640 research outputs found

    Failure Assessment of Piezoelectric Actuators and Sensors for Increased Reliability of SHM Systems

    Get PDF
    In the chain from sensing to information extraction, there are many traps where errors can occur, which might lead to false alarms and therefore leave us with the impression of an unreliable system. In this chapter, we deal with the important first element of the chain, the sensor, which can undergo various faults and defects during its lifetime. Especially for the use of acousto-ultrasonic (AU)-based methods or the electro-mechanical impedance (EMI) method, piezoelectric transducers are frequently used. Subsequent steps within the chain of SHM rely on the quality and reliability of these measurements. An overview is given on the usage of piezoelectric transducers within SHM systems, their electro-mechanical coupling and its modeling as well as frequent faults of these devices and methods on how to inspect them and diagnose defects. The authors show the effects of different transducer faults on the excited wave field, used for AU. It is shown how a sensor fault can be detected before the SHM system indicates a (false) alarm. With the help of application scenarios—including temperature variations—the advantages and disadvantages of the introduced methods of transducer inspection are presented, enabling an increased reliability of SHM systems

    Nonlinearities associated with impaired sensors in a typical SHM experimental set-up

    Get PDF
    none3noStructural Health Monitoring (SHM) gives a diagnosis of a structure assessing the structural integrity and predicting the residual life through appropriate data processing and interpretation. A structure must remain in the design domain, although it can be subjected to normal aging due to usage, action of the environment, and accidental events. SHM involves the integration of electronic devices in the inspected structure that sometimes are Piezoelectric Transducers (PZT). These are lightweight and small and can be produced in different geometries. They are used both in guided wave-based and electromechanical impedance-based methods. The PZT bonding requires essential steps such as preparation of the surfaces, application of the adhesive, and assembly that make the bonding process not so easy to be realised. Furthermore, adhesives are susceptible to environmental degradation. Transducer debonding or non-uniform distributed glue underneath the sensor causes the reduction of the performance and can affect the reliability of the SHM system. In this paper, a sensor diagnostic method for the monitoring of the PZT operational status is proposed in order to detect bonding defect/damage between a PZT patch and a host structure. The authors propose a method based on the nonlinear behaviour of the contact PZT/structure that allows the identification of the damaged PZT and the geometrical characterization of the debonding. The feasibility of the diagnostic procedure is demonstrated by numerical studies and experiments, where disbonds were created by inhibiting the adhesive action on a part of the interface through Teflon film. The proposed method can be used to evaluate the sensor functionality after an extreme loading event or over a long period of service time.openCarrino S.; Nicassio F.; Scarselli G.Carrino, S.; Nicassio, F.; Scarselli, G

    A pattern recognition approach for identification of transducer-structure debonding using Lamb waves

    Get PDF
    In structural health monitoring, using piezoelectric transducers to generate high frequency elastic waves like Lamb waves in the structures is eminent. In general, piezoelectric transducers are assumed to be perfectly bonded with the host structure; however, in practical environment, there are possibilities for them to have faults. Since detecting, locating and assessing damages in a structure depend solely on transducer responses, transducer fault identification is vital. By using electrical admittance, axial strain and shear stress as function of frequencies or in analog interface circuits to identify faulty transducers, lead to demand of circuitry and processes, consequently increasing the implementation complexity. Hence, we propose a pattern recognition system that can identify transducers that are partially bonded to host structure. This pattern recognition system employs classification for features extracted from instantaneous Lamb wave signals with no need of baseline data

    Novel Structural Health Monitoring and Damage Detection Approaches for Composite and Metallic Structures

    Get PDF
    Mechanical durability of the structures should be continuously monitored during their operation. Structural health monitoring (SHM) techniques are typically used for gathering the information which can be used for evaluating the current condition of a structure regarding the existence, location, and severity of the damage. Damage can occur in a structure after long-term operating under service loads or due to incidents. By detection of these defects at the early stages of their growth and nucleation, it would be possible to not only improve the safety of the structure but also reduce the operating costs. The main goal of this dissertation is to develop a reliable and cost-effective SHM system for inspection of composite and metallic structures. The Surface Response to Excitation (SuRE) method is one of the SHM approaches that was developed at the FIU mechatronics lab as an alternative for the electromechanical impedance method to reduce the cost and size of the equipment. In this study, firstly, the performance of the SuRE method was evaluated when the conventional piezoelectric elements and scanning laser vibrometer were used as the contact and non-contact sensors, respectively, for monitoring the presence of loads on the surface. Then, the application of the SuRE method for the characterization vii of the milling operation for identical aluminum plates was investigated. Also, in order to eliminate the need for a priori knowledge of the characteristics of the structure, some advanced signal processing techniques were introduced. In the next step, the heterodyne method was proposed, as a nonlinear baseline free, SHM approach for identification of the debonded region and evaluation of the strength of composite bonds. Finally, the experimental results for both methods were validated via a finite element software. The experimental results for both SuRE and heterodyning method showed that these methods can be considered as promising linear and nonlinear SHM approaches for monitoring the health of composite and metallic structures. In addition, by validating the experimental results using FEM, the path for further improvement of these methods in future researches was paved

    Debonding detection of FRP strengthened concrete beams by using impedance measurements and an ensemble PSO adaptive spectral model

    Get PDF
    An impedance-based midspan debonding identification method for RC beams strengthened with FRP strips is presented in this paper using piezoelectric ceramic (PZT) sensor?actuators. To reach this purpose, firstly, a two-dimensional electromechanical impedance model is proposed to predict the electrical admittance of the PZT transducer bonded to the FRP strips of an RC beam. Considering the impedance is measured in high frequencies, a spectral element model of the bonded-PZT?FRP strengthened beam is developed. This model, in conjunction with experimental measurements of PZT transducers, is used to present an updating methodology to quantitatively detect interfacial debonding of these kinds of structures. To improve the performance and accuracy of the detection algorithm in a challenging problem such as ours, the structural health monitoring approach is solved with an ensemble process based on particle of swarm. An adaptive mesh scheme has also been developed to increase the reliability in locating the area in which debonding initiates. Predictions carried out with experimental results have showed the effectiveness and potential of the proposed method to detect prematurely at its earliest stages a critical failure mode such as that due to midspan debonding of the FRP strip

    A Critical Review on the Structural Health Monitoring Methods of the Composite Wind Turbine Blades

    Get PDF
    With increasing turbine size, monitoring of blades becomes increasingly im-portant, in order to prevent catastrophic damages and unnecessary mainte-nance, minimize the downtime and labor cost and improving the safety is-sues and reliability. The present work provides a review and classification of various structural health monitoring (SHM) methods as strain measurement utilizing optical fiber sensors and Fiber Bragg Gratings (FBG’s), active/ pas-sive acoustic emission method, vibration‒based method, thermal imaging method and ultrasonic methods, based on the recent investigations and prom-ising novel techniques. Since accuracy, comprehensiveness and cost-effectiveness are the fundamental parameters in selecting the SHM method, a systematically summarized investigation encompassing methods capabilities/ limitations and sensors types, is needed. Furthermore, the damages which are included in the present work are fiber breakage, matrix cracking, delamina-tion, fiber debonding, crack opening at leading/ trailing edge and ice accre-tion. Taking into account the types of the sensors relevant to different SHM methods, the advantages/ capabilities and disadvantages/ limitations of repre-sented methods are nominated and analyzed

    Effects of Piezoelectric (PZT) Sensor Bonding and the Characteristics of the Host Structure on Impedance Based Structural Health Monitoring

    Get PDF
    This study was conducted to investigate the effects of certain factors on the impedance signal in structural health monitoring. These factors were: the quality of the bond between the sensor and the host structure, and the characteristics of the host structure, such as geometry, mass, and material properties. This work was carried out to answer a set of questions, related to these factors, that were developed by the project team. The project team was comprised of Dr. Doug Ramers and Dr. Abdul Jalloh of the Summer Faculty Fellowship Program, Mr. Arnaldo Colon- Perez, a student intern from the University of Puerto Rico of Turabo, and Mr. John Lassiter and Mr. Bob Engberg of the Structural and Dynamics Test Group at NASA Marshall Space Flight Center (MSFC). This study was based on a review of the literature on structural health monitoring to investigate the factors referred to above because there was not enough time to plan and conduct the appropriate tests at MSFC during the tenure of the Summer Faculty Fellowship Program project members. The surveyed literature documents works on structural health monitoring that were based on laboratory tests that were conducted using bolted trusses and other civil engineering type structures for the most part. These are not the typical types of structures used in designing and building NASA s space vehicles and systems. It was therefore recommended that tests be conducted using NASA type structures, such as pressure vessels, to validate the observations made in this report

    Design, modeling, and analysis of piezoelectric energy harvesters

    Get PDF

    Sensor fault detection in a damage detection approach based on piezodiagnostics

    Get PDF
    Online monitoring systems demand an adequate operation of sensor system used to acquire structural state measurements. If a damaged sensor record is incorporated in the diagnosis algorithm, it could be generate uncertainties and generate unsuitable alarms. Thus, appropriate operation of sensor system is a critical requirement in order to obtain a high reliability for structural damage diagnosis algorithms. In this work a data-driven procedure is studied in order to mitigate the faulty sensor effect in a monitoring system. The studied method takes advantage of piezo-diagnostics approach, where piezoelectric devices are attached to the surface of the monitored structure to produce guided waves. Thus, piezoelectric measurements are analyzed by applying principal component analysis and cross-correlation, in order to detect abnormal behaviors. In this sense, the squared prediction error Q and Hotelling squared statistical indices are used to observe a typical behaviour caused by sensor problems or structural damages. The methodology is validated on a lab carbon steel pipe section by using scenarios that include electric power failures, disconnecting power cords as well as mass adding. As concluding remark, in this work was possible to separate structural damage and fault sensor states at different clusters.Postprint (published version
    corecore