106 research outputs found

    Monotone Projection Lower Bounds from Extended Formulation Lower Bounds

    Get PDF
    In this short note, we reduce lower bounds on monotone projections of polynomials to lower bounds on extended formulations of polytopes. Applying our reduction to the seminal extended formulation lower bounds of Fiorini, Massar, Pokutta, Tiwari, & de Wolf (STOC 2012; J. ACM, 2015) and Rothvoss (STOC 2014; J. ACM, 2017), we obtain the following interesting consequences. 1. The Hamiltonian Cycle polynomial is not a monotone subexponential-size projection of the permanent; this both rules out a natural attempt at a monotone lower bound on the Boolean permanent, and shows that the permanent is not complete for non-negative polynomials in VNPR_{{\mathbb R}} under monotone p-projections. 2. The cut polynomials and the perfect matching polynomial (or "unsigned Pfaffian") are not monotone p-projections of the permanent. The latter, over the Boolean and-or semi-ring, rules out monotone reductions in one of the natural approaches to reducing perfect matchings in general graphs to perfect matchings in bipartite graphs. As the permanent is universal for monotone formulas, these results also imply exponential lower bounds on the monotone formula size and monotone circuit size of these polynomials.Comment: Published in Theory of Computing, Volume 13 (2017), Article 18; Received: November 10, 2015, Revised: July 27, 2016, Published: December 22, 201

    Combinatorics and Geometry of Transportation Polytopes: An Update

    Full text link
    A transportation polytope consists of all multidimensional arrays or tables of non-negative real numbers that satisfy certain sum conditions on subsets of the entries. They arise naturally in optimization and statistics, and also have interest for discrete mathematics because permutation matrices, latin squares, and magic squares appear naturally as lattice points of these polytopes. In this paper we survey advances on the understanding of the combinatorics and geometry of these polyhedra and include some recent unpublished results on the diameter of graphs of these polytopes. In particular, this is a thirty-year update on the status of a list of open questions last visited in the 1984 book by Yemelichev, Kovalev and Kravtsov and the 1986 survey paper of Vlach.Comment: 35 pages, 13 figure

    Three Puzzles on Mathematics, Computation, and Games

    Full text link
    In this lecture I will talk about three mathematical puzzles involving mathematics and computation that have preoccupied me over the years. The first puzzle is to understand the amazing success of the simplex algorithm for linear programming. The second puzzle is about errors made when votes are counted during elections. The third puzzle is: are quantum computers possible?Comment: ICM 2018 plenary lecture, Rio de Janeiro, 36 pages, 7 Figure

    VaÅ”ek ChvĆ”tal: A Very Short Introduction

    Full text link

    A Note on the Approximability of Deepest-Descent Circuit Steps

    Get PDF
    Linear programs (LPs) can be solved by polynomially many moves along the circuit direction improving the objective the most, so-called deepest-descent steps (dd-steps). Computing these steps is NP-hard (De Loera et al., arXiv, 2019), a consequence of the hardness of deciding the existence of an optimal circuit-neighbor (OCNP) on LPs with non-unique optima. We prove OCNP is easy under the promise of unique optima, but already O(n1āˆ’Īµ)O(n^{1-\varepsilon})-approximating dd-steps remains hard even for totally unimodular nn-dimensional 0/1-LPs with a unique optimum. We provide a matching nn-approximation

    Applications of Convex and Algebraic Geometry to Graphs and Polytopes

    Get PDF

    Nash equilibria, gale strings, and perfect matchings

    Get PDF
    This thesis concerns the problem 2-NASH of ļ¬nding a Nash equilibrium of a bimatrix game, for the special class of so-called ā€œhard-to-solveā€ bimatrix games. The term ā€œhardto-solveā€ relates to the exponential running time of the famous and often used Lemkeā€“ Howson algorithm for this class of games. The games are constructed with the help of dual cyclic polytopes, where the algorithm can be expressed combinatorially via labeled bitstrings deļ¬ned by the ā€œGale evenness conditionā€ that characterise the vertices of these polytopes. We deļ¬ne the combinatorial problem ā€œAnother completely labeled Gale stringā€ whose solutions deļ¬ne the Nash equilibria of any game deļ¬ned by cyclic polytopes, including the games where the Lemkeā€“Howson algorithm takes exponential time. We show that ā€œAnother completely labeled Gale stringā€ is solvable in polynomial time by a reduction to the ā€œPerfect matchingā€ problem in Euler graphs. We adapt the Lemkeā€“Howson algorithm to pivot from one perfect matching to another and show that again for a certain class of graphs this leads to exponential behaviour. Furthermore, we prove that completely labeled Gale strings and perfect matchings in Euler graphs come in pairs and that the Lemkeā€“Howson algorithm connects two strings or matchings of opposite signs. The equivalence between Nash Equilibria of bimatrix games derived from cyclic polytopes, completely labeled Gale strings, and perfect matchings in Euler Graphs implies that counting Nash equilibria is #P-complete. Although one Nash equilibrium can be computed in polynomial time, we have not succeeded in ļ¬nding an algorithm that computes a Nash equilibrium of opposite sign. However, we solve this problem for certain special cases, for example planar graphs. We illustrate the difļ¬culties concerning a general polynomial-time algorithm for this problem by means of negative results that demonstrate why a number of approaches towards such an algorithm are unlikely to be successful
    • ā€¦
    corecore