76,177 research outputs found

    Sharp-edged geometric obstacles in microfluidics promote deformability-based sorting of cells

    Full text link
    Sorting cells based on their intrinsic properties is a highly desirable objective, since changes in cell deformability are often associated with various stress conditions and diseases. Deterministic lateral displacement (DLD) devices offer high precision for rigid spherical particles, while their success in sorting deformable particles remains limited due to the complexity of cell traversal in DLDs. We employ mesoscopic hydrodynamics simulations and demonstrate prominent advantages of sharp-edged DLD obstacles for probing deformability properties of red blood cells (RBCs). By consecutive sharpening of the pillar shape from circular to diamond to triangular geometry, a pronounced cell bending around an edge is achieved, serving as a deformability sensor. Bending around the edge is the primary mechanism, which governs the traversal of RBCs through such DLD device. This strategy requires an appropriate degree of cell bending by fluid stresses, which can be controlled by the flow rate, and exhibits good sensitivity to moderate changes in cell deformability. We expect that similar mechanisms should be applicable for the development of novel DLD devices that target intrinsic properties of many other cells.Comment: 16 pages, 9 figure

    Phase light curves for extrasolar Jupiters and Saturns

    Full text link
    We predict how a remote observer would see the brightness variations of giant planets similar to Jupiter and Saturn as they orbit their central stars. We model the geometry of Jupiter, Saturn and Saturn's rings for varying orbital and viewing parameters. Scattering properties for the planets and rings at wavelenghts 0.6-0.7 microns follow Pioneer and Voyager observations, namely, planets are forward scattering and rings are backward scattering. Images of the planet with or without rings are simulated and used to calculate the disk-averaged luminosity varying along the orbit, that is, a light curve is generated. We find that the different scattering properties of Jupiter and Saturn (without rings) make a substantial difference in the shape of their light curves. Saturn-size rings increase the apparent luminosity of the planet by a factor of 2-3 for a wide range of geometries. Rings produce asymmetric light curves that are distinct from the light curve of the planet without rings. If radial velocity data are available for the planet, the effect of the ring on the light curve can be distinguished from effects due to orbital eccentricity. Non-ringed planets on eccentric orbits produce light curves with maxima shifted relative to the position of the maximum planet's phase. Given radial velocity data, the amount of the shift restricts the planet's unknown orbital inclination and therefore its mass. Combination of radial velocity data and a light curve for a non-ringed planet on an eccentric orbit can also be used to constrain the surface scattering properties of the planet. To summarize our results for the detectability of exoplanets in reflected light, we present a chart of light curve amplitudes of non-ringed planets for different eccentricities, inclinations, and the viewing azimuthal angles of the observer.Comment: 40 pages, 13 figures, submitted to Ap.

    Effects of Disks on Gravitational Lensing by Spiral Galaxies

    Full text link
    Gravitational lensing of a quasar by a spiral galaxy should often be accompanied by damped Lyman-alpha absorption and dust extinction due to the intervening gaseous disk. In nearly edge-on configurations, the surface mass density of the gas and stars in the disk could by itself split the quasar image and contribute significantly to the overall lensing cross section. We calculate the lensing probability of a disk+halo mass model for spiral galaxies, including cosmic evolution of the lens parameters. A considerable fraction of the lens systems contains two images with sub-arcsecond separation, straddling a nearly edge-on disk. Because of that, extinction by dust together with observational selection effects (involving a minimum separation and a maximum flux ratio for the lensed images), suppress the detection efficiency of spiral lenses in optical wavebands by at least an order of magnitude. The missing lenses could be recovered in radio surveys. In modifying the statistics of damped Lyman-alpha absorbers, the effect of extinction dominates over the magnification bias due to lensing.Comment: 19 pages, 12 figures; submitted to Ap

    Galaxy density profiles and shapes -- II. selection biases in strong lensing surveys

    Full text link
    [Abridged] Many current and future astronomical surveys will rely on samples of strong gravitational lens systems to draw conclusions about galaxy mass distributions. We use a new strong lensing pipeline (presented in Paper I of this series) to explore selection biases that may cause the population of strong lensing systems to differ from the general galaxy population. Our focus is on point-source lensing by early-type galaxies with two mass components (stellar and dark matter) that have a variety of density profiles and shapes motivated by observational and theoretical studies of galaxy properties. We seek not only to quantify but also to understand the physics behind selection biases related to: galaxy mass, orientation and shape; dark matter profile parameters such as inner slope and concentration; and adiabatic contraction. We study how all of these properties affect the lensing Einstein radius, total cross-section, quad/double ratio, and image separation distribution. We find significant (factors of several) selection biases with mass; orientation, for a given galaxy shape at fixed mass; cusped dark matter profile inner slope and concentration; concentration of the stellar and dark matter deprojected Sersic models. Interestingly, the intrinsic shape of a galaxy does not strongly influence its lensing cross-section when we average over viewing angles. Our results are an important first step towards understanding how strong lens systems relate to the general galaxy population.Comment: 26 pages, 15 figures; paper I at arXiv:0808.2493; accepted for publication in MNRAS (minor revisions); PDF file with full resolution figures at http://www.sns.ias.edu/~rmandelb/paper2.pd

    AROMA: Automatic Generation of Radio Maps for Localization Systems

    Full text link
    WLAN localization has become an active research field recently. Due to the wide WLAN deployment, WLAN localization provides ubiquitous coverage and adds to the value of the wireless network by providing the location of its users without using any additional hardware. However, WLAN localization systems usually require constructing a radio map, which is a major barrier of WLAN localization systems' deployment. The radio map stores information about the signal strength from different signal strength streams at selected locations in the site of interest. Typical construction of a radio map involves measurements and calibrations making it a tedious and time-consuming operation. In this paper, we present the AROMA system that automatically constructs accurate active and passive radio maps for both device-based and device-free WLAN localization systems. AROMA has three main goals: high accuracy, low computational requirements, and minimum user overhead. To achieve high accuracy, AROMA uses 3D ray tracing enhanced with the uniform theory of diffraction (UTD) to model the electric field behavior and the human shadowing effect. AROMA also automates a number of routine tasks, such as importing building models and automatic sampling of the area of interest, to reduce the user's overhead. Finally, AROMA uses a number of optimization techniques to reduce the computational requirements. We present our system architecture and describe the details of its different components that allow AROMA to achieve its goals. We evaluate AROMA in two different testbeds. Our experiments show that the predicted signal strength differs from the measurements by a maximum average absolute error of 3.18 dBm achieving a maximum localization error of 2.44m for both the device-based and device-free cases.Comment: 14 pages, 17 figure

    Shift multiplexing with spherical reference waves

    Get PDF
    Shift multiplexing is a holographic storage method particularly suitable for the implementation of holographic disks. We characterize the performance of shift-multiplexed memories by using a spherical wave as the reference beam. We derive the shift selectivity, the cross talk, the exposure schedule, and the storage density of the method. We give experimental results to verify the theoretical predictions

    The magnetic-resonance force microscope: a new tool for high-resolution, 3-D, subsurface scanned probe imaging

    Get PDF
    The magnetic-resonance force microscope (MRFM) is a novel scanned probe instrument which combines the three-dimensional (3-D) imaging capabilities of magnetic-resonance imaging with the high sensitivity and resolution of atomic-force microscopy. It will enable nondestructive, chemical-specific, high-resolution microscopic studies and imaging of subsurface properties of a broad range of materials. The MRFM has demonstrated its utility for study of microscopic ferromagnets, and it will enable microscopic understanding of the nonequilibrium spin polarization resulting from spin injection. Microscopic MRFM studies will provide unprecedented insight into the physics of magnetic and spin-based materials. We will describe the principles and the state-of-the-art in magnetic-resonance force microscopy, discuss existing cryogenic MRFM instruments incorporating high-Q, single-crystal microresonators with integral submicrometer probe magnets, and indicate future directions for enhancing MRFM instrument capabilities
    • 

    corecore