14,361 research outputs found

    Edge Strength based Fuzzification of Colour Demosaicking Algorithms

    Get PDF
    In this paper we fuzzify the bilinear colour interpolation and the non-linear colour differential correlative interpolation techniques of colour demosaicking, using the edge strength map of the mosaic image. In doing so we ensure that the edges have less participation in the interpolation thereby minimizing the interpolation error. The result is faster and more accurate colour demosaicking algorithms with application to high resolution images. The overall improvement is quite significant when it comes to colour interpolation of high definition/high resolution images containing a lot of detail or edges as proved by the extensive experimental results on state-of-the-art databases and state-of-the-art comparison.Defence Science Journal, Vol. 64, No. 1, January 2014, DOI:10.14429/dsj.64.473

    De-velopment of Demosaicking Techniques for Multi-Spectral Imaging Using Mosaic Focal Plane Arrays

    Get PDF
    The use of mosaicked array technology in commercial digital cameras has madethem smaller, cheaper and mechanically more robust. In a mosaicked sensor, each pixel detector is covered with a wavelength-specific optical filter. Since only one spectral band is sensed per pixel location, there is an absence of information from the rest of the spectral bands. These unmeasured spectral bands are estimated by using information obtained from the neighborhood pixels. This process of estimating the unmeasured spectral band information is called demosaicking. The demosaicking process uses interpolation strategies to estimate the missing pixels. Sophisticated interpolation methods have been developed for performing this task in digital color cameras.In this thesis we propose to evaluate the adaptation of the mosaicked technol- ogy for multi-spectral cameras. Existing multi-spectral cameras use traditional methods like imaging spectrometers to capture a multi-spectral image. These methods are very expensive and delicate in nature. The objective of using the mosaicked technology for multi-spectral cameras is to reap the same benefits it offers in the commercial digital color cameras. However, the problem in using the mosaicked technology for multi-spectral images is the huge amount of missing pixels that need to be estimated in order to form the multi-spectral image. The estimation process becomes even more complicated as the number of bands in the multi-spectral image increases. Traditional demosaicking algorithms cannot be used because they have been specifically designed to suit three-band color images.This thesis focuses on developing new demosaicking algorithms for multi- spectral images. The existing demosaicking algorithms for color images have been extended for multi-spectral images. A new variation of the bilinear interpolationbased strategy has been developed to perform demosaicking. This demosaicking method uses variable neighborhood definitions to interpolate the missing spectral band values at each pixel locations in a multi-spectral image. A novel Maximum a-Posteriori (MAP) based demosaicking method has also been developed. This method treats demosaicking as an image restoration problem. It can derive op- timal estimation result that resembles the original image the best. In addition, it can simultaneously perform interpolation of missing spectral bands at pixel locations and also remove noise and degradations in the image.Extensive experimentation and comparisons have shown that the new demo- saicking methods for multi-spectral images developed in this thesis perform better than the traditional interpolation trategies. The outputs from the demosaicking methods have been shown to be better reconstructed estimates of the original im- ages and also have the ability to produce good classification results in applicationslike target recognition and discrimination

    Vision Science and Technology at NASA: Results of a Workshop

    Get PDF
    A broad review is given of vision science and technology within NASA. The subject is defined and its applications in both NASA and the nation at large are noted. A survey of current NASA efforts is given, noting strengths and weaknesses of the NASA program

    J-PLUS: Identification of low-metallicity stars with artificial neural networks using SPHINX

    Full text link
    We present a new methodology for the estimation of stellar atmospheric parameters from narrow- and intermediate-band photometry of the Javalambre Photometric Local Universe Survey (J-PLUS), and propose a method for target pre-selection of low-metallicity stars for follow-up spectroscopic studies. Photometric metallicity estimates for stars in the globular cluster M15 are determined using this method. By development of a neural-network-based photometry pipeline, we aim to produce estimates of effective temperature, TeffT_{\rm eff}, and metallicity, [Fe/H], for a large subset of stars in the J-PLUS footprint. The Stellar Photometric Index Network Explorer, SPHINX, is developed to produce estimates of TeffT_{\rm eff} and [Fe/H], after training on a combination of J-PLUS photometric inputs and synthetic magnitudes computed for medium-resolution (R ~ 2000) spectra of the Sloan Digital Sky Survey. This methodology is applied to J-PLUS photometry of the globular cluster M15. Effective temperature estimates made with J-PLUS Early Data Release photometry exhibit low scatter, \sigma(TeffT_{\rm eff}) = 91 K, over the temperature range 4500 < TeffT_{\rm eff} (K) < 8500. For stars from the J-PLUS First Data Release with 4500 < TeffT_{\rm eff} (K) < 6200, 85 ±\pm 3% of stars known to have [Fe/H] <-2.0 are recovered by SPHINX. A mean metallicity of [Fe/H]=-2.32 ±\pm 0.01, with a residual spread of 0.3 dex, is determined for M15 using J-PLUS photometry of 664 likely cluster members. We confirm the performance of SPHINX within the ranges specified, and verify its utility as a stand-alone tool for photometric estimation of effective temperature and metallicity, and for pre-selection of metal-poor spectroscopic targets.Comment: 18 pages, 12 figure

    Super resolution and dynamic range enhancement of image sequences

    Get PDF
    Camera producers try to increase the spatial resolution of a camera by reducing size of sites on sensor array. However, shot noise causes the signal to noise ratio drop as sensor sites get smaller. This fact motivates resolution enhancement to be performed through software. Super resolution (SR) image reconstruction aims to combine degraded images of a scene in order to form an image which has higher resolution than all observations. There is a demand for high resolution images in biomedical imaging, surveillance, aerial/satellite imaging and high-definition TV (HDTV) technology. Although extensive research has been conducted in SR, attention has not been given to increase the resolution of images under illumination changes. In this study, a unique framework is proposed to increase the spatial resolution and dynamic range of a video sequence using Bayesian and Projection onto Convex Sets (POCS) methods. Incorporating camera response function estimation into image reconstruction allows dynamic range enhancement along with spatial resolution improvement. Photometrically varying input images complicate process of projecting observations onto common grid by violating brightness constancy. A contrast invariant feature transform is proposed in this thesis to register input images with high illumination variation. Proposed algorithm increases the repeatability rate of detected features among frames of a video. Repeatability rate is increased by computing the autocorrelation matrix using the gradients of contrast stretched input images. Presented contrast invariant feature detection improves repeatability rate of Harris corner detector around %25 on average. Joint multi-frame demosaicking and resolution enhancement is also investigated in this thesis. Color constancy constraint set is devised and incorporated into POCS framework for increasing resolution of color-filter array sampled images. Proposed method provides fewer demosaicking artifacts compared to existing POCS method and a higher visual quality in final image
    corecore