuss three novel resources allocation algorithms for the downlink of a multiuser OFDM system and analyze the algorithm performances based on capacity and fairness measurement. Our intensive simulations validate the algorithm performances.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format
    corecore