31 research outputs found

    On edge-group choosability of graphs

    Full text link
    In this paper, we study the concept of edge-group choosability of graphs. We say that G is edge k-group choosable if its line graph is k-group choosable. An edge-group choosability version of Vizing conjecture is given. The evidence of our claim are graphs with maximum degree less than 4, planar graphs with maximum degree at least 11, planar graphs without small cycles, outerplanar graphs and near-outerplanar graphs

    Entire choosability of near-outerplane graphs

    Get PDF
    It is proved that if G is a plane embedding of a K4-minor-free graph with maximum degree Δ, then G is entirely 7-choosable if Δ≤4 and G is entirely (Δ+ 2)-choosable if Δ≥ 5; that is, if every vertex, edge and face of G is given a list of max{7,Δ+2} colours, then every element can be given a colour from its list such that no two adjacent or incident elements are given the same colour. It is proved also that this result holds if G is a plane embedding of a K2,3-minor-free graph or a (K2 + (K1 U K2))-minor-free graph. As a special case this proves that the Entire Colouring Conjecture, that a plane graph is entirely (Δ + 4)-colourable, holds if G is a plane embedding of a K4-minor-free graph, a K2,3-minor-free graph or a (K2 + (K1 U K2))-minor-free graph

    Defective and Clustered Graph Colouring

    Full text link
    Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has "defect" dd if each monochromatic component has maximum degree at most dd. A colouring has "clustering" cc if each monochromatic component has at most cc vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdi\`ere parameter, graphs with given circumference, graphs excluding a fixed graph as an immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding KtK_t as a minor, graphs excluding Ks,tK_{s,t} as a minor, and graphs excluding an arbitrary graph HH as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in the Electronic Journal of Combinatoric

    List-colourings of near-outerplanar graphs

    Get PDF
    A list-colouring of a graph is an assignment of a colour to each vertex v from its own list L(v) of colours. Instead of colouring vertices we may want to colour other elements of a graph such as edges, faces, or any combination of vertices, edges and faces. In this thesis we will study several of these different types of list-colouring, each for the class of a near-outerplanar graphs. Since a graph is outerplanar if it is both K4-minor-free and K2,3-minor-free, then by a near-outerplanar graph we mean a graph that is either K4-minor-free or K2,3-minor-free. Chapter 1 gives an introduction to the area of graph colourings, and includes a review of several results and conjectures in this area. In particular, four important and interesting conjectures in graph theory are the List-Edge-Colouring Conjecture (LECC), the List-Total-Colouring Conjecture (LTCC), the Entire Colouring Conjecture (ECC), and the List-Square-Colouring Conjecture (LSCC), each of which will be discussed in Chapter 1. In Chapter 2 we include a proof of the LECC and LTCC for all near-outerplanar graphs. In Chapter 3 we will study the list-colouring of a near-outerplanar graph in which vertices and faces, edges and faces, or vertices, edges and face are to be coloured. The results for the case when all elements are to be coloured will prove the ECC for all near-outerplanar graphs. In Chapter 4 we will study the list-colouring of the square of a K4-minor-free graph, and in Chapter 5 we will study the list-colouring of the square of a K2,3-minor-free graph. In Chapter 5 we include a proof of the LSCC for all K2,3-minor-free graphs with maximum degree at least six

    List Coloring Some Classes of 1-Planar Graphs

    Get PDF
    In list coloring we are given a graph G and a list assignment for G which assigns to each vertex of G a list of possible colors. We wish to find a coloring of the vertices of G such that each vertex uses a color from its list and adjacent vertices are given different colors. In this thesis we study the problem of list coloring 1-planar graphs, i.e., graphs that can be drawn in the plane such that any edge intersects at most one other edge. We also study the closely related problem of simultaneously list coloring the vertices and faces of a planar graph, known as coupled list coloring. We show that 1-planar bipartite graphs are list colorable whenever all lists are of size at least four, and further show that this coloring can be found in linear time. In pursuit of this result, we show that the previously known edge partition of a 1-planar graph into a planar graph and a forest can be found in linear time. A wheel graph consists of a cycle of vertices, all of which are adjacent to an additional center vertex. We show that wheel graphs are coupled list colorable when all lists are of size five or more and show that this coloring can be found in linear time. Possible extensions of this result to planar partial 3-trees are discussed. Finally, we discuss the complexity of list coloring 1-planar graphs, both in parameterized and unparameterized settings

    List-coloring and sum-list-coloring problems on graphs

    Get PDF
    Graph coloring is a well-known and well-studied area of graph theory that has many applications. In this dissertation, we look at two generalizations of graph coloring known as list-coloring and sum-list-coloring. In both of these types of colorings, one seeks to first assign palettes of colors to vertices and then choose a color from the corresponding palette for each vertex so that a proper coloring is obtained. A celebrated result of Thomassen states that every planar graph can be properly colored from any arbitrarily assigned palettes of five colors. This result is known as 5-list-colorability of planar graphs. Albertson asked whether Thomassen\u27s theorem can be extended by precoloring some vertices which are at a large enough distance apart. Hutchinson asked whether Thomassen\u27s theorem can be extended by allowing certain vertices to have palettes of size less than five assigned to them. In this dissertation, we explore both of these questions and answer them in the affirmative for various classes of graphs. We also provide a catalog of small configurations with palettes of different prescribed sizes and determine whether or not they can always be colored from palettes of such sizes. These small configurations can be useful in reducing certain planar graphs to obtain more information about their structure. Additionally, we look at the newer notion of sum-list-coloring where the sum choice number is the parameter of interest. In sum-list-coloring, we seek to minimize the sum of varying sizes of palettes of colors assigned the vertices of a graph. We compute the sum choice number for all graphs on at most five vertices, present some general results about sum-list-coloring, and determine the sum choice number for certain graphs made up of cycles
    corecore