67,407 research outputs found

    Editing to Connected f-Degree Graph

    Get PDF
    In the EDGE EDITING TO CONNECTED f-DEGREE GRAPH problem we are given a graph G, an integer k and a function f assigning integers to vertices of G. The task is to decide whether there is a connected graph F on the same vertex set as G, such that for every vertex v, its degree in F is f(v) and the number of edges inthe symmetric difference of E(G) and E(F), is at most k. We show that EDGE EDITING TO CONNECTED f-DEGREE GRAPH is fixed-parameter tractable (FPT) by providing an algorithm solving the problem on an n-vertex graph in time 2^{O(k)}n^{O(1)}. Our FPT algorithm is based on a non-trivial combination of color-coding and fast computations of representative families over direct sum matroid of l-elongation of co-graphic matroid associated with G and uniform matroid over the set of non-edges of G. We believe that this combination could be useful in designing parameterized algorithms for other edge editing problems

    Fast Biclustering by Dual Parameterization

    Get PDF
    We study two clustering problems, Starforest Editing, the problem of adding and deleting edges to obtain a disjoint union of stars, and the generalization Bicluster Editing. We show that, in addition to being NP-hard, none of the problems can be solved in subexponential time unless the exponential time hypothesis fails. Misra, Panolan, and Saurabh (MFCS 2013) argue that introducing a bound on the number of connected components in the solution should not make the problem easier: In particular, they argue that the subexponential time algorithm for editing to a fixed number of clusters (p-Cluster Editing) by Fomin et al. (J. Comput. Syst. Sci., 80(7) 2014) is an exception rather than the rule. Here, p is a secondary parameter, bounding the number of components in the solution. However, upon bounding the number of stars or bicliques in the solution, we obtain algorithms which run in time 25pk+O(n+m)2^{5 \sqrt{pk}} + O(n+m) for p-Starforest Editing and 2O(pklog(pk))+O(n+m)2^{O(p \sqrt{k} \log(pk))} + O(n+m) for p-Bicluster Editing. We obtain a similar result for the more general case of t-Partite p-Cluster Editing. This is subexponential in k for fixed number of clusters, since p is then considered a constant. Our results even out the number of multivariate subexponential time algorithms and give reasons to believe that this area warrants further study.Comment: Accepted for presentation at IPEC 201

    Fast Parallel Fixed-Parameter Algorithms via Color Coding

    Get PDF
    Fixed-parameter algorithms have been successfully applied to solve numerous difficult problems within acceptable time bounds on large inputs. However, most fixed-parameter algorithms are inherently \emph{sequential} and, thus, make no use of the parallel hardware present in modern computers. We show that parallel fixed-parameter algorithms do not only exist for numerous parameterized problems from the literature -- including vertex cover, packing problems, cluster editing, cutting vertices, finding embeddings, or finding matchings -- but that there are parallel algorithms working in \emph{constant} time or at least in time \emph{depending only on the parameter} (and not on the size of the input) for these problems. Phrased in terms of complexity classes, we place numerous natural parameterized problems in parameterized versions of AC0^0. On a more technical level, we show how the \emph{color coding} method can be implemented in constant time and apply it to embedding problems for graphs of bounded tree-width or tree-depth and to model checking first-order formulas in graphs of bounded degree

    Fast branching algorithm for Cluster Vertex Deletion

    Get PDF
    In the family of clustering problems, we are given a set of objects (vertices of the graph), together with some observed pairwise similarities (edges). The goal is to identify clusters of similar objects by slightly modifying the graph to obtain a cluster graph (disjoint union of cliques). Hueffner et al. [Theory Comput. Syst. 2010] initiated the parameterized study of Cluster Vertex Deletion, where the allowed modification is vertex deletion, and presented an elegant O(2^k * k^9 + n * m)-time fixed-parameter algorithm, parameterized by the solution size. In our work, we pick up this line of research and present an O(1.9102^k * (n + m))-time branching algorithm

    Structural Rounding: Approximation Algorithms for Graphs Near an Algorithmically Tractable Class

    Get PDF
    We develop a framework for generalizing approximation algorithms from the structural graph algorithm literature so that they apply to graphs somewhat close to that class (a scenario we expect is common when working with real-world networks) while still guaranteeing approximation ratios. The idea is to edit a given graph via vertex- or edge-deletions to put the graph into an algorithmically tractable class, apply known approximation algorithms for that class, and then lift the solution to apply to the original graph. We give a general characterization of when an optimization problem is amenable to this approach, and show that it includes many well-studied graph problems, such as Independent Set, Vertex Cover, Feedback Vertex Set, Minimum Maximal Matching, Chromatic Number, (l-)Dominating Set, Edge (l-)Dominating Set, and Connected Dominating Set. To enable this framework, we develop new editing algorithms that find the approximately-fewest edits required to bring a given graph into one of a few important graph classes (in some cases these are bicriteria algorithms which simultaneously approximate both the number of editing operations and the target parameter of the family). For bounded degeneracy, we obtain an O(r log{n})-approximation and a bicriteria (4,4)-approximation which also extends to a smoother bicriteria trade-off. For bounded treewidth, we obtain a bicriteria (O(log^{1.5} n), O(sqrt{log w}))-approximation, and for bounded pathwidth, we obtain a bicriteria (O(log^{1.5} n), O(sqrt{log w} * log n))-approximation. For treedepth 2 (related to bounded expansion), we obtain a 4-approximation. We also prove complementary hardness-of-approximation results assuming P != NP: in particular, these problems are all log-factor inapproximable, except the last which is not approximable below some constant factor 2 (assuming UGC)
    corecore