580 research outputs found

    Image smoothing via L

    Full text link

    Edge-enhancing image smoothing.

    Get PDF
    Xu, Yi.Thesis (M.Phil.)--Chinese University of Hong Kong, 2011.Includes bibliographical references (p. 62-69).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Organization --- p.4Chapter 2 --- Background and Motivation --- p.7Chapter 2.1 --- ID Mondrian Smoothing --- p.9Chapter 2.2 --- 2D Formulation --- p.13Chapter 3 --- Solver --- p.16Chapter 3.1 --- More Analysis --- p.20Chapter 4 --- Edge Extraction --- p.26Chapter 4.1 --- Related work --- p.26Chapter 4.2 --- Method and Results --- p.28Chapter 4.3 --- Summary --- p.32Chapter 5 --- Image Abstraction and Pencil Sketching --- p.35Chapter 5.1 --- Related Work --- p.35Chapter 5.2 --- Method and Results --- p.36Chapter 5.3 --- Summary --- p.40Chapter 6 --- Clip-Art Compression Artifact Removal --- p.41Chapter 6.1 --- Related work --- p.41Chapter 6.2 --- Method and Results --- p.43Chapter 6.3 --- Summary --- p.46Chapter 7 --- Layer-Based Contrast Manipulation --- p.49Chapter 7.1 --- Related Work --- p.49Chapter 7.2 --- Method and Results --- p.50Chapter 7.2.1 --- Edge Adjustment --- p.51Chapter 7.2.2 --- Detail Magnification --- p.54Chapter 7.2.3 --- Tone Mapping --- p.55Chapter 7.3 --- Summary --- p.56Chapter 8 --- Conclusion and Discussion --- p.59Bibliography --- p.6

    Image smoothing via L

    Full text link

    Study of Computational Image Matching Techniques: Improving Our View of Biomedical Image Data

    Get PDF
    Image matching techniques are proven to be necessary in various fields of science and engineering, with many new methods and applications introduced over the years. In this PhD thesis, several computational image matching methods are introduced and investigated for improving the analysis of various biomedical image data. These improvements include the use of matching techniques for enhancing visualization of cross-sectional imaging modalities such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), denoising of retinal Optical Coherence Tomography (OCT), and high quality 3D reconstruction of surfaces from Scanning Electron Microscope (SEM) images. This work greatly improves the process of data interpretation of image data with far reaching consequences for basic sciences research. The thesis starts with a general notion of the problem of image matching followed by an overview of the topics covered in the thesis. This is followed by introduction and investigation of several applications of image matching/registration in biomdecial image processing: a) registration-based slice interpolation, b) fast mesh-based deformable image registration and c) use of simultaneous rigid registration and Robust Principal Component Analysis (RPCA) for speckle noise reduction of retinal OCT images. Moving towards a different notion of image matching/correspondence, the problem of view synthesis and 3D reconstruction, with a focus on 3D reconstruction of microscopic samples from 2D images captured by SEM, is considered next. Starting from sparse feature-based matching techniques, an extensive analysis is provided for using several well-known feature detector/descriptor techniques, namely ORB, BRIEF, SURF and SIFT, for the problem of multi-view 3D reconstruction. This chapter contains qualitative and quantitative comparisons in order to reveal the shortcomings of the sparse feature-based techniques. This is followed by introduction of a novel framework using sparse-dense matching/correspondence for high quality 3D reconstruction of SEM images. As will be shown, the proposed framework results in better reconstructions when compared with state-of-the-art sparse-feature based techniques. Even though the proposed framework produces satisfactory results, there is room for improvements. These improvements become more necessary when dealing with higher complexity microscopic samples imaged by SEM as well as in cases with large displacements between corresponding points in micrographs. Therefore, based on the proposed framework, a new approach is proposed for high quality 3D reconstruction of microscopic samples. While in case of having simpler microscopic samples the performance of the two proposed techniques are comparable, the new technique results in more truthful reconstruction of highly complex samples. The thesis is concluded with an overview of the thesis and also pointers regarding future directions of the research using both multi-view and photometric techniques for 3D reconstruction of SEM images

    Efficient data structures for piecewise-smooth video processing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 95-102).A number of useful image and video processing techniques, ranging from low level operations such as denoising and detail enhancement to higher level methods such as object manipulation and special effects, rely on piecewise-smooth functions computed from the input data. In this thesis, we present two computationally efficient data structures for representing piecewise-smooth visual information and demonstrate how they can dramatically simplify and accelerate a variety of video processing algorithms. We start by introducing the bilateral grid, an image representation that explicitly accounts for intensity edges. By interpreting brightness values as Euclidean coordinates, the bilateral grid enables simple expressions for edge-aware filters. Smooth functions defined on the bilateral grid are piecewise-smooth in image space. Within this framework, we derive efficient reinterpretations of a number of edge-aware filters commonly used in computational photography as operations on the bilateral grid, including the bilateral filter, edgeaware scattered data interpolation, and local histogram equalization. We also show how these techniques can be easily parallelized onto modern graphics hardware for real-time processing of high definition video. The second data structure we introduce is the video mesh, designed as a flexible central data structure for general-purpose video editing. It represents objects in a video sequence as 2.5D "paper cutouts" and allows interactive editing of moving objects and modeling of depth, which enables 3D effects and post-exposure camera control. In our representation, we assume that motion and depth are piecewise-smooth, and encode them sparsely as a set of points tracked over time. The video mesh is a triangulation over this point set and per-pixel information is obtained by interpolation. To handle occlusions and detailed object boundaries, we rely on the user to rotoscope the scene at a sparse set of frames using spline curves. We introduce an algorithm to robustly and automatically cut the mesh into local layers with proper occlusion topology, and propagate the splines to the remaining frames. Object boundaries are refined with per-pixel alpha mattes. At its core, the video mesh is a collection of texture-mapped triangles, which we can edit and render interactively using graphics hardware. We demonstrate the effectiveness of our representation with special effects such as 3D viewpoint changes, object insertion, depthof- field manipulation, and 2D to 3D video conversion.by Jiawen Chen.Ph.D

    3D COLORED MESH STRUCTURE-PRESERVING FILTERING WITH ADAPTIVE P-LAPLACIAN ON DIRECTED GRAPHS

    Get PDF
    International audienceEditing of 3D colored meshes represents a fundamental component of nowadays computer vision and computer graphics applications. In this paper, we propose a framework based on the p-laplacian on directed graphs for structure-preserving filtering. This relies on a novel objective function composed of a fitting term, a smoothness term with a spatially-variant pTV norm, and a structure-preserving term. The last two terms can be related to formulations of the p-Laplacian on directed graphs. This enables to impose different forms of processing onto different graph areas for better smoothing quality
    • …
    corecore