2,390 research outputs found

    Editorial for Vol.28, No.2

    Get PDF
    The second issue of CIT\u27s Vol. 28 (Vol. 28, No. 2, June 2020) brings five papers from the regular section, which focus on topics from the areas of computer networks and network security, software, and robotics

    Artifical Intelligence for Human Computing

    Get PDF
    This book constitutes the thoroughly refereed post-proceedings of two events discussing AI for Human Computing: one Special Session during the Eighth International ACM Conference on Multimodal Interfaces (ICMI 2006), held in Banff, Canada, in November 2006, and a Workshop organized in conjunction with the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007), held in Hyderabad, India, in January 2007. A large number of the contributions in this state-of-the-art survey are updated and extended versions of the papers presented during these two events. In order to obtain a more complete overview of research efforts in the field of human computing, a number of additional invited contributions are also included in this book on AI for human computing. The 17 revised papers presented were carefully selected from numerous submissions to and presentations made at the two events and include invited articles to round off coverage of all relevant topics of the emerging topic. The papers are organized in three parts: a part on foundational issues of human computing, a part on sensing humans and their activities, and a part on anthropocentric interaction models

    The promise and challenges of multimodal learning analytics

    Get PDF

    On the Development of Adaptive and User-Centred Interactive Multimodal Interfaces

    Get PDF
    Multimodal systems have attained increased attention in recent years, which has made possible important improvements in the technologies for recognition, processing, and generation of multimodal information. However, there are still many issues related to multimodality which are not clear, for example, the principles that make it possible to resemble human-human multimodal communication. This chapter focuses on some of the most important challenges that researchers have recently envisioned for future multimodal interfaces. It also describes current efforts to develop intelligent, adaptive, proactive, portable and affective multimodal interfaces

    Indexing of fictional video content for event detection and summarisation

    Get PDF
    This paper presents an approach to movie video indexing that utilises audiovisual analysis to detect important and meaningful temporal video segments, that we term events. We consider three event classes, corresponding to dialogues, action sequences, and montages, where the latter also includes musical sequences. These three event classes are intuitive for a viewer to understand and recognise whilst accounting for over 90% of the content of most movies. To detect events we leverage traditional filmmaking principles and map these to a set of computable low-level audiovisual features. Finite state machines (FSMs) are used to detect when temporal sequences of specific features occur. A set of heuristics, again inspired by filmmaking conventions, are then applied to the output of multiple FSMs to detect the required events. A movie search system, named MovieBrowser, built upon this approach is also described. The overall approach is evaluated against a ground truth of over twenty-three hours of movie content drawn from various genres and consistently obtains high precision and recall for all event classes. A user experiment designed to evaluate the usefulness of an event-based structure for both searching and browsing movie archives is also described and the results indicate the usefulness of the proposed approach

    Brain Computer Interfaces and Emotional Involvement: Theory, Research, and Applications

    Get PDF
    This reprint is dedicated to the study of brain activity related to emotional and attentional involvement as measured by Brain–computer interface (BCI) systems designed for different purposes. A BCI system can translate brain signals (e.g., electric or hemodynamic brain activity indicators) into a command to execute an action in the BCI application (e.g., a wheelchair, the cursor on the screen, a spelling device or a game). These tools have the advantage of having real-time access to the ongoing brain activity of the individual, which can provide insight into the user’s emotional and attentional states by training a classification algorithm to recognize mental states. The success of BCI systems in contemporary neuroscientific research relies on the fact that they allow one to “think outside the lab”. The integration of technological solutions, artificial intelligence and cognitive science allowed and will allow researchers to envision more and more applications for the future. The clinical and everyday uses are described with the aim to invite readers to open their minds to imagine potential further developments

    A Review on Human-Computer Interaction and Intelligent Robots

    Get PDF
    In the field of artificial intelligence, human–computer interaction (HCI) technology and its related intelligent robot technologies are essential and interesting contents of research. From the perspective of software algorithm and hardware system, these above-mentioned technologies study and try to build a natural HCI environment. The purpose of this research is to provide an overview of HCI and intelligent robots. This research highlights the existing technologies of listening, speaking, reading, writing, and other senses, which are widely used in human interaction. Based on these same technologies, this research introduces some intelligent robot systems and platforms. This paper also forecasts some vital challenges of researching HCI and intelligent robots. The authors hope that this work will help researchers in the field to acquire the necessary information and technologies to further conduct more advanced research

    Indexing of fictional video content for event detection and summarisation

    Get PDF
    This paper presents an approach to movie video indexing that utilises audiovisual analysis to detect important and meaningful temporal video segments, that we term events. We consider three event classes, corresponding to dialogues, action sequences, and montages, where the latter also includes musical sequences. These three event classes are intuitive for a viewer to understand and recognise whilst accounting for over 90% of the content of most movies. To detect events we leverage traditional filmmaking principles and map these to a set of computable low-level audiovisual features. Finite state machines (FSMs) are used to detect when temporal sequences of specific features occur. A set of heuristics, again inspired by filmmaking conventions, are then applied to the output of multiple FSMs to detect the required events. A movie search system, named MovieBrowser, built upon this approach is also described. The overall approach is evaluated against a ground truth of over twenty-three hours of movie content drawn from various genres and consistently obtains high precision and recall for all event classes. A user experiment designed to evaluate the usefulness of an event-based structure for both searching and browsing movie archives is also described and the results indicate the usefulness of the proposed approach

    Deep auto-encoders with sequential learning for multimodal dimensional emotion recognition

    Get PDF
    Multimodal dimensional emotion recognition has drawn a great attention from the affective computing community and numerous schemes have been extensively investigated, making a significant progress in this area. However, several questions still remain unanswered for most of existing approaches including: (i) how to simultaneously learn compact yet representative features from multimodal data, (ii) how to effectively capture complementary features from multimodal streams, and (iii) how to perform all the tasks in an end-to-end manner. To address these challenges, in this paper, we propose a novel deep neural network architecture consisting of a two-stream auto-encoder and a long short term memory for effectively integrating visual and audio signal streams for emotion recognition. To validate the robustness of our proposed architecture, we carry out extensive experiments on the multimodal emotion in the wild dataset: RECOLA. Experimental results show that the proposed method achieves state-of-the-art recognition performance
    corecore