5 research outputs found

    Edge reductions in cyclically k-connected cubic graphs

    Get PDF
    AbstractThis paper examines edge reductions in cyclically k-connected cubic graphs, focusing on when they preserve the cyclic k-connectedness. For a cyclically k-connected cubic graph G, we denote by Nk(G) the set of edges whose reduction gives a cubic graph which is not cyclically k-connected. With the exception of three graphs, Nk(G) consists of the edges in independent k-edge cuts. For this reason we examine the properties and interactions between independent k-edge cuts in cyclically k-connected cubic graphs. These results lead to an understanding of the structure of G[Nk]. For every k, we prove that G[Nk] is a forest with at least k trees if G is a cyclically k-connected cubic graph with girth at least k + 1 and Nk ≠ ⊘. Let fk(ν) be the smallest integer such that |Nk(G)| ≤ fk(ν) for all cyclically k-connected cubic graphs G on ν vertices. For all cyclically 3-connected cubic graphs G such that 6 ≤ ν(G) and N3 ≠ ⊘, we prove that G[N3] is a forest with at least three trees. We determine f3 and state a characterization of the extremal graphs. We define a very restricted subset N4b of N4 and prove that if N4g = N4 − N4b ≠ ⊘, then G[N4g] is a forest with at least four trees. We determine f4 and state a characterization of the extremal graphs. There exist cyclically 5-connected cubic graphs such that E(G) = N5(G), for every ν such that 10 ≤ ν and 16 ≠ ν. We characterize these graphs. Let gk(ν) be the smallest integer such that |Nk(G)| ≤ gk(ν) for all cyclically k-connected cubic graphs G with ν vertices and girth at least k + 1. For k ∈ {3, 4, 5}, we determine gk and state a characterization of the extremal graphs

    Nash Williams Conjecture and the Dominating Cycle Conjecture

    Full text link
    The disproved Nash Williams conjecture states that every 4-regular 4-connected graph has a hamiltonian cycle. We show that a modification of this conjecture is equivalent to the Dominating Cycle Conjecture

    Cyclically five-connected cubic graphs

    Full text link
    A cubic graph GG is cyclically 5-connected if GG is simple, 3-connected, has at least 10 vertices and for every set FF of edges of size at most four, at most one component of G\FG\backslash F contains circuits. We prove that if GG and HH are cyclically 5-connected cubic graphs and HH topologically contains GG, then either GG and HH are isomorphic, or (modulo well-described exceptions) there exists a cyclically 5-connected cubic graph G′G' such that HH topologically contains G′G' and G′G' is obtained from GG in one of the following two ways. Either G′G' is obtained from GG by subdividing two distinct edges of GG and joining the two new vertices by an edge, or G′G' is obtained from GG by subdividing each edge of a circuit of length five and joining the new vertices by a matching to a new circuit of length five disjoint from GG in such a way that the cyclic orders of the two circuits agree. We prove a companion result, where by slightly increasing the connectivity of HH we are able to eliminate the second construction. We also prove versions of both of these results when GG is almost cyclically 5-connected in the sense that it satisfies the definition except for 4-edge cuts such that one side is a circuit of length four. In this case G′G' is required to be almost cyclically 5-connected and to have fewer circuits of length four than GG. In particular, if GG has at most one circuit of length four, then G′G' is required to be cyclically 5-connected. However, in this more general setting the operations describing the possible graphs G′G' are more complicated.Comment: 47 pages, 5 figures. Revised according to referee's comments. To appear in J. Combin. Theory Ser.

    Excluded minors in cubic graphs

    Full text link
    Let G be a cubic graph, with girth at least five, such that for every partition X,Y of its vertex set with |X|,|Y|>6 there are at least six edges between X and Y. We prove that if there is no homeomorphic embedding of the Petersen graph in G, and G is not one particular 20-vertex graph, then either G\v is planar for some vertex v, or G can be drawn with crossings in the plane, but with only two crossings, both on the infinite region. We also prove several other theorems of the same kind.Comment: 62 pages, 17 figure
    corecore