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Abstract

The use of mosaicked array technology in commercial digital cameras has made

them smaller, cheaper and mechanically more robust. In a mosaicked sensor, each

pixel detector is covered with a wavelength-specific optical filter. Since only one

spectral band is sensed per pixel location, there is an absence of information from

the rest of the spectral bands. These unmeasured spectral bands are estimated

by using information obtained from the neighborhood pixels. This process of

estimating the unmeasured spectral band information is called demosaicking. The

demosaicking process uses interpolation strategies to estimate the missing pixels.

Sophisticated interpolation methods have been developed for performing this task

in digital color cameras.

In this thesis we propose to evaluate the adaptation of the mosaicked technol-

ogy for multi-spectral cameras. Existing multi-spectral cameras use traditional

methods like imaging spectrometers to capture a multi-spectral image. These

methods are very expensive and delicate in nature. The objective of using the

mosaicked technology for multi-spectral cameras is to reap the same benefits it

offers in the commercial digital color cameras. However, the problem in using

the mosaicked technology for multi-spectral images is the huge amount of missing

pixels that need to be estimated in order to form the multi-spectral image. The

estimation process becomes even more complicated as the number of bands in the

multi-spectral image increases. Traditional demosaicking algorithms cannot be

used because they have been specifically designed to suit three-band color images.

This thesis focuses on developing new demosaicking algorithms for multi-

spectral images. The existing demosaicking algorithms for color images have been

extended for multi-spectral images. A new variation of the bilinear interpolation
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based strategy has been developed to perform demosaicking. This demosaicking

method uses variable neighborhood definitions to interpolate the missing spectral

band values at each pixel locations in a multi-spectral image. A novel Maximum

a-Posteriori (MAP) based demosaicking method has also been developed. This

method treats demosaicking as an image restoration problem. It can derive op-

timal estimation result that resembles the original image the best. In addition,

it can simultaneously perform interpolation of missing spectral bands at pixel

locations and also remove noise and degradations in the image.

Extensive experimentation and comparisons have shown that the new demo-

saicking methods for multi-spectral images developed in this thesis perform better

than the traditional interpolation strategies. The outputs from the demosaicking

methods have been shown to be better reconstructed estimates of the original im-

ages and also have the ability to produce good classification results in applications

like target recognition and discrimination.
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Chapter 1

Introduction

In every phenomenon the beginning remains always the most notable

moment.

– Thomas Carlyle

I n the past two decades, most of the major technological breakthroughs have

been made towards making the fundamental shift from analog technology to the

digital technology. This technological shift has changed the way in which the

world handles visual and audio information. The digital camera is one of the

most remarkable examples of the equipments that have made this shift a great

success. The ability of this equipment to convert analog electromagnetic signals

to a viewable digital representation, has made the digital cameras more favorable

than the traditional image acquisition systems. The use of digital cameras totally

eliminates the laborious mechanical and chemical processes involved in creating

a picture using traditional cameras. A scene can be instantly captured, viewed

and, post-processed using a computer. In short, the use of digital cameras has

revolutionized the area of photography and made it even more convenient and

reliable.

The credit for the popularity and versatility of digital cameras goes to the

technology that is used inside the camera. The use of sensors that can convert

light into electrical charges has made it possible to replace the traditional camera
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technology. The image sensor employed by most of the digital cameras is a Charge

Coupled Device (CCD). Some of the cameras also make use of sensors that use the

Complementary Metal Oxide Semiconductor (CMOS) technology. These sensors

are arranged in the form of an array inside the camera. The image formation

process inside the camera involves light-sensing at each location of the image

by the image sensors and then combining their outputs in a proper fashion to

form the output image that can be perceived by the human eye. In case of color

cameras, each pixel in the image has to have information from all the three primary

visual bands (Red, Green and Blue). To tackle this problem, each location in the

imaging array inside the camera is made to have three image sensors each sensitive

to the three primary visual spectral bands. This enables each pixel to register

information from the red, green and blue spectral bands from the incoming light.

However, the problem with using such a technique for image formation is that,

as the demand for greater image resolution increases, the number of pixels in

the image also become higher which results in a greater number of locations of

the imaging array. This in turn increases the total number of imaging sensors

required for forming the color image. This affects the cost and the size of the

image capturing equipment. Due to the presence of a huge number of sensors,

the pixel registration also tends to become a little less efficient. This problem

was tackled by the use of a new technology called the Mosaic Focal Plane Array

(MFPA) technology. The MFPA technology enables the use of just one image

sensor per pixel location. The technology offers to reduce the size and cost of the

equipment and at the same time offering an almost similar image resolution and

quality. MFPA also eliminates the pixel registration problem that occurs in the

traditional digital camera technology. Today’s commercial digital camera industry

heavily relies on the MFPA technology. The MFPA technology has brought about

a technological change that is commercially more viable and cost effective.

The applications of digital images have surpassed the boundaries of visible

electromagnetic spectrum. Today, digital images are used to analyze entities that

cannot be seen by a human eye. For example, the use of infrared spectral band

to distinguish crop types in agriculture. The crop types cannot be distinguished

using the traditional color images. This creates a need for an image that can

2



accommodate the information from the infrared spectral band too. This is gener-

ally achieved by forming an image with information from all the required spectral

bands. Such an image which consists of information from more than the three tra-

ditional visible spectral bands is called a Multi-Spectral image. Multi-Spectral

images have wide range of applications ranging from agriculture, medicine, de-

fense, etc. The use of multi-spectral images has made night-vision possible for

defense related equipments. In agriculture, the use of multi-spectral images has

made analysis of crop sustainability, irrigation planning and storm damage assess-

ment easier. However, the technology for multi-spectral image acquisition still is

in its primitive form. The existing multi-spectral cameras use traditional methods

to capture and form the multi-spectral images. The multi-spectral cameras lack

the benefits offered by the popular MFPA technology that is used for digital color

cameras.

1.1 Objective

In this thesis we would explore the possibility of using the MFPA technology for

building a multi-spectral camera. The purpose of adapting the MFPA technology

as a possible new technology for multi-spectral cameras is to make the systems

cheaper, smaller, and mechanically more robust than any existing multi-spectral

image acquisition alternative. Thereby, this technology can provide the benefits

to multi-spectral cameras which are now being reaped by the digital color camera

industry. The thesis will involve the developments of new interpolation strategies

which can be used to recreate the multi-spectral image from the registered pixel

values in the imaging array from various spectral bands. Possible extensions of

existing demosaicking algorithms have been explored and implemented. Another

aspect of this work is to improve the quality of the multi-spectral images in the

presence of degradations and noise which tend to creep in during the image ac-

quisition process. This research work has been funded by the US Army Space and

Missile Defense Command and is a collaborative effort of University of Tennessee,

Knoxville and North Carolina State University.
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1.2 Image Sensors

The key difference between a digital camera and a film camera is that the digital

camera has image sensors instead of a film to capture the scene. The image sensors

convert light to electrical charges. Popular image sensor technologies include the

Charge-Coupled Device (CCD) sensors, the Complementary Metal Oxide

Semiconductor (CMOS) devices, the Charge Injection Device (CID) and the

Amorphous Silicon (a-Si) Sensor. The image sensors provide various advantages

compared to the traditional film photograph. Firstly, they are faster than film as

they are capable of generating a digital image almost instantaneously compared

to the laborious process that has to be followed in case of a film. Secondly,

image sensors offer higher sensitivity. The quantum efficiency, or the ability to

record the incoming light, is about 90% compared to a quantum efficiency of

0.5% in traditional photography [Qi, 1999]. Lastly, image sensors are linear in

nature. This linearity makes the digital image acquisition process more stable

and greatly reliable compared to the non-linear traditional photography methods.

In this section, we will give a brief overview of the two most popular image sensor

technologies.

1.2.1 CCD Image Sensors

A CCD is a silicon wager which is capable of converting incoming photons to

electrons which could be stored and counted. The CCD was invented by George

Smith and Willard Boyle at Bell Labs in 1969 [Cutin, 2004]. The CCD is an array

of metal-oxide-semiconductor (MOS) capacitors which can accumulate and store

charge due to their capacitance [Audley, 1997]. The CCDs get their name from the

way the charge is read after an exposure. The array is read out by transferring the

charge from one MOS capacitor to its neighbor on one side. Fig. 1.1 illustrates the

CCD operation. The charges on the first row are transferred to a read-out register.

Then they are fed to the amplifier unit which provides the required amplification.

They are then converted to digital sequences by the analog-to-digital converter.

This process is followed for each row in the array. After the completion of each

row, the charges in the read-out register are removed and replaced by the charges

4



Figure 1.1: CCD Readout Mechanism [Cutin, 2004]

from the next row. In this way the charges on each row are coupled to those on

the row above so when one row moves down, the next one moves down to fill its

old space in the read-out register. In this way each row is read one at a time. The

CCD technology remains the dominant technology in the image sensor market.

According to a survey [Qi, 1999], the CCD sensors have a 79% of market share.

1.2.2 CMOS Image Sensors

The main problem with the CCD sensors is that they are not cost-effective. They

have been produced in foundries using specialized and expensive processes that

are specific only to make CCDs. Meanwhile, in the case of CMOS image sensors,

there are more and larger industries which have already been making products that

use the CMOS technology to make chips for computer processors and memory.

There are two kinds of CMOS image sensors - Passive Pixel Sensors and Active-

Pixel Sensors [Cutin, 2004]. In passive-pixel CMOS sensors, a photosite converts

photons into an electrical charge. This charge is then carried off the sensor and

amplified. These sensors are small in size. However, the main problem with these

kind of sensors is the noise that occurs in the image acquisition process. The

active-pixel sensors reduce the noise associated with the passive-pixel sensors.

Each pixel has a special in-built circuitry that determines the noise and cancels it

out. The performance of this technology is comparable to the CCD image sensors

and also allows for larger image array and higher resolution. Fig. 1.2 shows the

Kodak CMOS KAC-0311 image sensor. The sensor can accommodate 640 × 480
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Figure 1.2: KAC-0311 CMOS Image Sensor from Kodak (Courtesy: Eastman
Kodak Company)

active pixel elements [Company, 2004].

1.3 Detector Geometry

The detector geometry plays a very important role in the image acquisition sys-

tem. In general, there are only three possible ways in which a plane can be tiled

with regular shapes. These are illustrated in Fig. 1.3. The most popular pixel

geometry that is used in imaging systems is the square tessellations. One of the

main reasons for the choice of square-shaped tessellation for pixels is that the

pixels are addressed based on the orthogonal cartesian coordinate system which

is the most widely used coordinate system. It has also been debated that square

tessellations are the best model for the human visual system because the human

vision is supposed to observe straight vertical features. However, the hexagonal

tessellations have also been explored and proved to be better than the square

tessellations. The triangular tessellations is considered to be the dual of the

hexagonal tessellations. The hexagonal tessellations have some advantages over

the square tessellations. Firstly, the hexagonal system is supposed to model the

human visual system the best. This is because the transformation from image

to cortical representation consists of two stages. The first stage is between the

image and the retinal neural image and the second between the retinal neural
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(a) Square Tessella-
tion

(b) Hexagonal Tessel-
lation

(c) Triangular
Tessellation

Figure 1.3: Types of Tessellations

image and the cortical neural image [Wensel et al., 1990]. The distribution of

the ganglion cells is rotationally invariant about the center of the visual field.

That is, the cells on a circle of given radius are uniformly distributed. Each

unit has a center-surround structure referred to as a heptuplet, consisting of itself

and the six neighboring units whose centers form a hexagon. This is the reason

the receptors in the human visual system are arranged in hexagonal tessellation.

Thus, the hexagonal tessellation best maps human visual system. Secondly, it

has been proved that if a two-dimensional signal is sampled using hexagonal sam-

pling then it takes about 13.4% lesser samples than the rectangular sampling

[Dudgeon and Mersereau, 1984]. Thirdly, there is no connectivity ambiguity in

the hexagonal tessellation. The square tessellation is said to have two types have

connectivities - the edge-to-edge connectivity and the corner-to-corner connectiv-

ity [Rosenfled, 1970]. These two definitions of connectivity in square tessellations

leads to the connectivity ambiguity. The figure 1.4(a) displays the connectivity

ambiguity. We see that even though the inner square pixel is in a closed path

according to the edge-to-edge connectivity definition still the background is con-

nected to the foreground through the open corner.This shows that the foreground

and background are connected and the inner pixel is still not in a closed loop. But

this type of ambiguity does not arise in the case of hexagonal tessellation. The

reason for that is because there is only one definition for connectivity which is

related to the 6-neighborhood (see Fig. 1.4(b)). Next, the hexagonal tessellation

has been proved to be the most optimal for thinning algorithms and edge detec-

tion. Finally, the advantage of equidistant neighbors in hexagonal tessellations
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(a) Connectivity Am-
biguity In Square Tes-
sellations

(b) Perfect Connec-
tivity In Hexagonal
Tessellation

Figure 1.4: Connectivity Definitions in Square and Hexagonal Tessellations

proves beneficial in the interpolation process. The interpolation process takes

the neighborhood pixel intensities into consideration for estimation of the missing

pixel value. Now, in a square tessellation when an eight-neighborhood definition

is considered the neighbors at the diagonals are farther (distance wise) than the

vertical and the horizontal ones. Thus, the characteristics of the diagonal neigh-

bors are less similar to the center pixel than to the rest of the neighbors. This

problem does not occur in hexagonal tessellation because in hexagonal tessellation

all the six neighbors are at the same distance and thus while performing inter-

polation, each of the neighborhood pixel contributes equally towards the missing

pixel intensity calculation.

1.4 Mosaic Focal Plane Array Technology

Mosaic focal plane array technology has become mainstay in the making of com-

mercial digital cameras. This has been possible because the technology offers

many advantages compared to the traditional technologies that have been used in

digital cameras. Some of the advantages include lesser equipment costs, greater

robustness and better pixel registration. These benefits will become more evident

as we go into details of this technology.

The Mosaic Focal Plane Array technology uses mosaicked sensors to capture im-

ages. A mosaicked sensor is a monolithic array of many sensors, arranged in a

particular geometric pattern. This pattern is generally called the mosaic filter

8



array. Some of the popular filter arrays for color-image cameras have been shown

in Fig. 1.5. These filter arrays are called color filter arrays (CFA). Sensors for spe-

cific wavelengths of the spectral band are arranged in the photo-sites according

to the CFA pattern. Fig. 1.6 gives a block diagram of the mosaic technology.

The block diagram gives us an overall picture of the image acquisition process

that takes place in a camera. The actual scene is captured using the mosaicked

sensors. This process of capturing the actual scene onto a set of wavelength-

specific sensors is called Mosaicking. The image capturing process is such that only

one specific spectral band is captured per pixel location. This helps in reducing the

total number of sensors required for the image acquisition process, thus reducing

the size and cost of the equipment. The output of the mosaicking process produces

an image which is a collection of intensity values produced by the various sensors

on the mosaicking array. This mosaicked image is then given as input to the

demosaicking block. The demosaicking block tries to estimate a multi-channel

image from the mosaicked image. Since, each pixel in a mosaicked image has

information of only one particular spectral band, the demosaicking process uses

neighborhood pixels to estimate the prospective intensity values of the missing

bands at each pixel location. This process is called interpolation. There are many

interpolation algorithms that have been developed and are being widely used in

commercial digital cameras. In the following sub-sections we will look into more

details of the mosaicking and demosaicking processes. The discussion will mainly

focus on the use of mosaic focal plane array technology in digital cameras for color

images.

1.4.1 Mosaicking Process

Mosaicking is a technique that is used to capture a multi-channel or a multi-band

image using only one sensor per pixel [Ramanath et al., 2004]. To form a multi-

band image, each pixel in the image needs to have information from all the spectral

bands. For example, if a 3-band image has to be formed, then each pixel in the

3-band image must contain information pertaining to all the three spectral bands.

In case of mosaicking, the required spectral bands are subsampled such that the
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(a) Pseudo-randomly
generated CFA

(b) Diagonal Stripe CFA

(c) Vertical Stripe CFA (d) Bayer CFA

(e) Diagonal Bayer CFA (f) Bayer CFA (in hexagonal tessellations)

Figure 1.5: Color Filter Arrays [FillFactory, 2005]
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Figure 1.6: Block Diagram of Mosaic Technology

image can be formed by using only one sensor per pixel instead of using multiple

sensors at each of the pixel location. This sampling is achieved by overlaying a

filter array on top of the sensor substrate. Ideally, the image formation process

requires each pixel to have information from all the spectral bands. This is made

possible by placing all the required photo-sensors sensitive to all the spectral bands

at each pixel location. The sensors would then sense the incoming light and record

the intensity values at each sensor location. The problem with this technique is

that the number of sensors required for the formation of the whole image is very

huge. Thus, increasing the cost of the equipment to a large extent. Another major

problem is the one of pixel registration. Since, each pixel location has a cluster

of sensors packed in a small space, the probability of sensing the exact intensity

of each of the spectral bands is reduced to a great extent. This consequently

degrades the quality of the image formed. The construction of this kind of image

acquisition equipment makes it mechanically less robust. Any disturbance to the

photo-sensors, due to external force, can result in erroneous sensing by the sensors.

These drawbacks have been addressed by the mosaicking process.

As discussed earlier, the mosaicking process uses a mosaic filter array to sense

one spectral band per pixel location. Fig. 1.7 explains the mosaicking process for

a three band color image. The actual scene is captured by the CFA in the form of

a mosaicked image. The mosaicked image is a collection of all the spectral bands

in a specific pattern which is dictated by the pattern of the color filter array. The

heart of the mosaicking process lies in the design of the color filter array.

11



Figure 1.7: Mosaicking Process

Color Filter Array The color filter array (CFA) forms the most important

part of the mosaicking process. The CFA enables sensing just one spectral band

per pixel location instead of sensing all the spectral bands at each of the pixel

locations. The ultimate aim of using a CFA in the image acquisition process

is to reduce the size and cost of the equipment. At the same time, the CFA

must be designed carefully so that it is easier to form an accurate estimation

of the scene being captured in the form of a digital color image. This makes

the designing process of a CFA a serious matter and thus needs consideration

of various factors like frequency or probability of appearance of spectral bands,

spectral consistency, uniform spectral distribution and the most important, the

CFA must provide means for easy interpolation to form the final multi-band im-

age [Miao et al., 2003]. We will look into the details of each of these factors in

Sec. 2.1.

1.4.2 Demosaicking Process

Demosaicking1 is the reverse process of Mosaicking. The main aim of demo-

saicking is to estimate the color image (multi-band image) from the mosaicked

image formed by the mosaicking process. The mosaicked image contains informa-

tion about all the spectral bands distributed throughout the image in a specific

pattern which is defined by the CFA. Now, to form the whole image from the dis-

1It is customary in research literature to mention the ambiguity in spelling of the word
demosaicking. Some authors prefer spelling the word as demosaicing. However, since the issue
still remains unresolved, the manner in which the word is spelt has been left to the author’s
discretion.
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tributed spectral band information we need to estimate the missing band values at

each of the pixel location such that the ouput is as close as possible to the actual

scene. Traditionally, interpolation techniques have been used for demosaicking

color images. These techniques use neighborhood information to estimate the

missing spectral band information at each of the pixel locations. In this section,

we present the popular interpolation techniques [Ramanath et al., 2002] that have

been used to demosaic images mosaicked by the Bayer CFA.

Ideal Interpolation The concept of ideal interpolation is only of theoretical

importance as it cannot be implemented practically. This is shown with the help

of mathematical modelling. For the ease of interpretation, we only consider the

one-dimensional case [Roberts, 2003]. Before going into the mathematical details

of one-dimensional signals, here is a description of the interpolation process in

case of images. The actual scene is a two-dimensional continuous signal, f(x, y),

which is sub-sampled during the mosaicking process using the CFA. It has to be

restored back into a high-resolution digital image by interpolating the missing

samples in the mosaicked image.

A Continuous Time (CT) signal x(t) is sampled with a sampling rate of fs.The

impulse-sampled signal is mathematically denoted as in Eq. (1.1)

xδ(t) =
∞∑

n=−∞
x(nTs)δ(t− nTs) (1.1)

where Ts = 1
fs

. The reconstruction of the original signal is performed using an

ideal lowpass filter. In the frequency domain, the lowpass filter cuts off above fm

(fm being the highest frequency present in the original signal) and below fs− fm.

Then

X(f) = Tsrect(
f

2fc

)Xδ(f) (1.2)

where fc is the cutoff frequency. fm < fc < (fs − fm). The equivalent in the time

domain will be

x(t) = 2
fc

fs

sinc(2fct) ∗ xδ(t) (1.3)

13



So we see, in the time domain the interpolation process uses the convolution

operation which is nothing but the shifted sum of the signals involved over infinite

time space. That is, to obtain perfect signal reconstruction, we need to perform

the process over all the infinite samples of the sampled signal. This is not possible

practically as we only have limited number of samples. Thus, the implementation

of the ideal reconstruction filter is limited only to theoretical reasoning of the

interpolation process.

Bilinear Demosaicking Bilinear demosaicking is considered to be the most

basic and the most simple way to demosaic a given image [Longere et al., 2002].

This method of demosaicking depends only on intensity values of the same spectral

band, i.e, it does not take into consideration the possible correlation between

spectral bands. The interpolation of a missing spectral band value is performed

by considering the pixel values of the same spectral band in the neighborhood of

the pixel location. The bilinear demosaicking algorithm is illustrated in Fig. 1.8.

Take, the pixel location R53, as an example. This pixel location has recorded

the intensity value of only the red spectral band. The missing spectral bands,

green and blue are estimated by considering a 3× 3 neighborhood and averaging

the pixel values with the corresponding spectral band. Thus, the green and blue

Figure 1.8: Bilinear Demosaicking for Bayer CFA
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bands’ values will be

G53 =
1

4
(G43 + G54 + G63 + G52)

B53 =
1

4
(B42 + B44 + B64 + B62)

The bilinear demosaicked output can be observed in Fig. 1.9(c). The bilinear

demosaicking process introduces step-like artifacts at the edge locations in the

image referred to as the zipper effect. The artifacts can be closely observed in

Fig. 1.9(d). The remedy to the zipper effect problem is to consider inter-band

correlation in the demosaicking process.

Constant-hue based Demosaicking The constant-hue based demosaicking

was proposed by Cok and was one of the first few methods used in commercial

digital still cameras. The method focuses on reducing color artifacts generated

in the process of reconstruction of the demosaicked output from the mosaicked

image. Extending the discussion on bilinear demosaicking, the main cause for

the occurrence of zipper effect is that the bilinear demosaicking algorithm takes

all the spectral bands to be independent from each other. However, it has been

empirically proved that color images have cross correlation between the red, green

and blue bands. This means that if the inter-band relationship is taken into

consideration, the output of the bilinear demosaicking method can be improved

to a great extent. Cok [Cok, 1987] proposes that the main cause for the generation

of artifacts, caused by the interpolation process, are due to abrupt hue changes. If

the hue changes are made to occur gradually then the appearance of color fringes

in the image can be reduced to great extent.

In general, hue is defined as the quality of a color as determined by its dominant

wavelength. In case of Cok’s method, hue is defined by a set of R
G

and B
G

ratios,

where R,G,B stand for intensity values corresponding to the red, green and blue

spectral bands respectively. The definition has to be modified when G = 0. The

red and blue bands are considered to be chrominance channels and the green is

assigned to the luminance channel. The method is actually a two pass process, the

first being the interpolation of the hue values and then finding the interpolated
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(a) Original image considered for experi-
mentation

(b) Mosaicked image obtained from Bayer
CFA

(c) Bilinear Demosaicked Output (d) Zoomed version of the demosaicked output showing
the zipper effect

Figure 1.9: Bilinear Demosaicking Results for Color Images
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chrominance values from the already interpolated hue values. Consider, two pixel

locations (a, b) and (c, d) in an image with uniform hue, then the relationship

between the chrominance and luminance components at the two pixel locations is

given as follows:
Rab

Gab

=
Rcd

Gcd

i.e.,
Rcd

Rab

=
Gcd

Gab

(1.4)

Now, if the red value at the pixel location (c, d) is unknown then it can be calcu-

lated by rearranging Eqn. (1.4) as

Rcd = Gcd · (Rab

Gab

)

where, Rab and Gab are the measured chrominance and luminance values at the

pixel location (a, b). But, usually the images do not have constant hue characteris-

tics. In such non-uniform hue images, the neighborhood information is considered

to ensure smooth hue changes throughout the interpolation process. Eqn. (1.5)

shows the process of finding the unknown chrominance values in a non-uniform

hue image.

Ri
cd = Gcd · (Rab

Gab

)i (1.5)

where the superscript i represents the interpolated hue value between neighboring

chrominance sample locations and Gcd is the luminance value at the interpolation

location. Now, when it comes to the implementation of the algorithm on an

image, the process boils down to a two pass process as illustrated in Fig. 1.10.

The first pass interpolates the luminance (i.e. green band) values all over the

image. Bilinear interpolation is used to interpolate the green band values. This

is followed by interpolating the chrominance values by taking the neighborhood

pixels into consideration. As we see from the figure, in the first pass all the missing

green pixels are estimated using bilinear interpolation. A 3 × 3 neighborhood is

considered to perform the averaging operation. Next, the final image is formed

by estimating the missing chrominance values using the interpolated luminance
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Figure 1.10: Constant-Hue Demosaicking Process Block
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(a) Mosaicked image obtained from Bayer
CFA

(b) Constant-Hue based Demosaicked
Output

Figure 1.11: Constant-Hue based Demosaicking Results for Color Images

information. Fig. 1.11 shows the result obtained after performing the constant-hue

demosaicking. Comparing the result with the bilinear demosaicked output from

Fig. 1.9, we see that the zipper effect in the bilinear demosaicked output has been

reduced to a great extent in the case of constant-hue demosaicked image. However,

when we compare the original image to the constant-hue demosaicked image, we

see that the reconstruction process has not been very successful in creating a

perfect visual output. For more clarity on the type of output obtained, refer to

Table 1.1. The table lists the root mean square errors (RMSE) between each of

the demosaicking outputs and the original image. We observe, from the table

that, the constant hue based demosaicking method produces an output that has a

RMSE of 23.1798. Ideally, for an output which is an exact replica of the original

image, the RMSE value is 0. Comparing, the RMSE values of the Constant-Hue

output to the Bilinear demosaicked output, we see that the RMSE of the bilinear

demosaicked output is higher than the constant-hue based method. This means,

the constant-hue method performs better than the bilinear demosaicking method

but still needs a lot of improvement.
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Table 1.1: Root Mean Square Errors for Color Demosaicking Methods
Demosaicking Method Root Mean Square Error

Bilinear Demosaicking 23.7870
Constant-Hue Based Demosaicking 23.1798
Median-Based Demosaicking 22.9198
Gradient Based Demosaicking 11.8478
Adaptive Color Plan Based Demosaicking 10.3228

Median-based Demosaicking The median-based demosaicking method was

invented by Freeman. Freeman [Freeman, 1988] proposes that since the luminance

band is the highest sampled band in the Bayer CFA, it is more accurately recreated

using bilinear interpolation than the rest of the bands. The higher sampling

rate of the luminance band makes the band have more neighbors than the other

bands, and thus the probability of estimating the most accurate missing value is

greatly increased. To ensure proper estimation of the other bands, Freeman has

proposed a two pass algorithm that uses median filtering and produces a better

result than the bilinear demosaicking method. Firstly, all the three bands are

bilinearly interpolated over the whole image. This output is the same as the

bilinear demosaicked output. In the second pass, two difference images R−G and

B−G are created, where R, G,B represent the red, green and blue channels of the

bilinear demosaicked output. These difference images are then median filtered.

Median filtering is a method in which each pixel is assigned to the median of its

neighborhood pixels’ value. It is a blurring technique which is popularly used in

image processing applications. In this context, the median filtering brings about

a continuity to the intensity values in the R − G and B − G difference images.

Median filtering should be applied only at locations where there are missing R

and B values. Next, the interpolated green band image is added to the difference

images and thus we get the estimated red and blue channels. Fig. 1.12 shows the

result obtained after median-based demosaicking. A 5× 5 median filter was used

to obtain this result. Referring to Table 1.1, we see that the RMSE of the median

based output is 22.9198. There has been an improvement in the result compared

to the constant-hue based demosaicking output, but the method still needs to be

improved to produce a better result. The drawback of this method is that, the
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(a) Mosaicked image obtained from Bayer
CFA

(b) Median-based Demosaicked Output

Figure 1.12: Median-based Demosaicking Results for Color Images

method works best only for color images which have similar intensity mean values

for all the three bands. Thus, before applying the demosaicking method one has

to scale all the bands in the image such that all the bands have similar mean

values.

Gradient-based Demosaicking The gradient based demosaicking method was

invented by Laroche and Prescott. This method is being actually used in Kodak

DCS 200 Digital Camera System. This demosaicking algorithm focuses on improv-

ing the output of the bilinear demosaicking output by using the edge information

in an image [Laroche and Prescott, 1994]. The method takes advantage of the

fact that the human eye is most sensitive to luminance changes. Unlike, bilinear

demosaicking, the interpolation is performed by taking the edge information of

the luminance channel into consideration. This helps in reducing the edge arti-

facts which are one of the byproducts of the bilinear interpolation process. The

algorithm is a two pass process. The first pass, involves interpolation of the green

channel. From Fig. 1.13, we see that at location (3, 3) the missing green band

value is calculated by using two gradient values. The hg and vg are two gradi-

ent values corresponding to the horizontal and vertical edges. Now, depending
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Figure 1.13: Luminance Channel Interpolation in Gradient-based Demosaicking
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(a) Mosaicked image obtained from Bayer
CFA

(b) Gradient-based Demosaicked Output

Figure 1.14: Gradient-based Demosaicking Results for Color Images

on the strength of the gradients the interpolation is performed in that particular

direction. This helps in restoring the existing edge information of the image. The

second pass, involves interpolation of the chrominance bands. This process uses

the difference images R − G and B − G to interpolate the chrominance values.

For eg.,

B34 =
(B24 −Gi

24) + (B44 −Gi
44)

2
+ Gi

34

B43 =
(B42 −Gi

42) + (B44 −Gi
44)

2
+ Gi

43

B33 =
(B22 −Gi

22) + (B24 −Gi
24) + (B42 −Gi

42) + (B44 −Gi
44)

4
+ Gi

33

where the superscript i denotes the already interpolated luminance values. The

result obtained for the gradient-based demosaicking process is shown in Fig. 1.14.

We can observe that the quality of the output has improved to a great extent

compared to the previous demosaicking methods. This improvement is clearly seen

in the RMSE value of the output (see Table 1.1). The RMSE value has greatly

reduced compared to the one corresponding to the median based demosaicking

method.
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Figure 1.15: First Run in Adaptive Color Plane based Demosaicking

Adaptive Color Plane Demosaicking The adaptive color plane demosaick-

ing technique was developed by Hamilton and Adams [Hamilton and Adams, 1997].

This method employs classifiers similar to the gradient-based demosaicking method

but modified to accommodate first and second order derivatives. This process has

three runs. The first run interpolates the luminance channel and the next two

runs estimate the missing two chrominance band pixels. Consider a Bayer CFA

neighborhood in Fig. 1.15 (a) Gi is a green pixel and Ci is a chrominance pixel

(i.e, Red or Blue pixel) of the same type. The classifiers are given by

hg = abs(−C3 + 2C5 − C7) + abs(G4 −G6)

and

vg = abs(−C1 + 2C5 − C9) + abs(G2 −G8)

We observe that the classifiers contain second order derivative terms for chro-

maticity data and gradients of the luminance data. Now, the first run of inter-

polating the luminance band is done depending on the orientation of the edge at

that pixel location. For example, in our case, G5 will be determined as given by

the following. G5 =





G4+G6

2
+ −C3+2C5−C7

2
if hg < vg

G2+G8

2
+ −C1+2C5−C9

2
if hg > vg

G2+G8+G4+G6

4
+ −C1−C9+4C5−C3−C7

4
if hg = vg





Now, for the second and third run of the process where we populate the chromi-

nance pixel values, consider Fig. 1.15 (b), R2 = R1+R3

2
+ (−G1+2G2−G3)

2
and R4 =

R1+R7
2

+ (−G1+2G4−G7)
2

. This was the case when the chrominance pixels have neigh-

bors of the same type in the same row or column. In case we have to estimate
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the missing R5 we employ the same method as we did in the interpolation of the

green band. In this case,

hg = abs(−G3 + 2G5 −G7) + abs(R3 −R7)

and

vg = abs(−G1 + 2G5 −G9) + abs(R1 −R9)

then

R5 =





R3+R7

2
+ −G3+2G5−G7

2
if hg < vg

R1+R9

2
+ −G1+2G5−G9

2
if hg > vg

R1+R3+R7+R9

4
+ −G1−G9+4G5−G3−G7

4
if hg = vg





Fig. 1.16 gives the results obtained for the adaptive color plane based demo-

saicking process. We see that the adaptive demosaicking process gives the best

result of all the bands. The RMSE value is the least of all the demosaicking meth-

ods, thus making this method the most suitable method for demosaicking color

images.

(a) Mosaicked image obtained from Bayer
CFA

(b) Adaptive color plan based demo-
saicked Output

Figure 1.16: Adaptive Color Plane based Demosaicking Results for Color Images
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1.5 Contribution of Research

This thesis work concentrates on introducing a new multi-spectral image acquisi-

tion system. The Mosaic Focal Plane Array (MFPA) technology which is popu-

larly used in digital color cameras has been used for multi-spectral images.

The major contributions of this thesis work include the extension of existing demo-

saicking techniques for color images to multi-spectral images. The development of

a new demosaicking strategy based on the mosaic filter array formation process.

A novel Maximum a-Posterior probability (MAP) based approach that deals with

performing demosaicking in the presence of noise and degradations has also been

developed.

1.6 Thesis Outline

The outline of the thesis is as follows:

Chapter 1 provided a brief introduction to the work done in the thesis. It also

provided a literature survey on the related topics to the thesis work.

Chapter 2 deals with the two main processes of the MFPA technology - the

mosaicking and the demosaicking process. The chapter involves a thorough dis-

cussion on the design requirements for the mosaicking process. The discussion

leads to the development of a seven-band multi-spectral mosaic filter array using

a generic mosaic filter array creation technique. The demosaicking process forms

the major part of the chapter. The details of demosaicking process including

the design requirements and various interpolation-based demosaicking strategies

have been discussed. A development of a new interpolation-based demosaicking

strategy has been designed and discussed in this chapter.

Chapter 3 delves into optimizing the demosaicking process. The chapter fo-

cuses on treating the demosaicking process as a traditional image restoration prob-

lem and solving the optimization problem. A Maximum a-Posteriori (MAP) based

method has been developed to solve the demosaicking problem. The discussion on

the MAP problem involves the possible prior and sensor models that have been

used in this thesis. A solution for the MAP problem has been developed using
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the Gradient Descent method.

Chapter 4 exhibits the experimental results obtained for the MFPA based

methods discussed in the Chapter 2 and Chapter 3. The chapter starts off with

a discussion on the experimental process and the use of the multi-spectral image

database for experimentation purposes. The use of different metrics for comparing

the demosaicking methods have also been discussed. This is followed by the listing

of all the results for different methods. The chapter compares all the results and

comments upon the best method amongst the numerous methods implemented in

this thesis work.

Chapter 5 summarizes the contributions in this thesis work and provides some

possible extensions for future work in this area.
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Chapter 2

MFPA Technology for

Multi-Spectral Images

There are very few human beings who receive the truth, complete and

staggering, by instant illumination. Most of them acquire it fragment

by fragment, on a small scale, by successive developments, cellularly,

like a laborious mosaic.

– Anais Nin

The discussion in Section 1.4 gave an overview of the use of mosaic focal plane

array technology in digital cameras. We continue the discussion in this chapter

by focussing on the development of demosaicking algorithms for multi-spectral

images.

Before going into the details of mosaicking and demosaicking methods for

multi-spectral images, we need to understand that the methods used for color

images cannot be directly applied to multi-spectral images. New algorithms have

to be developed for both mosaicking and demosaicking of multi-spectral images.

In case of the mosaic pattern, we use a color filter array (for e.g. Bayer color

filter array) in color images. The same array cannot be used in case of multi-

spectral images simply because the Bayer color filter array has provisions only

for three band images. There is a need for a new mosaic pattern or filter array
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that can be used for the multi-spectral images. Another area where there is a

need for modification is the demosaicking process. Demosaicking algorithms that

have been used for color images are specific only to color images. To develop

new demosaicking algorithms or to extend the same algorithms to multi-spectral

images we need to first identify the factors that control the demosaicking process.

This chapter will give a brief overview of the mosaicking process and the factors

that affect the mosaicking process. It will also deal with the extension of the

mosaicking process to multi-spectral images. This will be followed by a discussion

of demosaicking process for multi-spectral images.

2.1 Mosaicking of Multi-spectral Images

The first thing that comes to mind when we talk about the mosaicking process

is the mosaic pattern that is used to mosaic the actual multi-band image. As

discussed in the previous chapter, there are many mosaic patterns available for

mosaicking color images. The most popular of them is the Bayer color filter

array (CFA). However, the use of the Bayer CFA is limited only to color images

(i.e, three channel images). There is a need for a mosaic filter array that can

accommodate more than three bands per image. Miao et al. [Miao et al., 2003]

have proposed a mosaic filter array that can be used for multi-spectral images.

The paper discusses a generic method to generate mosaic filter array patterns for

a given number of spectral bands and their respective frequencies of appearance.

Using this method we can generate filter arrays for images with any number of

spectral bands. In this section, we will give a brief overview of this method and

its applications.

Before we go to the mosaic filter array formation procedure, it is important to

review the factors that affect the mosaicking process. These factors play a crucial

role in the design of the mosaic filter array. A thorough discussion is given below

on the various factors that control the mosaic filter array pattern. The discussion

will describe the factors based on color filter arrays and then move on to their

extension to multi-spectral mosaic filter arrays.
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Frequency or Probability of Appearance The frequency of occurrence of

a spectral band plays an important role in the design of the CFA. The factors that

affect the frequency of occurrence of a spectral band depend on the purpose for

which the camera is being used. For example, in case of digital still cameras, the

main purpose is to capture a scene and convert it into a color image. That is, the

final output image has three spectral bands (Red, Green and Blue) and the main

motive is to form the most visually appealing output. Thus, the human visual sys-

tem is taken into consideration for the development of a CFA. Extensive research

work on the human visual system has concluded that the human visual system

is more sensitive to luminance changes than chrominance changes [Mullen, 1985].

This means that for creating a best visually appealing output, i.e. forming the best

estimate of the actual scene, the CFA must give more importance to luminance

information than the chrominance information. Now, looking at the luminance

characteristics of the red, green and blue spectral bands for the human visual sys-

tem, in Fig. 2.1(a)(Courtesy [Gonzalez and Woods, 2003]), we see that the green

spectral band is the major contributor of luminance information. Thus, the green

spectral band is considered as the luminance band in most of the existing CFAs.

The luminance band is sampled at a higher rate compared to the other existing

bands. For example, in the Bayer CFA, the green band is sampled with twice the

rate compared to the red and the blue spectral bands [Bayer, 1976]. The green

band is made to occur at every alternate pixel location as we see in Fig. 2.1(b).

Spectral Consistency In the process of designing a CFA it is important to

consider the reconstruction process that follows the mosaicking process. To ensure

an uniform reconstruction performance across the whole image, it is important

for each pixel to have the same number of neighbors of a certain band within a

specific neighborhood. This is an important characteristic of the CFA because

the reconstruction process mainly relies on interpolation algorithms. The basis of

interpolation algorithms is to gather information about a missing spectral band at

a specific pixel location from the neighborhood of the pixel. To ensure consistency

in the interpolation process throughout the image, it is important that a specific

spectral band shares the same type of neighbors all throughout the image. This
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(a) Absorption of light by the human eye for different spectral bands

(b) Bayer CFA

Figure 2.1: Characteristics of the Human Visual System and the Bayer CFA
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(a) Bayer CFA (b) Pseudo-random CFA

Figure 2.2: Comparison of Spectral Consistency in CFAs

characteristic of a CFA is illustrated in Fig. 2.2. The Bayer CFA in Fig. 2.2(a) is

spectrally consistent. We see that, the pixel with red spectral band information

(for example R33) has four green pixels in its four-neighborhood definition (i.e.,

G23, G34, G43 and G32) and four blue pixels in its eight-neighborhood definition

(i.e., B22, B24, B44 and B42). This is the case with every red pixel all throughout

the image. Similarly, the blue pixel has four green pixels in its four-neighborhood

and four red pixels in its eight-neighborhood definition. Same is the case with

the green pixels. Now, the random CFA in Fig. 2.2(b) does not display spectral

consistency. We see that, the type of neighbors shared by each spectral band is

not the same all throughout the image. For example, the red pixel R22 has three

blue (B23, B32 and B21) and one green pixel (G12) as its four neighbors, whereas

another red pixel, R34 has two red and one pixel of each blue and green as its four

neighbors. Thus, the random CFA is difficult to interpolate using the traditional

interpolation techniques.

Uniform distribution The distribution of pixels throughout the CFA also

plays an important role in the design of a CFA. The CFA has to have a uniform

distribution of all the spectral bands throughout the image. This makes the

reconstruction process more systematic and produces a better result. The Bayer

CFA has an uniform distribution of all the spectral bands throughout the image.

Ease of Interpolation As mentioned earlier, the design of the CFA must

also take into account the reconstruction process. The design of the CFA should
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be such that the reconstruction of the color image should be computationally less

intensive and easy to implement. Traditionally, the reconstruction of the color

image from a CFA has mainly depended on interpolation algorithms. The ease of

interpolation depends on the arrangement of the spectral bands in the CFA. It is

difficult to interpolate randomly generated CFAs than to interpolate fixed CFAs.

In a fixed CFA (like, the Bayer CFA), since the arrangement of spectral bands is

repetitive, the algorithm for interpolation can be easily extended from one pixel

to all the pixels of the same type throughout the image. Whereas, in a randomly

generated CFA, due to spectral inconsistency, each pixel of the image has to be

addressed and interpolated individually. This makes the reconstruction process

extremely complex. Methods other than normal interpolation techniques have to

be adopted to reconstruct images from a random CFA. Zhu et al. [Zhu et al., 1999]

have proposed a reconstruction process for random CFAs based on edge detection

and boundary interpolation methods. This technique does not require any knowl-

edge about the pattern of the CFA.

Unlike color images, the goal of using the MFPA technology in the case of

multi-spectral images is not to obtain a visually appealing output, but to obtain

an output which can be used to classify objects in the image. This makes the

band selection process in multi-spectral images different than the color images.

In a color image, the luminance channel (green band) is given more importance

because human visual system is most sensitive to luminance changes that chromi-

nance changes. But in case of multi-spectral images, since the focus is to analyze

the characteristics of the object that has been captured in the image acquisition

process, we need to choose the spectral band that has the best response coverage.

This becomes the band of importance in a multi-spectral image. Applying this

logic in the designing process, the spectral band with the best coverage is made to

occur most number of times in the MSFA. That is, the probability of appearance

of that band is the highest compared to the other bands in the multi-spectral im-

age. The algorithm for the generic method takes care of these design requirements

and generates the required MSFA. A checkerboard pattern is used as the starting

point for the creation of a mosaic pattern. The choice of a checkerboard pattern

(Fig. 2.3) is justified because it inherently possesses the properties of an ideal
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Figure 2.3: Sample Checkerboard Pattern

mosaic filter array. It is symmetric in both horizontal and vertical directions, the

black and white blocks are uniformly distributed across the whole image plane and

the pattern has the same sampling frequency in horizontal and vertical directions.

The algorithm consists of two steps - decomposition and subsampling. These steps

are repeated consecutively until we obtain the required mosaic filter array pattern.

In Fig. 2.4 we illustrate the algorithm for obtaining a mosaic filter array pattern

for four bands with each band having equal probability of appearance (POA).

A binary tree representation is used to illustrate the algorithm. Mathematically,

we would like to generate a n-band filter array with each band having a specific

probability of appearance (POA). Let the POA for each band be represented by

p1, p2, · · · , pn such that
∑n

i=1 pi = 1. Now to adjust the POAs of all the bands

to add up to 1 we need to ensure that the total number of leaves in the binary

tree are equal to the total number of bands. Each leaf in a particular level of the

binary tree has a POA = 1
2l where l stands for the level in the binary tree. Now,

consider the case of the four band filter generation. We see that the binary tree

has been divided into two levels and has 4 leaves in total. Each of the band has

equal POA = 1
22 = 1

4
= 0.25. That is, the four bands are equally distributed all

over the image with a probability of appearance of 0.25 each. The process starts

with the checkerboard pattern. The first step is to decompose the checkerboard

pattern into two images such that one of them contain only the white pixels and

the other contains only the black pixels. For easier representation, we denote the

black pixels by 1 and the white by 2. Next, the subsampling step is performed.

Each of the level-1 images are subsampled into two more images. The subsam-

pling step, downsamples an image in both the horizontal and vertical directions.
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Figure 2.4: Generation of a Four-Band Mosaic Filter Array Pattern
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This ensures the pattern to remain spectrally consistent. This step takes us to the

next level in the binary tree where four new labels are formed - 3,4,5 and 6. At

this step, we check whether we have reached the total number of required bands.

In case we have then we combine all the labels in the latest level and form the

final mosaic pattern. Otherwise the decomposition and the subsampling steps are

repeated until we reach the required number of bands. In the case of a four band

pattern, we have already achieved the goal and so we stop at the second level.

Now, for the four band pattern to be used as a mosaic pattern it should be able

to satisfy all the design requirements for a mosaic filter array. This is verified in

Fig. 2.5.

Probability of Appearance Each of the four bands in the filter array have the

same probability of appearance (POA = 0.25). This means that all the

bands in the filter array are sampled at the same rate. Comparing this with

the Bayer CFA, we see that in the Bayer CFA, the green band is doubly

sampled than the two chrominance bands. This makes the frequency of

occurrence of the green band double than the other two bands. However, in

this case the frequency of occurrence for all the four bands will be the same

all throughout the filter array.

Spectral Consistency Each spectral band in the pattern has the same type

of neighbors all throughout the image. Considering the example given in

Fig. 2.5. Two pixels having band 1 information, 1a and 1b share the same

type of neighbors. This is the case with every band in the filter array. This

verifies the spectral consistency of the filter array.

Uniform Distribution By uniform distribution we mean that the occurrence

of each of the bands in the filter array is equally distributed all over the

filter array. By observation, we can see that the pattern follows an uniform

distribution.

The four band pattern we have generated using the generic method resembles the

mosaic pattern used by Sony in its digital cameras. It is called the Sony RGBE
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Figure 2.5: Four-Band MSFA

mosaic pattern, which uses the usual three bands - red, green and blue, and an

additional band called the emerald band to mosaic color images.

In context of the work done in this thesis we will be using multi-spectral images

which have seven bands. We used the generic method to develop a MSFA for seven

bands. Fig. 2.6 shows the steps followed in the creation of the seven band MSFA

using the generic method. We see from the figure that the algorithm requires one

of the seven bands to have twice the POA than the rest of the bands. Band-3

in this case, occurs twice as frequently than the rest of the bands in the MSFA.

The band has been sampled with twice the sampling rate than the rest of the

bands. This assigns more prominence to that band than the rest of the bands.

Usually, the band with the highest coverage is made to have the highest POA. To

analyze the seven band MSFA even further, consider Fig. 2.7. From the figure, a

neighborhood of a band 1 pixel is considered. In this case, we consider a 5 × 5

neighborhood. The size of the neighborhood is important when demosaicking

is being performed on the MSFA. We can see that the MSFA satisfies all the

design requirements for a mosaic filter array. It has uniform distribution of all

the 7 spectral bands, it is spectrally consistent (for eg., observe the neighborhood

around all the band-1 pixels. The neighborhood is consistent all throughout the

array) and the probability of appearance of each band is also justified according

to the generic algorithm (band 1 has twice the sampling rate compared to the rest

of the bands and thus it appears twice more number of times than the rest of the
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Figure 2.6: Seven-Band MSFA Generation
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Figure 2.7: Sample Seven-Band MSFA

bands).

2.2 Demosaicking of Multi-Spectral Images

In the previous section, we analyzed ways of creating filter arrays for multi-spectral

images. The next step in the MFPA process is to reconstruct the multi-spectral

image from the mosaicked image. Before we venture into different aspects of

demosaicking multi-spectral images, we have to understand the major difference

between demosaicking color and multi-spectral images. In Sec. 1.4.2 we analyzed

some popular demosaicking techniques for color images. These methods were re-

stricted only to color images as they use the special characteristics of color images

like prominent luminance band, correlation of the luminance and chrominance

bands, etc. These features may not exist in multi-spectral images. So there is a

need to make changes to the algorithms such that we can apply them to multi-

spectral images. To make the required changes in the algorithms we need to

understand the factors that affect the demosaicking process. This understanding

will enable us to develop modification in a proper direction.
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2.2.1 Factors Affecting the Demosaicking Process

The major factors that affect the demosaicking process are listed below.

Mosaic Filter Array Pattern It is obvious that the design of the mosaic

filter array pattern that is being used to sample the multi-band image affects

the reconstruction process. It is necessary to have complete knowledge about

the mosaic pattern before developing the demosaicking algorithms because the

mosaic pattern reveals important information about the number of bands present

in the actual image and the relationships that the bands share between each

other. This is illustrated in Fig. 2.8. The figure displays three mosaic filter arrays

with different number of spectral bands. Each of the MSFA reveals important

information about the total number of bands present in the actual image, the

neighborhood information of each of the band, the sampling rate of the spectral

bands and also the distribution pattern of spectral bands all throughout the image.

The knowledge of neighborhood information for each pixel is necessary because the

demosaicking process uses neighborhood information to interpolate missing band

values at each pixel location. Similarly, the knowledge of the rate at which each

band is sampled affects the order in which the missing bands are estimated. Due

to the existence of greater number of samples, the highest sampled band is usually

estimated before any other spectral band. The manner in which the spectral bands

are distributed in the mosaicked image also plays an important role in designing

the demosaicking algorithms. Most of the MSFAs are uniformly distributed and

are spectrally consistent; this makes recurring patterns appear throughout the

MSFA. If these recurring patterns are known, the demosaicking algorithms can

be developed to consume less computation time and also be more effective. For

example, consider the shaded portion in the 3-band MSFA in Fig. 2.8. We see

that the pattern is repeated all throughout the image array. The pattern is such

that taken any four adjacent pixels, one of the diagonal will have band 1 pixels

and the other diagonal will have one pixel each of the rest of the two bands. This

information is important because, if the demosaicking algorithm is embedded with

this information then the reconstruction process can be made faster and probably

more effective.
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Figure 2.8: MSFAs for Different Number of Spectral Bands

Number of Spectral Bands Multi-spectral images are characterized by the

total number of spectral bands, type of spectral bands and their size. The number

of spectral bands in the image affects the design of the mosaic filter array which

in turn affects the demosaicking process. The main effect of the increase in the

number of bands, on the MSFA, is that it makes the distribution of missing bands

in the MSFA even more complicated. The spread of missing band values increases

as the number of spectral bands increase. This makes the interpolation process

more complicated and less accurate. In Figure 2.8, we see that the distribution of

missing pixels is less complex in the 3-band MSFA than the 7-band MSFA. The

demosaicking algorithm has to consider a bigger neighborhood in the case of the

7-band MSFA so that the neighborhood will have a proper representation of all

the spectral bands.

Neighborhood Considerations Neighborhood of a pixel plays a very impor-

tant role in the design of demosaicking procedures [Ramanath et al., 2002]. It

may be expected that by increasing the size of the neighborhood, the estimate of

missing pixel values can be done more accurately. But this is not true because of

two reasons. Firstly, as the neighborhood size increases the relationship between

the missing pixel values and the existing pixel values in the neighborhood dete-

riorates. Thus, the probability of estimating the exact missing pixel value from

its neighborhood pixels decreases to a great extent. Secondly, an increase in the
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neighborhood size makes the demosaicking method computationally expensive.

However, on the other hand, a smaller neighborhood does not guarantee better

results. Thus, a trade-off must be met with respect to neighborhood consider-

ations such that appropriate missing pixel value can be estimated and also the

method is not too computationally expensive.

Edge Information Demosaicking is performed by interpolating the missing

pixel values based on the neighborhood pixel values. An average of the neighboring

pixel values may be a good estimate for the missing pixel value only in areas

of the image which contain uniform pixel values. By uniformity, we mean the

intensity values do not change drastically from pixel to pixel. But in the case

of an occurrence of an edge, the pixel values undergo a sudden change in which

case the average of the neighboring pixel values of the edge pixel will not be a

good estimate. In such cases, the edge direction and the strength of the edge

should be considered while interpolating the missing pixel values. The direction

of interpolation plays an important role in interpolating missing pixels. In case of

an edge, the direction of interpolation has to be chosen such that it matches the

gradient direction. The gradient direction is perpendicular to the edge direction.

This will ensure that an originally occurring edge will be retained and thus the

estimate will be more appropriate. We have seen these kinds of edge information

considerations in some of the advanced demosaicking methods for color images in

Sec. 1.4.2.

Inter-Band Dependence Some of the existing demosaicking methods for vi-

sual band images have been derived from the fact that the edge information in

one band is related to the edge information in another band. In such cases, the

demosaicking process may be allowed to use one band information to interpolate

missing values of another band. This type of estimate would be totally valid since

both the bands have common edge information. For example, in visual band

images it has been found that the R, G, B bands have almost common edge infor-

mation. Thus, G being the highest sampled band may be interpolated first and

then the interpolated values may be used to interpolate the missing values of B
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Figure 2.9: Example of Inter-Band Dependence in Images

and R bands. This has been illustrated in Fig. 2.9. We see that all the three bands

almost have the same edge information. But in multi-spectral images, since there

are spectral bands other than the visual spectral bands, the inter-band relation-

ship may not be the same as in color images. However, if it can be determined as

to whether there is any existing correlation between any two bands then the band

information may be used for other band’s interpolation process.

Practical Issues Practical issues like the time taken for the demosaicking process

also have to be considered. The demosaicking process is the most time consuming

process when compared to data capturing and mosaicking processes. The time

taken for the demosaicking process should be minimized by use of proper pro-

gramming techniques so that it would be practical to implement it in a real-time
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Figure 2.10: Different Sized Neighborhoods in the Seven Band MSFA

environment.

2.2.2 Demosaicking Methods for Multi-Spectral Images

Now that we have seen the design aspects of the demosaicking process, it is time

we go through some of the demosaicking techniques that would be used for multi-

spectral images. Most of the demosaicking methods that are discussed in this

section, are largely based on the existing demosaicking methods for color images.

Required changes have been made so that they comply with a different MSFA.

Each method will be discussed in detail with a prediction of how the result will

look after performing demosaicking. The results for these methods are given in

Chapter 4.

Bilinear Demosaicking We start the discussion on demosaicking methods with

the most simple and basic method called the Bilinear demosaicking method. Bi-

linear demosaicking focuses on interpolating the missing pixel values from its

neighboring pixel values. The missing pixel value is found by averaging the ex-

isting pixel values of the same spectral band in the neighborhood of the pixel.

The key to this method is the choice of the neighborhood size. From Fig. 2.10

we see that a 3 × 3 neighborhood does give a proper representation of all the

spectral bands in the image. Moreover, the distribution of the spectral bands in

the neighborhood is also not consistent. On the other hand, a 5×5 neighborhood

gives a clear representation of all the spectral bands in the image. However, the
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Figure 2.11: Bilinear Demosaicking of a Seven Band Multi-spectral Image

problem with increasing the neighborhood is that the pixels are displaced by a

greater distance from the center pixel. That is, the effect of pixel 7a will be more

on the center pixel than the other two 7th band pixels - 7b and 7c. This discrepancy

can be taken care of by assigning weights to each of the pixels and then summing

them up. The weights assigned to each of the pixel is inversely proportional to

the distance between the current and the center pixel. A detailed illustration of

the bilinear demosaicking process can be obtained from Fig. 2.11. In general, the

estimate of a missing pixel value is given by Eq. 2.1

Bmn =

∑
k

∑
l wklBkl∑

k

∑
l wkl

(2.1)

where wkl = 1√
(k−m)2+(l−n)2

, B is the band to be interpolated and (m,n) is the

pixel that is being interpolated. In the discussion of bilinear demosaicking for

color images (Sec. 1.4.2) we were considering a 3× 3 neighborhood and there was

no need for adding weights to each of the pixels. This was because the 3 × 3

neighborhood gave an appropriate representation of all the spectral bands and

also had equidistant neighbors around the center pixel. We also observed that

the bilinear demosaicking method produced artifacts at the edge locations called

the zipper effect. This effect also occurs in the reconstruction process of the
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multi-spectral images. This can be seen in chapter 4 where all the results for the

demosaicking methods for multi-spectral images are listed.

Cok’s Demosaicking Method This demosaicking method is based on the

constant-hue based demosaicking method invented by Cok for color images. As we

saw in the previous chapter, the method focuses on the removal of edge artifacts

formed by the bilinear demosaicking method. Cok [Cok, 1987] suggests that the

occurrence of the artifacts in the process of interpolation is due to sudden changes

in hue in that image region. Hue was defined by the ratio of the chrominance and

luminance band values (R
G

and B
G

) at a particular pixel location. Revisiting the

algorithm listed in the previous chapter, we find that in case of non-uniform hue

images, the hue is maintained by taking a small neighborhood into consideration

and interpolating the hue values based on the neighborhood information.

We try to apply this method to the multi-spectral images. Before we start

extending the method to multi-spectral images, we need to realize that unlike

color images, the concept of hue does not exist in the case of multi-spectral images.

This is simply because multi-spectral images have spectral bands which may not

be part of the visual spectrum (for instance, R, G and B may not be the only

spectral bands in the multi-spectral image). Still taking the main essence of the

method, we could extend the logic by considering the main band (i.e., the band

with the highest coverage) as the luminance band and the rest of the bands as the

chrominance bands. This analogy will only work if there is a relationship between

the main band and the rest of the bands in the multi-spectral image like the one

shared by the luminance and the chrominance bands in color images. One way

to check if this method works is to actually mathematically calculate the inter-

band correlation between each of the bands in the multi-spectral image and then

analyze to the correlation values to come up with a valid conclusion on whether

the extension of the method to multi-spectral images is justified or not. Fig. 2.12

illustrates Cok’s demosaicking method for seven band multi-spectral images. The

method is a two pass process. In the first pass, the main band is interpolated.

The interpolation is performed by using the usual bilinear interpolation method.
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Figure 2.12: Cok’s Demosaicking of a Seven Band Multi-spectral Image

In the next step, all the other bands are interpolated as given in Eqn. 2.2.

Bij = Mij

∑

(a,b)εℵ

Bab

Mab

(2.2)

where B is the band to be interpolated at pixel location (i, j) and M is the main

band (in the case of our seven band images, M is band 1). ℵ signifies the neigh-

borhood of the current pixel (i, j) and the pixels (a, b)εℵ (for eg., the grey shaded

part in the Fig. 2.12 represents the 5×5 neighborhood (ℵ) of pixel location (3, 4)).

Median Based demosaicking method This method is inspired from the me-

dian based demosaicking method patented to Freeman. The original method [Freeman, 1988]

was developed for color images mosaicked using the Bayer CFA. We will try to

extend the method to the seven band multi-spectral images. The method is fo-

cuses on improving the edges in the bilinear demosaicked image. The green band,

i.e. the luminance band, in a color image is interpolated first and then the rest of

the two chrominance bands are interpolated with the help of a median filter. The

interpolation of the chrominance bands is performed by taking two difference im-

ages, R−G and B−G, and then applying a median filter to the images. Then the
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Figure 2.13: Median Based Demosaicking for Seven Band Multi-spectral Images

interpolated luminance image is added to the median filtered difference images to

form the whole color image.The method has been explained in detail in Sec. 1.4.2.

In case of multi-spectral images, we use the primary band (the band with the

highest coverage) in place of the luminance band. The first pass will interpolate

the primary spectral band values throughout the image. The second pass will

perform median filtering on the difference images and then add the result to the

interpolated primary band image. The two steps involved in median filtering are

illustrated in Fig. 2.13. The median based demosaicking method performs well

only in images where all the spectral bands share the same edge information. This

seems to be true in the case of color images. However, this may not be true in

the case of all the multi-spectral images, thus the performance of this method for

multi-spectral images is not guaranteed.

Modified Bilinear Demosaicking The demosaicking methods discussed ear-

lier in this section, are extensions of the methods applied for color images. Each of

the methods has inherent problems which can affect the output of the demosaick-

ing process. The bilinear demosaicking method, for instance, does not consider

edge information and thus falls prey to edge-related artifacts called the zipper ef-
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fect. On the other hand, the Cok’s demosaicking method focuses on balancing the

changes in hue along the image plane, which happens to be a specific property of

color images. Though we could extend the method to multi-spectral images, there

is a very small chance for it to produce a perfect demosaicking output. Similarly,

the median based demosaicking method, uses edge information specific to color

images for interpolating missing bands. There is therefore a need for a demo-

saicking method that will overcome the drawbacks of the existing demosaicking

methods.

The modified bilinear demosaicking method, as the name suggests, is a modifica-

tion of the usual bilinear demosaicking method. This method has been derived

as the reverse process of the mosiac filter array formation process. We start with

the MSFA at the bottom of the binary tree (see Fig. 2.6) and at each level try

to interpolate the bands that are children derived from another band from the

previous level. For example, we can see from the figure, at the last level (i.e.,

level 3) we have bands 2 through 7 as children from the previous level (i.e. level

2). We start interpolating, bands 2 and 3; bands 4 and 5 ; and bands 6 and 7 at

each others positions. Then we move to the one level upwards and treat the band

pairs formed in the previous step as one band and then interpolate in the same

manner until we reach the start of the binary tree. By the time we reach the top

most level of the binary tree we will have an estimate of all the spectral bands

at all the pixel positions in the image plane. This is the basis of the modified

bilinear demosaicking method. For ease of implementation, this method can also

be looked at from another perspective. The method focuses on maximizing the

probability of estimating the appropriate missing pixel value by taking variable

neighborhood sizes into consideration. As discussed earlier, the neighborhood of

a pixel plays a very important role in the interpolation process of missing pixels.

The size of the neighborhood should be small so that the chance of finding the

exact missing pixel value by interpolation is increased. On the other hand, the

neighborhood should be big enough so as to have an adequate representation from

all the spectral bands. The method is divided into four passes. These four steps

are shown in Fig. 2.14. The first pass focuses on interpolating the primary band

all over the image plane using a 3× 3 neighborhood (a 3× 3 neighborhood is the
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Figure 2.14: Modified Bilinear Demosaicking Process
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smallest possible neighborhood with odd number of pixels). The first step, inter-

polates at locations that have four primary band pixels in their 4-neighborhood

definition space. This is followed by the interpolation at locations which have four

primary band pixels in their 8-neighborhood space. By the end of the first pass

of the method, the primary band would be populated at all the pixel locations

in the image. In the following steps, we move on to the interpolation of the rest

of the bands in the image. The interpolation is done in a systematic fashion by

choosing specific band pairs and then interpolating a missing band at the other

band location. This process of choosing band pairs and interpolating them at each

others locations acts as a reverse of the decomposition process in the mosaic filter

array formation process. In the second pass of the method, band 2 and 3; bands

4 and 5 and bands 6 and 7 are interpolated at each other’s location. Due to the

uniformity and systematic arrangement of the bands in the mosaic filter array, we

are able to form a specific shaped neighborhood for the interpolation of a band

at its pair’s location. This mask is moved throughout the image plane and the

interpolation is performed. By the end of this pass, we have all the pixel locations

populated with the primary band and we have all the bands populated at their

corresponding pairs’ locations. In the next pass, we move to the next upper level

of the binary tree in the MSFA formation process. The three band pairs are now

treated as three independent band labels, and are paired up with the other labels

on the same level depending on how they are formed in the binary tree. The same

process of interpolation at the band pair’s locations is followed until we reach the

top most level of the binary tree. By the time, we have traversed to the topmost

level of the binary tree we would have interpolated all the spectral bands at all

the pixel locations in the image.

The beauty of this method lies in the fact that it is modeled directly on the

mosaic filter array formation process. Additionally, the use of smallest neigh-

borhoods at each step ensures that the estimation process is more appropriate.

Theoretically, due to all its design considerations, this method should produce

results that are better estimates of the actual scene than the usual bilinear demo-

saicking method. We will evaluate the actual difference between the two methods

in the results chapter (chapter 4) of this thesis.
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Modified median based demosaicking method This method is a simple

extension of the modified bilinear demosaicking method. The modified bilinear

demosaicking method produces an output which has a non-uniformity in the in-

tensity values of the image. This non-uniformity in pixel values generates discrep-

ancies in the image representation. This can cause distortion of the shape of the

objects in the image making a system difficult to identify the object of interest

in the image. There is therefore a need to improve the uniformity of pixel values

throughout the image plane. This is brought about by blurring the image using

a median filter. The median filter operates on a small neighborhood and assigns

the median value of the neighborhood pixels to the center pixel. This kind of

operation throughout the image plane brings about a uniformity in the intensity

values in the image.

2.3 Problems With Interpolation Based Demo-

saicking Strategies

Most of the interpolation based methods discussed in this chapter have been

based on traditional demosaicking methods used in color digital cameras. Some

of the demosaicking methods have also been used for commercial purposes and

have stood the test of time with regards to their performance. However, the

design process of these interpolation based methods is heuristic in nature. The

development of each of the method is based on improving the existing method by

adding a logical extension that will take care of drawbacks of the existing method.

There is no concrete mathematical model which can be used to develop an optimal

demosaicking process. This proves to be a hurdle in the flexibility offered by the

demosaicking method. There is also need for consideration of practical factors like

degradation and noise that can be added in the process of image acquisition. The

existing interpolation based methods would fail to produce a satisfactory result in

the presence of noise and blur added by the acquisition process. There is a need

for a method that can take care of these practical aspects of the demosaicking

process. These concerns are addressed in the next chapter of this thesis. Chapter 3

52



would discuss ways of performing the demosaicking process in the presence of

degradations and noise. The development of the demosaicking process as an image

restoration problem is also considered in the chapter.
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Chapter 3

Demosaicking Multi-Spectral

Images Using MAP

. . . so-called art restoration is at least as tricky as brain surgery. Most

pictures expire under scalpel and sponge.

– Alexander Eliot

The discussion in the previous chapter focussed on the design of demosaick-

ing methods for multi-spectral images. Some of the methods have been inspired

from popular demosaicking methods for color images. The main essence of these

methods is the use of different interpolation strategies which take various factors

like the size and type of neighborhoods, the restoration of edge information, etc

to reconstruct the multi-spectral image. The methods however are heuristic in

nature. They are based on many assumptions about the characteristics of the

image. These assumptions have been made based on logic and extensive experi-

mentation. Though, the methods tend to work and have gained themselves the

credit of being applied in commercial applications, still they do not quite allow

a great amount of flexibility in their design. One area where the interpolation-

based methods fail to function is when there is an occurrence of noise in the image

acquisition process. The existence of degradation severely affects the mosaicking

process which in turn creates a degraded mosaicked image. This noisy and blurry
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mosaicked image is used for forming the demosaicked output. The output then

is bound to be severely degraded. Another concern about the interpolation-based

demosaicking methods is that they tend to introduce some amount of blur them-

selves to the reconstructed output. The occurrence of blur is due to the averaging

operation that is performed over the neighborhood for populating missing pixel

values. There is therefore a need for a method that can take care of the various

degradation that creeps into the demosaicking process. This chapter will look

into developing such a method that uses image restoration strategies to perform

demosaicking that can be used in presence of degradations during the image ac-

quisition process. The next section will focus on explaining how a demosaicking

problem can be viewed as a traditional image restoration problem. Next, some

of the popular image restoration strategies are discussed. The final section will

explain the MAP method for demosaicking multi-spectral images.

3.1 Demosaicking as an Image Restoration Prob-

lem

Demosaicking is the reverse process of the mosaicking process. The demosaick-

ing process tries to reconstruct a multi-band image from some samples registered

on the mosaic focal plane array during the mosaicking process from the original

multi-band image. From Fig. 3.1 we see that the mosaicking process registers

only one spectral band at each of the pixel locations in the image plane and the

demosaicking process focuses on populating each pixel in the image with all the

spectral bands. Looking closer into the demosaicking process, we see that the

function of demosaicking is to take a gray scale mosaicked image into considera-

tion and reconstruct a multi-band image out of it. That is, the key function is

to reconstruct an image from an imperfect image. This brings us closer to the

thought that the process may be considered as a traditional image restoration

problem. The traditional image restoration problem restores an image from its

degraded version. Fig. 3.2 describes a standard image restoration problem. The

original image undergoes degradation due to blur by the averaging process in the
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degradation technique and additive noise. The degraded image is then given as an

input to the restoration block. The restoration process tries to restore the image

by using some restoration filters. The restoration filters are designed based on

prior knowledge about the kind of degradation and noise in the degraded image.

The problem becomes even more complicated, if there is no prior knowledge about

the degradation. Predictably, in real-time situations the prior knowledge about

the degradation is seldom known. Now, to model the demosaicking process in the

same lines as the image restoration model, we need to identify and relate the con-

cepts of degradation and degraded image. Once we are successful in identifying

these terms in the demosaicking process then it is a matter of using one of the

standard image restoration procedures to perform demosaicking. Another way of

looking at the demosaicking process as an image restoration problem is the case

where there is an actual occurrence of blur and noise due to the equipment. In

such a case, the demosaicking process is bound to produce a degraded output.

This is made clearer from Fig. 3.3. The original image undergoes degradation due

to various reasons and then gets noisy due to the presence of additive noise. This

degrades the image and forms a degraded image. This degraded image is then fed

as input to the mosaicking process. Since the mosaicking process is just a simple

subsampling operation over a multi-spectral image, the degradation effect still re-

mains. This will result in the formation of a degraded mosaicked image. This is

then given to the demosaicking process, which interpolates the missing pixel values

to reconstruct a multi-spectral image. All throughout the process, the degradation

that affected the original persists and thus forms a noisy and degraded output.

The traditional demosaicking methods have no provision for the removal of the

degradation and noise. The only option left in the case of the interpolation-based

demosaicking methods is to allow the whole process to continue as usual and then

applying multi-channel image restoration methods to clean off the degradation

and noise from the demosaicked output to form a cleaner image. This procedure

looks cumbersome and may take a long processing time. Instead, if the restoration

block is built such that the restoration happens in the process of the demosaicking

operation, then the method may be less cumbersome and may also offer greater

reliability and control over the whole image formation process. However, having
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said that the problem of viewing demosaicking as an image restoration problem

still remains. The translation will require in depth knowledge about the standard

image restoration operations. The understanding will help us relate each block in

the restoration process to the demosaicking process. The following section reviews

some important concepts in image restoration.

3.1.1 Theory on Image Restoration

Image restoration is one of the most popular research areas in the field of image

processing. The objective of the image restoration procedures is to estimate the

original image given some prior information about the degradation function and

the noise that have corrupted the original image. Looking at Fig. 3.2 we realize

that the restoration operation is done by creating restoration filters that will re-

verse the corruption process done by the degradation function and the additive

noise [Gonzalez and Woods, 2003]. The model given in the figure can be modelled

mathematically as in Eq. (3.1). This is the spatial representation of the degrada-

tion process. The original image f(x, y) is degraded by a linear spatial-invariant

blur h(x, y) with some addition of noise from the additive noise term, η(x, y) to

form the degraded image g(x, y). Now the function of the restoration process is,

given the degraded image g(x, y) and some prior knowledge about the blur h(x, y)

and noise η(x, y) form an estimate of the original image, f̃(x, y).

g(x, y) = h(x, y) ∗ f(x, y) + η(x, y) (3.1)

The frequency domain representation of Eq. (3.1) is given in the Eq. (3.2). G,

H, F and N are the frequency domain counterparts of the observed image, linear

spatial-invariant blur, the original image and the additive noise term respectively.

The advantage of using the frequency domain representation is that it converts

the convolution term as a multiplication term, which is easier to operate upon.

G(u, v) = H(u, v) · F (u, v) + N(u, v) (3.2)
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Now, the restoration process is to reverse the degradation process to as high

accuracy as possible. Mathematically, the restoration process may be given as in

Eq. 3.3.

f̃(x, y) = R[g(x, y)] (3.3)

where R denotes the restoration filter and f̃ stands for the final restored image

which is an estimate of the original image. Such filters which are used for the

restoration of degraded images are usually called deconvolution filters. If we are

successful in determining the restoration filter, then the restoration job is almost

done.

The problem of finding the restoration filter depends on the type of degradation

and noise that has affected the original image. The additive noise is generally

random in nature and is position-independent. The degradation function is usually

estimated using various techniques. The necessity for estimating the degradation

function comes about because the actual degradation function is seldom known

completely. One of the ways to estimate the function is to gather information from

the image itself. A sub-image is constructed by using sample intensity values from

the observed or the degraded image. The sample intensity values are picked up by

looking into the background and the foreground of an object in the image where

we feel there is a stronger signal content. By marking the pixel locations which

are used to create the sub-image and picking out the observed image pixel values

from the same locations, we can estimate the degradation function. Let us denote

the sub-image of the observed image (in frequency domain) as Gs(u, v) and the

manually recreated sub-image as F̃s(u, v). The degradation function can be found

out by

H(u, v) =
Gs(u, v)

F̃s(u, v)

The assumption here is that H is position invariant. Now, this can be used to

reconstruct the total image from the full observed image, G. This manner of

estimating the degradation function is known as estimation by image observa-

tion. Clearly, the problem with this method is that it cannot be made automatic

in nature. The most popular way of estimating the degradation function is to

mathematically model the degradation function. The Gaussian model is the most
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popular of the models that is used for the estimation of the degradation function.

The Gaussian filter is usually suitable to model mild and uniform blurring. Once

the noise and the degradation functions have been estimated, then we need to use

them to restore the original image. One of the popular restoration methods is

to use inverse filtering. This is the simplest approach to restore the images once

we have the degradation function and the knowledge of the type of noise. The

process is performed in the frequency domain. Let us denote the reconstructed

image as F̃ (u, v).

F̃ (u, v) =
G(u, v)

H(u, v)

The division of pixel by pixel values of the transform of the observed image and

the degradation function will give the estimated pixel value of the reconstructed

image. From Eq. (3.2), we know that,

G(u, v) = H(u, v) · F (u, v) + N(u, v)

thus, substituting in the place of G(u, v) in the previous equation we obtain

Eq. (3.4).

F̃ (u, v) = F (u, v) +
N(u, v)

H(u, v)
(3.4)

The problem with the method is that we do not exactly know the Fourier rep-

resentation of the noise term. Another problem being, the second term in the

equation will tend to dominate if the values of H(u, v) are too small or zero. To

go around this problem, the Mean Square Error Filtering is used. This method is

also called the Wiener Filter method [Gonzalez and Woods, 2003]. The wiener

filter estimate focuses on solving the problem given in Eq. 3.5.

Minimize e2 = E{(f − f̃)2} (3.5)
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where e is the mean square error between the original and the estimated image

and E{.} is the expected value. After solving Eq. 3.5 the following is obtained.

F̃ (u, v) = [
H∗(u, v)Sf (u, v)

Sf (u, v)|H(u, v)|2 + Sη(u, v)
]G(u, v)

= [
1

H(u, v)

|H(u, v)|2
|H(u, v)|2 + Sη(u, v)/Sf (u, v)

]G(u, v) (3.6)

where the terms in Eq. 3.6 are as follows:

H(u, v) = Degradation Function

H∗(u, v) = Complex conjugate of H

Sη(u, v) = |N(u, v)|2 = Power spectrum of the noise

Sf (u, v) = |F (u, v)| = Power spectrum of the undegraded image

The drawback with the method is that it requires information about the actual

image. This information is usually not available. To accommodate this fact the

method is slightly changed as shown in Eq. (3.7).

F̃ (u, v) = [
1

H(u, v)

|H(u, v)|2
|H(u, v)|2 + K

]G(u, v) (3.7)

K is a parameter that represents the ratio of the noise and the actual image power

spectrums. If the noise is assumed to be white noise then the power spectrum

of N(u, v) is constant. Then the only term that needs to be estimated is the

power spectrum of the original image, i.e., Sf (u, v). The choice of K is performed

empirically. Wiener filter produces better results than the inverse filter technique.

However, the problem of Wiener filter estimation is that it makes an assumption

that the undegraded image and the noise belong to homogeneous random fields

and that their power spectra are known [Rosenfeld and Kak, 1982]. In most of

the situations one may not have a-priori knowledge to this extent.

Constrained Least Square filtering method is used if the mean and variance of

noise is known. The method requires no priori information about the original

image. The methods discussed till now assume that the degradation process is

linear in nature. The linearity assumption works fine in most of the standard
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restoration problems but tends to fail when there is nonlinearity associated in the

image recording processing. The Maximum a-Posteriori (MAP) method is one

such nonlinear image restoration process. The MAP method is capable of taking

the nonlinearities encountered in the image recording process and also allows the

ensemble mean of the image random process to be non-stationary. We will discuss

more about the MAP technique in the next section.

3.1.2 Proposed Model for Demosaicking

The previous section gave an overview of the traditional image restoration model

and the popular techniques used to restore the image from its degraded version.

Continuing the discussion on modelling the demosaicking process as an image

restoration process, we try to develop a mathematical model for the demosaicking

process. For simplicity let us for now leave out the possibility of degradation and

noise added to the image due to external influences. The demosaicking process

basically deals with reconstructing a mosaicked image to a multi-spectral image.

That is, the degradation that is being attempted to overcome is the absence of

some of the pixels in the image plane. This is overcome by using interpolation

algorithms in the traditional demosaicking methods. In the present scenario, this

degradation has to be overcome by considering the demosaicking problem as an

image restoration process. The mosaicked image, i.e. the image formed by the

samples from the multi-spectral image by using a MSFA, can be considered as

the degraded version of the actual image. So now we have identified the degraded

image (the mosaicked image), the type of degradation (the missing pixels) and

the required output (the final reconstructed multi-spectral image). This should

be enough for us to form an image restoration type of model. Unfortunately, the

modelling process is not a simple task in this case. The mosaicked image, which

is the observed and the degraded image is a single channel image formed from

systematic sampling of the original multi-spectral image. The degradation, which

is the missing pixels in the image plane needs to be modelled mathematically so

that it can be analyzed and included in the restoration model. The output needs

to be a multi-spectral image close enough to the original image. There is no infor-
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mation available of the original image, so no prior knowledge about the original

image can be used in the modelling process. Moreover, the demosaicking process

being an interpolation process which is position dependent cannot be modelled as

a convolution process between the original image and the blur kernel (i.e., h 1 ,

refer to Sec. 3.1.1). The Fig. 3.4 gives a block diagram of the demosaicking process

considered as a restoration problem. The block diagram is a simple description of

how each process within the traditional image restoration problem can be made

to relate to the demosaicking process. However, it must be kept in mind that the

block diagram does not mean the exact mathematical model that was used for the

restoration problem can be used for the demosaicking problem. Before we give a

mathematical model for the demosaicking problem we have to look into another

aspect of the demosaicking problem.

Now we come to the point where the external degradation and noise has to be

taken into consideration. The modelling of these two quantities is similar to the

tradition image restoration procedures. The degradation may occur due to various

factors like defects of optical lens, non-linearity of electro-optical sensors, relative

1The blur kernel or the linear position-invariant spatial version of the degradation function,
H, is also popularly known as the point spread function (PSF). The name comes from the fact
that all the optical systems tend to blur a point of light to some extent. The amount of blurring
being determined by the quality of the optical components. [Gonzalez and Woods, 2003]
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Table 3.1: Comparison Between Image Restoration and Demosaicking Processes
. Demosaicking Image Restoration

g Mosaicked Image Degraded Image
f Actual Multi-Spectral Scene Original Image
Degradation Missing pixel values external noise and blur only
Output Image Demosaicked Image Reconstructed Image

motion between the camera and object, wrong focus, atmospheric turbulence,

dust, etc. [Sonka, 2004]. For simpler understanding, the degradation may be

assumed to be a linear position-invariant degradation. The noise model can be

assumed as random additive noise which is also position invariant. However, when

we consider the blur and noise for multi-spectral images, the degradations may

be channel dependent. That is, the kind of blur and noise added to each of the

spectral bands may be different and dependent on the spectral band that is being

captured. All these factors have to be considered while modelling the demosaicking

problem as an image restoration problem. The Table 3.1 gives an overview of

the analogies made between the demosaicking process and the standard image

restoration problem. The table gives an even more clear understanding towards

the modelling process.

Mathematical Description of Model The image restoration model described

by Eq. 3.1 can be modified to Eq. 3.8 to accommodate the non-linearity in the

image formation process [Andrews and Hunt, 1977].

g(x, y) = s{(f(x, y) ∗ h(x, y)) + η(x, y)} (3.8)

The function s represents the mosaicking process and the notation s(x) means

that every element of the vector x is transformed by the function s. In the case

of demosaicking, Eq. 3.8 may be translated as Eq. 3.9. This equation represents

the mosaicking process of a degraded image.

m(x, y) = s{(f(x, y, z) ∗ h(x, y, z)) + η(x, y, z)} (3.9)
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The original multi-spectral image f(x, y, z) undergoes external channel depen-

dent degradation h(x, y, z). Additive noise η(x, y, z) which also may be channel

dependent is added to the degraded image. This forms a corrupted version of

the original image. This degraded multi-spectral image is then given as an input

to the mosaicking process. This results in the formation of the mosaicked image

m(x, y) which is a two-dimensional collection of the samples from all the spec-

tral bands in the multi-spectral image. Taking the inverse of s on both sides of

Eq.(3.9) we get

s−1{m(x, y)} = s−1{s{(f(x, y, z) ∗ h(x, y, z)) + η(x, y, z)}}

The s−1 function actually denotes the demosaicking process. The left hand side

of the equation means the demosaicking of the mosaicked image which is the

demosaicked output. Let us denote the image by g(x, y, z). Thus, the equation is

translated into Eq. 3.10.

g(x, y, z) ≈ (f(x, y, z) ∗ h(x, y, z)) + η(x, y, z) (3.10)

From Eq. 3.10, we see that the equation boils down to a multi-channel image

restoration process. The model deals with one assumption, i.e., since the degra-

dation caused due to missing pixel cannot be clearly modelled mathematically, a

simple demosaicking is initially performed. This will fill the missing pixels but will

leave out an optical blur due to the averaging operation from the interpolation

process. This blur can then be accounted for by the h(x, y, z). The assumption

does not change the demosaicking problem to a great extent. The problem of

finding the exact missing pixels and eliminating the external blur and noise still

remains. Now that we have a mathematical model for the demosaicking process

as a restoration problem, we need to find a way to reconstruct the estimate of

the original multi-spectral image. The next section deals with possible ways to

reconstruct the multi-spectral image from the degraded version.
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3.2 MAP Technique for Restoration

Now that the mathematical model for the demosaicking problem is formed we need

to use an appropriate method to perform the restoration process. The Maximum

a-Posteriori (MAP) method is a nonlinear technique used for image restoration.

The MAP method tries to find an estimate of an image such that it maximizes

the a-posteriori probability p(f |g). The method is based on Bayesian estimation

process. The technique attempts to solve the following problem:

Maximize f p(f|g)

where p(f|g) is the a-posteriori probability distribution. f is the original image

and g is the observed image from the image restoration model discussed in the

Sec. 3.1.2. From Bayes law, we know that

p(f|g) =
p(g|f)P (f)

p(g)
(3.11)

Considering Eq. (3.11), the restoration problem is transformed as in Eq. (3.12).

Maximize f
p(g|f)P (f)

p(g)
(3.12)

The p(g|f) term denotes the conditional probability of g given f, i.e., given the

original image f, p(g|f) gives the probability distribution of the value of g. The

p(g|f) term is called the sensor model as it gives a description of the noisy or

stochastic processes that relate the original unknown image f to the measured

image g. The next term, P (f) is called the prior model [Qi, 1999]. The prior

model is the a-priori probability of the unknown image f. The p(g) is given by

p(g) =

∫

f

p(g|f)P (f)df

67



which turns out to be a constant independent of f. Thus, the problem in Eq. (3.12)

is transformed as Eq. (3.13).

Maximize f Kp(g|f)P (f) (3.13)

where K = 1/p(g). To solve the Eq. (3.13) we need to have more information

about the prior model and the sensor model. Once these terms are known then a

optimization strategy can be used to solve the MAP problem.

3.2.1 Sensor Model

The sensor model is the conditional probability p(g|f) which means that if a value

of f is given and fixed, then what would be the variation in g. To find the

conditional probability, we first have to know the relationship between g and f.

This will enable us to formulate the way g changes according to f. Revisiting, the

restoration model we have

g = f ∗ h + η

this means,

η = g− f ∗ h

i.e., if f is known and fixed, then the only parameter that affects g is the noise dis-

tribution η. This means the probability distribution of the conditional probability

p(g|f) will be the same as the noise distribution. The noise occurs due to unknown

external forces like dust, equipment faults, etc. Generally, such unknown noise

is assumed to be independent Gaussian noise with zero mean, i.e., η ∼ N(0, σ2);

σ being the standard deviation of the normal distribution [Snyder et al., 2000].

The probability distribution function (PDF) of the noise term would then be

p(η) = K1 exp{−1

2
ηT [φη]

−1η}

where η represents the random variable for the noise distribution. The [φη] is

the covariance matrix of the noise distribution and K1 is a normalizing constant.
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Given the noise distribution, the sensor model will be given as in Eq. (3.14).

p(g|f) = K3 exp{−1

2
(g− (f ∗ h))T [φη]

−1(g− (f ∗ h))} (3.14)

The constants in the equation are left unspecified but do not affect the maximiza-

tion process of the a-posteriori probability. This will be seen further in the section

as the solution for the maximization problem is being derived [Andrews and Hunt, 1977].

3.2.2 Prior Model

The prior model characterizes the original image. It provides the required prior

knowledge about the original image in the form of a probability distribution func-

tion (PDF) or some other ensemble statistics. Since there is no information about

the original image, it is impossible to characterize the prior model exactly accord-

ing to the original image. In such a case, an accurate estimate of the prior model is

formed. Hunt [Andrews and Hunt, 1977] has argued that an appropriate density

function to use for the original undegraded images is the multivariate Gaussian.

The multivariate Gaussian has a PDF given in Eq. (4.4).

P (f) = K2 exp{−1

2
(f− fm)T [φf ]

−1(f− fm)} (3.15)

The gaussian distribution is centered around the ensemble mean, fm, of f with a

covariance matrix of [φf ]. The most significant point to note here is that fm is not

constrained to have all its components equal to the same constant. In other words,

different components of fm can have different ensemble means. By components, we

mean different pixels in the original image can have different ensemble means asso-

ciated with them. This means that the image, when considered as a random field,

is now allowed to be nonhomogeneous (nonstationary) in nature. This kind of

model is definitely closer to real-time situations than the usually used assumption

of stationarity in the linear restoration methods. Hunt [Andrews and Hunt, 1977]

gives an excellent example to illustrate this point. Consider a collection of images

of full face photographs of different individuals. Assuming the photographs are

taken in a manner such that the face is centered and there is a black background
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around the object. It is clear that the ensemble average for each pixel will be

different; it will be approximately zero outside the face area since the background

is black and will vary from pixel to pixel within the face area. Similarly, another

term of interest is the covariance matrix. The covariance matrix gives the amount

of variation of each pixel value from its individual ensemble mean. In the case

of multi-spectral images, the covariance matrix can also give an idea about the

cross-correlation between individual bands of the multi-spectral image. The use

of Markov Random Fields (MRF) for modelling the a-priori belief is also made

in many applications. The MRF probabilistic model accounts for the local prop-

erty of the images. Though, the MRF models the local property of the image

accurately, it is very difficult to estimate the Markov distribution directly from

the conditional distribution. Hammersley et al. have found an equivalence to the

MRF model. The Gibbs distribution seems to have shared close equivalence to

the MRF model with respect to modelling the local characteristics of the image

through energies which describe the relationships shared by the neighboring pixels

with each other. Eq. (3.16) gives a basic definition of the Gibbs distribution.

P (f) =
exp(−U(f)/T )

Z
(3.16)

where the normalizing constant isZ =
∑

f exp(−U(f)/T ). Z is also called the

partition function. The temperature of the model is denoted by T and U(f)

denotes the energy function. The energy function is given by

U(f) =
∑

i

VCi
(f)

where Ci is the group of neighborhood pixels around the pixel i and VCi
(f) is called

the potential. The potential depends on the local characteristics of the image. To

find the potential at a particular pixel location in the image, we have to consider

a set of pixels in the neighborhood of the pixel and find the difference between

the pixel value and its neighbors. This is modelled in the form of a penalty

function. The function is designed such that it penalizes the noise, but not the

edges [Snyder et al., 2000]. It has been found that the inverted Gaussian function
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Figure 3.5: Inverted Gaussian as Penalty Function

produces noise removal without blurring the edges. The inverted Gaussian is

shown in Fig. 3.5. The plot is between the amount of penalty to the difference

between the intensity values of the center pixel and its neighbors. As we see from

the figure, the noise in the image is penalized and at an occurrence of an edge

the penalty is equal to 1, i.e., no penalty is imposed. Using this information, the

prior term is modelled as Eq. (3.17).

P (f) = Z−1 exp(−
∑

i− β√
2πτ

exp(− (f⊗r)2i
2τ2 )

T
) (3.17)

where the parameter β is used to adjust the smoothness of the image. The con-

volution term comes from the ∇fi term in the inverted gaussian distribution. The

term signifies the difference between the center pixel and the neighbors of the

center pixel. The difference is calculated by using a derivative kernel r. The

Laplacian operator, a second derivative operator, may be used as the r kernel.

Another operator that can be chosen as the r kernel is called the Quadratic Vari-

ation. The quadratic variation has a typical characteristic of never being negative

which makes the edge more stable. Eqs. (3.18) and (3.19) show the Laplacian
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and the quadratic variation kernels respectively.

rL =



−1 −1 −1

−1 8 −1

−1 −1 −1


 (3.18)

The quadratic variation technique uses three kernels. They have been derived

from the following formulation:

(∇f)2
i,j = (

∂2f

∂x2
)2 + (

∂2f

∂y2
)2 + (

∂2f

∂x∂y
)2

rxx =
1√
6




0 0 0

1 −2 1

0 0 0




ryy =
1√
6




0 1 0

0 −2 0

0 1 0


 (3.19)

rxy =



−1 0 1

0 0 0

1 0 −1




3.2.3 Solving the MAP Problem

After getting thoroughly acquainted with the sensor model and the prior model,

it is time to solve the optimization problem. Before we go into the mathematical

formulation of the MAP solution, we need to understand that the images in this

formulation are being considered in lexicographic ordering or stacked notation.

This notation of images enables the consideration of the two-dimensional image

plane as a vector. The lexicographic ordering notation has been proved to be com-

putationally efficient [Andrews and Hunt, 1977] [Rosenfeld and Kak, 1982]. The

use of this notation enables the most general linear system relating α and g to

be given by g = [H]α. The traditional counterpart of the stacked notation is the
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separable notation which looks at the same problem as [G] = [U ][α][V ]T . The

earlier notation involves [H] which has dimensions N2 × N2 implying N4 possi-

ble degrees of freedom (where N is the dimension of a square image). Whereas

in the later case, the degrees of freedom available are onle 2N2. Therefore, the

stacked notation offers a more general description of linear relationships between

α and g than the separable notation case. We use the lexicographic ordering

notation for images involved in the MAP problem. A uniform representation is

used throughout this chapter for denoting the images in stacked notation. The

image variables in bold letters are the images that are being considered in the

lexicographic ordering notation.

Continuing with the solution of the MAP problem, we see that the MAP

problem is a non-linear optimization problem with the objective function given in

Eq. (3.13) as Kp(g|f)P (f). Substituting the expressions for the sensor model and

the prior model (assume Gaussian case), we get

Max f K exp{−1

2
(g− (f ∗h))T [φη]

−1(g− (f ∗h))} exp{−1

2
(f− fm)T [φf ]

−1(f− fm)}
(3.20)

For ease of solution, the objective function is transformed into an easier form.

However, we need to ensure that the change in the form of the objective function

does not alter the problem. Taking log on both sides of the Eq. (3.13) we obtain

a new objective function given in Eq. (3.21).

ln p(f|g) = −1

2
(g− (f ∗ h))[φη]

−1(f ∗ h))T − 1

2
(f− fm)[φf]

−1(f− fm)T −K (3.21)

The log operation does not change the basic problem because logarithmic func-

tions are increasing in nature. Now the left hand term in Eq. (3.20), ln p(f|g)

becomes the new objective function for the optimization problem. Let us denote

the objective function by W (f) = ln p(f|g). Now, the function will be maximum
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when ∇W (f) = 0. Thus,

∇W (f) = ∇ ln p(f|g)

= [H]T [φη]
−1(g− [H]f)− [φf]

−1(f− fm)

= 0 (3.22)

where [H] represents the blur matrix. The spatial domain representation of the

Eq. (3.22) is given as follows

∇W (f) = ∇ ln p(f|g)

= [φη]
−1(g− (f ∗ h)) ∗ hrev − [φf]

−1(f− fm)

= 0 (3.23)

where hrev is the reversed kernel of the spatial blur kernel, h [Qi, 1999]. If there

exists a value of f such that the Eq. (3.23) is satisfied, then the value is called the

MAP estimate and designated by the notation f̃MAP . Assuming f̃MAP exists then

rearranging Eq. (3.23) we get

f̃MAP = fm + [φf][H]t[φη]
−1(g− [H ]̃fMAP ) (3.24)

This is a non-linear equation in f̃MAP and since f̃MAP appears on both sides, there

is a feedback structure. One way to obtain a solution for f̃MAP is by trial-and-error

method. However, this kind of method is practically not possible to perform. In

such a case, optimization techniques are used to obtain the value of f̃MAP . In

this thesis, we have used the Gradient descent method to obtain the solution for

Eq. (3.24). Maximizing the a-posteriori density is equivalent to minimizing the

objective function, W (f) (refer to Eq. 3.20). The gradient descent method may

be used to minimize W (f) according to the following,

fk+1 = fk − α∇W (f) (3.25)

where k represents the number of iterations and α controls the speed of conver-

gence of the process. The method has been proved to have a guaranteed con-
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vergence. However, the convergence is limited only to local optimal points. The

overall equation for the gradient descent method is given in Eq. (3.26).

fk+1 = fk − α{[φη]
−1(g− (f ∗ h)) ∗ hrev − [φf]

−1(f− fm)} (3.26)

A solution for the MAP problem with Gibbs distribution as the prior term can be

developed on similar lines as the previous case. The Eq. (3.27) gives the expression

for this case.

fk+1 = fk−α[−[φη]
−1(g−(f∗h))∗hrev+{ β√

2πτ 3
(f∗r) exp(−(f ∗ r)2

2τ 2
)}∗rrev] (3.27)

where h and r denote the blur kernel and the gradient kernel (Laplacian or

quadratic variation) respectively. hrev and rrev are the flipped versions of the

blur and gradient kernels respectively in the vertical and horizontal directions.

This completes the formulation of the demosaicking process as an image restora-

tion problem. The problem is solved using the MAP technique using the gradient

descent optimization process. In the experimental process, both the Gaussian and

the Gibbs distributions were tested for reconstructing the multi-spectral images.

The experimental results and detailed discussions related to the results are given

in Chapter 4.
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Chapter 4

Experimental Results and

Discussions

However beautiful the strategy, you should occasionally look at the re-

sults.

– Winston Churchill

The previous chapters discussed about the details of the Mosaic Focal Plane Ar-

ray (MFPA) technology that can be used for multi-spectral images. The methods

have been tested and analyzed for their merits and demerits. In this chapter we

will discuss the implementation and the results obtained from each of the strate-

gies discussed earlier. Before we start looking into the results obtained from the

experimentation process, it is important to look briefly into the way the experi-

ments have been conducted.

4.1 Experimental Image Database

The experiments were conducted on seven band multi-spectral images. The im-

ages were provided by the group at North Carolina State University (NCSU).

A set of eight multi-spectral images, each containing seven spectral bands were

used for the experimental process. These images are synthetic images that have
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been created to have three visual (RGB) bands, three Mid-wavelength Infrared

(MWIR) bands (3 - 8µm) and one Long-wavelength (LWIR) band (8 - 15µm).

The synthetic images serve as a good basis for experimentation. The existence of

seven bands from various spectral bands including the infrared spectrum makes

the experimental process more appropriate to emulate actual applications. Most

of the multi-spectral images are used in defense related applications, agriculture,

etc., where the use of spectral bands other than the visible spectrum is quite com-

mon. For instance, in defense related applications night vision is obtained by the

use of infrared spectral bands. Fig. 4.1 shows the set of eight multi-spectral bands

used in the experiments. The figure displays the first band of each of the eight

multi-spectral images. The methods developed in this thesis pertain to the devel-

opment of a demosaicking methods for multi-spectral camera that use the MFPA

technology. The best way of testing these methods would be to consider real-time

multi-spectral images. But due to the unavailability of correct ground truth for

real multi-spectral images, we have go for images that have been synthetically

developed. These synthetic images were considered to be actual multi-spectral

scenes for the purpose of simulating the experiments. The images have been cre-

ated in a special image format called the IFS format. The IFS format, which

stands for Image File System, has been widely used by the Image Analysis Lab-

oratory, NCSU. This format has been specially designed to handle multi-spectral

images, but at the same time it is capable of handling any type and size of images

[Snyder, 1991].

4.2 Performance Metrics

There is a need for a common platform that can be used to compare the results

obtained from various methods implemented in this thesis. This platform will

enable us to comment on the performance of each of the methods and choose

the method that is best suitable for the camera. The design of the comparator

depends on the application of the output of the multi-spectral camera. Generally,

the multi-spectral cameras are used for classifying the objects being photographed.

Unlike visual cameras, where the objective is to obtain the best visually appeal-
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(a) 747 (b) Dc10 (c) F15

(d) Mig (e) Tank0

(f) Tank1 (g) Tank2 (h) Tank3

Figure 4.1: Database of Multi-Spectral Images

78



ing output, the multi-spectral output needs to have the best retained shape of

the object-in-focus. Though creating the best visually appealing image does not

seem very different than creating the best shape-retained image, they are still two

different concepts altogether. An accurate shape-restored image may not be the

best visually appealing image. This will become clearer as we go on to discuss

the different metrics used for comparing images. The most basic method for com-

paring images is through visual evaluation. This kind of comparison works only

in the case of visual images and tends to fail if the difference between the two

images is too subtle for the human eye to observe. In such cases, there is a need

for comparators which perform the comparison based on statistical characteris-

tics of the images. Two such statistical methods have been used to compare the

multi-spectral demosaicking outputs.

4.2.1 Reconstruction Accuracy

This metric calculates the amount of closeness between two images. The recon-

struction accuracy is measured by calculating the Mean Square Error (MSE) be-

tween the two images that are being compared. If P and Q are two multi-spectral

images, then the MSE calculation between P and Q is given as in eq. (4.1).

(MSE)P,Q =
Bands∑

k=1

Rows∑
i=1

Columns∑
j=1

(P (i, j, k)−Q(i, j, k))2 (4.1)

Imagine P (i, j, k) and Q(i, j, k) are two points in the three-dimensional space, then

from the Eq. (4.1) we can see that the MSE actually gives the distance (square

of distance, to be more precise) between the two points. The MSE value is lesser

implies the two points are close to each other. Therefore, looking at the overall

images, if P and Q are similar to each other, the distance between them is lesser

than the case where P and Q are different than each other. That is, the lesser

the MSE value, the closer or the more similar the images are to each other.

This is used as one of the performance measures to evaluate the performance

of the demosaicking methods. The objective of the demosaicking method is to

create a multi-spectral output that is as close as possible to the original image.
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The original image in our experiments are available as synthetic images listed

in Fig. 4.1. The reconstruction accuracy measures the accuracy with which a

demosaicking algorithm is capable of reconstructing the original scene. That is,

this metric is capable on commenting on the quality of the reconstruction process

of the demosaicking method. An example of the use of MSE as a performance

measure for demosaicking can be found in Table 1.1 in Chapter 1. The table gives

the MSEs of different RGB demosaicking methods.

4.2.2 Classification Accuracy Using Spatial Information

The measure of the extent to which the shape of an object in an image has been

retained is given by the spatial accuracy metric. The metric consists of shape

statistics which can be used to characterize the shape of an object in an image.

We use the Hu−Moments for characterizing the shape of the object of interest.

The Hu Moments are a set of seven numbers that describe the shape of an object

in the image. These statistical values have been developed to be invariant to

translation, rotation and scaling of the object of interest. For this reason, the Hu

Moments are also popularly known as Invariant Moments. The following set of

equations explain the procedure to calculate the invariant moments for an image.

Consider an two dimensional image plane, f , then the moment of order (p + q) is

defined as Eq. (4.2).

mpq =
Rows∑
x=1

Columns∑
y=1

xpyqf(x, y) (4.2)

Based on the moments calculation, the central momentsare given as in Eq. (4.3).

µpq =
Rows∑
x=1

Columns∑
y=1

(x−mh)
p(y −mv)

qf(x, y) (4.3)

where mh = m10

m00
and mv = m01

m00
represent the center of gravity about the horizontal

and the vertical directions. The normalized moments can be easily calculate from
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the central moments. The normalized moments are given by the following,

ηpq =
µpq

µγ
00

where γ = p+q
2

+ 1. The second and third order normalized moments are then

used to derive the set of invariant moments. The following set of equations gives

the set of seven invariant moments that are used to characterize the shape of an

object in the image.

φ1 = η20 + η02

φ2 = (η20 − η02)
2 + 4η2

11

φ3 = (η30 − 3η12)
2 + (3η21 − η03)

2

φ4 = (η30 + η12)
2 + (η21 + η03)

2

φ5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2] + (3η21 − η03)(η21 + η03)

φ6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2] + 4η11(η30 + η12)(η21 + η03)

φ7 = (3η21−η03)(η30+η12)[(η30+η12)
2−3(η21+η03)

2]+(3η12−η30)(η21+η03)[3(η30+

η12)
2 − (η21 + η03)

2]

Fig. 4.2 gives a general block diagram for extracting the invariant moments from

an image. The input image undergoes segmentation so that the object-of-interest

(foreground) and the background are separated. Image thresholding operation is

used to segment the image. The invariant moments are then extracted from the

segmented image by using the above given set of equations.

4.2.3 Classification Accuracy Using Spectral Information

The average intensity levels of each of the spectral bands in the multi-spectral

image are used as the spectral features for calculating the spectral classification

accuracy of the demosaicked outputs. In the context of this thesis work, we are

using seven-band multi-spectral images. Thus, we will have a set of seven spectral

features for calculating the spectral classification accuracy (i.e., one feature from

each spectral band).
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Figure 4.2: Block Diagram for Invariant Moments Calculation

4.2.4 Calculation of Classification Accuracy

One of the major objectives of using the MFPA technology in multi-spectral cam-

eras is to improve the classification accuracy of the multi-spectral image acqui-

sition system. The ability to classify or differentiate between different objects is

measured using the classification accuracy. Classification accuracy plays a very

important in varied applications like defense, agriculture, medicine etc where the

main motive of obtaining a multi-spectral image is to successfully identify the ob-

ject being photographed. This is done by collecting various images and training

the network to identify each of the objects. In our case, we test for the classifica-

tion accuracy based on the spectral and spatial characteristics of the multi-spectral

database. The output from each of the methods is tested for its ability to success-

fully classify the object-of-interest. The generalized block diagram for performing

the classification accuracy calculation is given in fig. 4.3. The classification process

needs a training and a testing database. The training dataset is formed by scaling

the object in the image and rotating it for 18 rotations and then extracting the

spectral and spatial features by using the metrics mentioned earlier. The test-

ing dataset is also formed in a similar manner, except that in case of the testing

dataset the object is rotated for 20 rotations. The K-nearest neighbors (kNN)

classifier is used for classifying the testing images based on the training dataset.

The kNN classifier is a basic classifier which classifies the images into particular

classes based on their distance from each of the elements in the training dataset.
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Figure 4.3: Calculation of Classification Accuracy
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The distances are then sorted in a descending and the object is assigned to the

class based on the majority of classes present amongst the first K sorted distances.

The value of K depends on the number of training data samples. This process is

followed for all the images present in the database and the classification accuracy

is calculated as the ratio between the number of correctly classified images to the

total number of testing samples. The higher the classification accuracy, the better

is the performance of the method. The classification accuracy is calculated with

respect to the spectral and spatial accuracies of the images. As mentioned earlier,

the spectral accuracy represents the capacity of the method to spectrally recon-

struct the actual/ original image as closely as possible. And the spatial accuracy

signifies the capacity of the method to retain the maximum shape information of

the object being photographed.

4.3 Demosaicking Results For Multi-Spectral Im-

ages

This section will discuss the demosaicking results obtained on applying the MFPA

technology to multi-spectral images. The experimental process will cover the

detailed results for mosaicking and demosaicking processes discussed in Chapter 2.

The experimental process is illustrated in Fig. 4.4. The original image is the

synthetic image from the available seven band IFS image database. The original

image goes through mosaicking to produce a single-band mosaicked image which is

a systematic collection of all the seven spectral bands distributed throughout the

image according to the seven band MSFA (see Fig. 2.7). This mosaicked image is

sent as an input to the demosaicking block which tries to reconstruct the original

multi-spectral image using various interpolation-based strategies discussed in the

previous chapters. The demosaicked output is then tested for its performance by

using the performance metrics discussed earlier. Fig. 4.5 shows the set of seven

bands of the original multi-spectral image. This multi-spectral image is sent to

the mosaicking block. The seven band mosaic filter array is applied on the original

multi-spectral image resulting in the mosaicked image displayed in Fig. 4.6.

84



Original

Multi-Spectral

Image

Mosaicking Demosaicking

Comparison

Metrics

Calculate

Classification

Accuracy of the

Demosaicked Output

Mosaicked

Image

Demosaicked

Image

Figure 4.4: Experimental Process

Figure 4.5: Seven Bands of the Original Multi-Spectral Image

Figure 4.6: The Mosaicked Image
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(a) Original Image

(b) Bilinear Demosaicked Image

Figure 4.7: Bilinear Demosaicking Results

4.3.1 Bilinear Demosaicking

The mosaicked image from Fig. 4.6 is demosaicked using the basic bilinear demo-

saicking algorithm. Fig. 4.7 displays the seven bands of the original and the

bilinear demosaicked image. For better visual comparison, the images have been

placed in the particular order in the figure. By visual evaluation it can be seen that

the bilinear demosaicking result is not perfect and suffers from edge artifacts. The

zipper effect can be clearly seen at edge locations in the output image compared

to the original image. The bilinear demosaicking method does not involve any

edge considerations and thus results in the formation of step-like edge artifacts.

The classification accuracy curves for the bilinear demosaicking output have been

given in Fig. 4.8. The classification curve in Fig. 4.8(a) has been derived from

the set of original synthetic images in our multi-spectral database. This curve

represents the ideal spectral and spatial accuracies where the output image is ex-

actly similar to the original image. That is, it is assumed that the demosaicking

process produces an output which is an exact replica of the actual image. This

original classification curve will act as a comparison ground for the rest of the

classification curves. The classification curve for the bilinear demosaicked output,

as seen from Fig. 4.8(b), is unexpectedly better than expected. The spectral ac-

curacy curve (red curve) almost follows in similar lines as the original spectral

accuracy curve. This means the bilinear demosaicking process produces a result
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(a) Ideal Classification Curves (b) Bilinear Demosaicked Classification
Curves

Figure 4.8: Classification Accuracy Curves for Bilinear Demosaicked Output

that has similar intensity values as the original image. The result seems to be

almost perfectly reconstructed spectrally. Although, the demosaicked output pos-

sesses a good spectral accuracy curve, the spatial response (green curve) seems to

be badly affected. This is expected due to the inherent drawbacks of the bilin-

ear demosaicking process of producing step-like artifacts at edge locations. The

spatial classification curve is generated by considering the shape statistics of the

most prominent band of the multi-spectral image. The most prominent band in

the multi-spectral image is the one that has the highest sampling frequency and

thus occurs the most number of times in the MSFA. The choice of the most promi-

nent band for calculating the shape statistics is justified because being the highest

sampled band makes the band have the most number of pixels in the mosaicked

image which in turn means that the most prominent band has a greater amount

of information pertaining to the shape of the object being photographed than in

any other spectral band. In the case of the seven band multi-spectral images, the

first band is the highest sampled band and thus is the one which is considered for

extracting the shape statistics for the spatial accuracy curve. The zipper effect

can be clearly observed in the comparison of the silhouettes of the original and

the bilinear demosaicked outputs. Fig. 4.9 shows the comparison between the two

silhouettes. The silhouettes are from the first band from each of the images. As we

can see from the figure, the silhouette of the bilinear demosaicked output is clearly
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(a) Silhouette of Original Im-
age

(b) Silhouette of Bilinear
Demosaicked Image

Figure 4.9: Zipper Effect in Bilinear Demosaicked Output

degraded and the degradation appears to be a step-like effect along the edges in

the image. As we saw in chapter 2, the zipper effect in bilinear demosaicking is

accounted for by using the Cok’s demosaicking method.

4.3.2 Cok’s Demosaicking

The Cok’s demosaicking method has been inspired from the constant-hue based

demosaicking method developed by Cok [Cok, 1987]. The demosaicking method

performs excellently in the case of color images and has been suitably changed to

be applied to the multi-spectral images. It still remains to be seen if the extension

of the color based method is valid in case of the multi-spectral images. Fig. 4.10

lists the results obtained for the Cok demosaicking method. We see from the

figure, that the results obtained from the Cok’s demosaicking process are worse

than the bilinear demosaicking results. This is unexpected because in color images,

the Cok’s demosaicking method works far better than the bilinear demosaicking

method and is successfully used as a remedy for the step-like artifacts that creep

into the bilinear demosaicking process. However, this result provides a perfect

explanation for not extending the visual demosaicking processes directly to the

multi-spectral case. The Cok’s demosaicking method for visual images focuses

on controlling the hue changes along the edges in the image. Although, hue is a

property which is specific to color images only, we tried to give a logical extension
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(a) Original Image

(b) Cok’s Demosaicked Image

Figure 4.10: Cok’s Demosaicking Results

to the method for the multi-spectral case by considering the most sampled band

in the multi-spectral to play the same role as the luminance band in color images.

From the results we see that this extension did not work as expected. This is be-

cause in color images the luminance and the two chrominance bands are correlated

with each other. Whereas in the multi-spectral image, there is no such correla-

tion. There is a possibility for some kind of correlation, but the relationship is

not the same as the one shared by the spectral bands in a color image. Therefore,

the use of the most prominent band in the multi-spectral image to interpolate

the other bands cannot be justified. This fact is clearly being portrayed by the

classification curves shown in Fig. 4.11. As we see from the figure, the spectral

accuracy curve is severely affected. The spectral classification is worse than the

bilinear demosaicking case. The spatial classification curve is almost similar to

the bilinear demosaicking result. However, the classification curves do not serve

any special purpose since the method does not seem appropriate to be used for

multi-spectral images.

4.3.3 Median Based Demosaicking

The median based demosaicking method deals with a similar concept as the Cok’s

demosaicking method. The interpolation of missing pixels in such a manner such

that the edge information in the image is preserved to the maximum extent. Like
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(a) Ideal Classification Curves (b) Cok’s Demosaicked Classification
Curves

Figure 4.11: Classification Accuracy Curves For Cok’s Demosaicked Output

the Cok’s method, this method performs the interpolation of missing spectral

bands based on information from the most prominent spectral band in the multi-

spectral image. Looking at the results from the Cok’s method, we can predict

that the median based demosaicking method will also fail to produce a good

demosaicked output. The results have been listed in Fig. 4.12. Due to the median

based process which smooths out edge artifacts in the demosaicked output by

applying the median filter on difference images, the results from all the seven bands

look almost similar. The main reason for such inappropriate result is because the

seven bands in the multi-spectral image share different edge information. In case

of visual images, the three spectral bands share almost similar edge information

and that is why the median filtering of the difference images works perfectly in

removing edge artifacts. But in the case of the seven band multi-spectral image,

the edge information shared by all the bands is totally different from each other.

One simple reason for the variation in edge information of the same object through

the multi-spectral image is because of the nature of the spectral bands in the

image. The multi-spectral image contains three RGB, three SWIR and one LWIR

spectral band. The object projects itself in a different manner for each spectral

band. This results in the variation of edge information throughout the multi-

spectral image. For more clarity, see Fig. 4.13 for the difference in edge information

in the seven bands of the original multi-spectral image. For the sake of completion,
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(a) Original Image

(b) Median Based Demosaicked Image

Figure 4.12: Median Based Demosaicking Results

Figure 4.13: Variation of Edge Information in the Multi-Spectral Image

the classification curves for the median based demosaicking method have also been

derived. The classification takes a serious hit in the spectral department. The

spectral accuracy is almost nil compared to the original classification curves in

Fig. 4.14(a). The spatial accuracy curve seems to be almost similar to the bilinear

demosaicking classification result. The possible explanation for this is that, the

spatial classification curve is generated only based on information from the first

band in the multi-spectral image. The first band (or the most prominent band)

seems to have been recreated better than the rest of the bands and thus provides

a better spatial classification accuracy. However, due to the inherent drawbacks

of the method the classification curves do not seem to signify anything useful.

4.3.4 Modified Bilinear Demosaicking

The modified bilinear demosaicking method has been derived as a reverse process

of the seven band mosaicking process (see chapter 2 for details). This implies
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(a) Ideal Classification Curves (b) Median Based Demosaicked Classifi-
cation Curves

Figure 4.14: Classification Curves for Median Based Demosaicked Output

that the method is perfectly suitable for the seven band multi-spectral images

and should perform with great results. The results have been listed in Fig. 4.15.

As predicted, the results are far better than the Cok’s demosaicking method and

the median based demosaicking method. Although, the demosaicking process

seems to be designed perfectly still we can observed some artifacts at the edge

locations. This is probably due to the averaging operation performed during

the interpolation process. This is the same averaging operation which results

in the step-like edge artifacts in the normal bilinear demosaicking process. The

classification curves are listed in Fig. 4.16. The figure has three classification

curves - the ideal classification curve, the bilinear demosaicking classification curve

and the modified bilinear classification curve.

We observe from Fig. 4.16(b) the spectral classification accuracy of the modi-

fied demosaicked result is almost similar to the ideal classification accuracy. This

means that the method is successful in producing a better reconstruction of the

original multi-spectral image than the previously discussed methods. However,

the spatial accuracy is not as better as the its spectral counterpart. The spa-

tial accuracy curve shows an improvement over the normal bilinear demosaicking

classification curve shown in Fig. 4.16(c). This makes the modified bilinear demo-

saicking method a better method than the other demosaicking methods. However,

the problem that still persists is the improvement of the spatial classification accu-
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(a) Original Image

(b) Modified Bilinear Demosaicked Image

Figure 4.15: Modified Bilinear Demosaicking Results

(a) Ideal Classification Curves (b) Modified Bilinear Demosaicked Clas-
sification Curves

(c) Normal Bilinear Demosaicked Classi-
fication Curves

Figure 4.16: Classification Curves for Modified Bilinear Demosaicked Output
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(a) Original Image

(b) Modified Median Based Demosaicked Image

Figure 4.17: Modified Median Based Demosaicking Results

racy.The modified median based demosaicking method focuses on improving the

output of the modified bilinear demosaicking result.

4.3.5 Modified Median Based Demosaicking

This method is a simple extension to the modified bilinear demosaicking method.

The modified bilinear demosaicked output is passed through a median filter to

remove the edge artifacts in the bilinear output. The focus of the method is to

improve the spatial classification accuracy of the output image while keeping the

spectral accuracy of the modified bilinear demosaicked output intact. The results

obtained for this method are given in Fig. 4.17. We observe that the results do

not differ much visually compared to the modified bilinear demosaicking output.

The step-like edge artifacts have been reduced to a great extent. This means

that we can expect an improvement in the spatial classification accuracy curves.

Fig. 4.18 shows the comparison of the classification curves for the ideal and the

modified median based case. The spatial accuracy has been improved compared

to the modified bilinear demosaicking output.

Further analysis about the demosaicking results is performed by calculating

the root mean square error (RMSE) with respect to the original image. The

mean square error gives an idea about the ability of the demosaicking method to

create a perfectly reconstructed image. The RMSE values for all the demosaick-
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(a) Ideal Classification Curves (b) Modified Median Based Demosaicked
Classification Curves

Figure 4.18: Classification Curves for Modified Median Based Demosaicked Out-
put

Table 4.1: RMSE Values for Different Demosaicking Techniques
Demosaicking Method MSE Value

Bilinear Method 8.7114
Cok’s Method 14.2243
Median Based Method 12.3643
Modified Bilinear Method 5.3797
Modified Median Based Method 4.9920

ing methods are given in Table 4.1.We observe that the Modified Median Based

Method gives the best reconstruction accuracy compared to the rest of the meth-

ods. The above table also shed some interesting facts about each of the methods.

The Cok’s method produces an output that has the worst RMSE value com-

pared to any of the other methods. This means the output of this method should

have the least spectral accuracy compared to the rest of the methods. This has

been shown to be right in Sec. 4.3.2. The RMSE value improves in the median

based demosaicking method, although the value still remains lesser compared to

the bilinear demosaicking method. The bilinear demosaicking method being the

most basic interpolation method with any considerations of edge-information or

neighborhood sensitivities is supposed to produce the highest RMSE value. Any

other method which has a greater RMSE value than the bilinear demosaicking

method is bound to have major defects in it. The modified bilinear method pro-
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duces an almost perfect reconstructed result. The ability of the process to revert

the mosaicking process makes the reconstruction process to be near-perfect.

4.4 MAP Based Demosaicking Results

The use of MAP as an image restoration technique to demosaic multi-spectral

images has been discussed at length in Chapter 3. In this section, we will discuss

about the experiments conducted and the results obtained by using the MAP

technique. The experimental process has been illustrated in Fig. 4.19. The orig-

inal image is corrupted with noise and Gaussian blur. This degraded image is

then mosaicked using the seven band MSFA. Then the MAP technique is used to

recreate an undegraded version of the original image. The MAP process requires

an initial estimate of the original image so as to start the iteration process. The

Wiener estimate is used for this purpose. The experimentation process for the

MAP technique has been performed for different prior and noise models. Revisit-

ing the equation for the solution to the MAP problem when we use the Gaussian

prior model, we have

fk+1 = fk − α[[φη]
−1(g− (fk ∗ h)) ∗ hrev − [φf ]

−1(fk − fm)] (4.4)

where the initial estimate of the original image is the value of fk at k = 0. We

use the Wiener estimate as the initial estimate. Though the wiener estimate

does not suit the demosaicking problem, still it is better to have some kind of

estimate than to start with a totally unknown estimate. This reduces the time of

iterations and also increases the guarantee for a result. The initial estimate plays

a very important role in the gradient descent procedure. The convergence to a

local minimum through the gradient descent process totally depends on the initial

starting point which is the initial estimate. From Eq. (4.4), h is the blur kernel.

We choose the 3 × 3 Gaussian kernel as the blur kernel for the MAP process.

hrev is the reverse ordered version of h. In out case, since we assume h to be the

gaussian blur kernel which is symmetric in both directions, hrev = h. The noise

term is an important consideration in the experimentation process. We test the

96



Original

Multi-Spectral

Image

Create Degraded

Image by adding

Blur and noise

Mosaicking

(Using the seven

band MSFA)

Bilinear

Demosaicked

Image

MAP ESTIMATE

Wiener Estimate

Output

Figure 4.19: MAP Experimentation Process

system with variable variances and zero-mean gaussian noise term. fm denotes

the mean of the ensemble of the prior image set. The ensemble mean is unknown

because we do not know the values of the images in the ensemble. However, we

know that the distribution of the ensemble of prior images is Gaussian in nature.

So as we go through each iteration, we start finding the values of the images in the

ensemble of prior images. Then the fm is the mean of all the prior images which

have a gaussian distribution. The characteristics of the prior model are chosen to

be constant throughout the process. The speed of convergence is controlled by

the coefficient α. The process is considered to be converged when the difference

between the fk+1 and fk goes below some particular threshold value.

The original image (fig 4.20(a)) is corrupted by a gaussian noise and a gaussian

distribution. The noise and distribution is same for all the seven bands. This gives

us the degraded multi-spectral image, shown in fig 4.20(b). Next, the degraded

image is mosaicked using the seven band MSFA to generate the mosaicked image

(fig 4.20(c)). Comparing the original mosaicked image in Fig. 4.6 and the degraded

version of the mosaicked image in fig 4.20(c). This image is the only information

we have about the original image. If interpolation-based demosaicking methods

are used to retrieve the multi-spectral image from the mosaicked image, it is

guaranteed that we will end up with a totally degraded version of the multi-
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(a) Original Multi-Spectral Image

(b) Degraded Multi-Spectral Image

(c) Degraded Mosaicked Im-
age

Figure 4.20: Original Image has been Degraded with Gaussian Noise and Blur.
The Degraded Image is then Mosaicked to form the Degraded Mosaicked Image.

spectral image. Therefore, we adopt the MAP based algorithm to retrieve a

proper estimate of the multi-spectral image. The Fig. 4.21 displays the results

obtained after implementing the MAP based algorithm. We see that the method

successfully retrieves a undegraded multi-spectral image. From the MAP result

we observe some degradation still remaining in the some of the bands of the

multi-spectral image. This happens due to two causes, firstly, the MAP based

algorithm does not perfectly denoise and deblur the degraded image. Secondly,

due to very low mean values of some of the bands in the multi-spectral image,

any small intensity level of a pixel shows up onto the display. The best way

to check whether or not the result has improved over the degraded image is to
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(a) Degraded Image

(b) MAP Estimate Image (Gaussian Prior Model)

Figure 4.21: MAP Estimate Results Using Gaussian Prior Model

Table 4.2: Comparison of Degraded Image and MAP Estimated Image (Gaussian
Prior Model)

Image MSE PSNR (in dB)

Degraded Image 45.0 31.5987
Bilinear Demosaicked Image 42.7655 31.81
MAP estimated Image 40.078 32.1017

check for the Mean Square Error(MSE) values of the two images with respect to

the original image. Another popular metric that is commonly used to compare

image restoration outputs is the Peak Signal-to-Noise Ratio(PSNR). The PSNR

metric gives an estimate of the amount of noise present compared to the actual

signal strength in the image. Usually PSNR has decibels as its units. The PSNR

calculation in dB iss given in Eq. (4.5).

PSNRdB = 20 log10(
255√
MSE

) (4.5)

where MSE is the mean square error between the original and the existing image.

The higher the PSNR the better is the result. Table 4.2 gives the comparison

between the degraded image and the restored image. We see from the table, that

the MAP estimated image has a lesser MSE and a higher PSNR than the bilinear

demosaicked image. This means the MAP technique has successfully restored the

seven-band multi-spectral image and performs better than the usual interpolation
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(a) Degraded Image

(b) MAP Estimate Image (Gibbs Prior Model)

Figure 4.22: MAP Estimate Results Using Gibbs Prior Model (Laplacian Kernel)

based methods in the presence of noise and other degradations.

Another prior model, the Gibbs distribution was also used to perform the

MAP estimation. Revisiting, the discussion in Sec. 3.2.2 we see that the Gibbs

distribution is supposed to model the image restoration problem better than the

Gaussian model. The Gibbs prior model uses a difference calculation filter. Two

such filters, Laplacian and Quadratic Variation, were used for performing the

MAP estimation process. The results for the MAP estimate using the Laplacian

and the Quadratic kernels have been listed in Fig. 4.22 and Fig. 4.23 respectively.

Table 4.3 lists the MSE and PSNR values for the MAP estimate with Gibbs

prior model using the Laplacian kernel. The MSE value has been reduced which

means the restored image is closer to the original image than the degraded image.

The results for the Quadratic variation based Gibbs distribution model are listed

in table 4.4. In this case also, the MSE values have been reduced but not as

much as the Laplacian kernel based Gibbs distribution method.

The results listed in this chapter strengthens our claim for the use of MFPA

technology for multi-spectral images. We have successfully tested two kinds of

demosaicking strategies - the interpolation based and the image restoration based.

The interpolation-based demosaicking methods work well in the absence of noise

and degradations. For practical applications, where the absence of noise and

degradations is almost impossible, we have developed the MAP based image

restoration technique. Experiments were performed to test the performance of
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(a) Degraded Image

(b) MAP Estimate Image (Gibbs Prior Model)

Figure 4.23: MAP Estimate Results Using Gaussian Prior Model (Quadratic Vari-
ation)

Table 4.3: Comparison of Degraded Image and MAP Estimated Image (Gibbs
Prior Model with Laplacian kernel)

Image MSE PSNR (in dB)

Degraded Image 45.0 31.5987
Bilinear Demosaicked Image 42.7655 31.81
MAP estimated Image (Laplacian Kernel) 41.6734 31.9322

Table 4.4: Comparison of Degraded Image and MAP Estimated Image (Gibbs
Prior Model Using Quadratic Variation)

Image MSE PSNR (in dB)

Degraded Image 45.0 31.5987
Bilinear Demosaicked Image 42.7655 31.81
MAP estimated Image (Quadratic Variation) 42.173 31.8804
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the demosaicked images in classification based applications. The results have

shown that the demosaicked images provide almost perfect spectral classification

and about 70% spatial classification accuracy.
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Chapter 5

Conclusions and Future Work

He did not arrive at this conclusion by the decent process of quiet,

logical deduction, nor yet by the blinding flash of glorious intuition,

but by the shoddy, untidy process halfway between the two by which

one usually gets to know things.

– Margery Allingham

The use of MFPA technology has revolutionized the digital color camera indus-

try. It has made it possible to develop smaller yet cheaper cameras which provide

ample space for improving the image quality. The use of multi-spectral images

has also risen to great heights. However, the multi-spectral camera market is yet

to catch on with the use of a cheaper and a robust technology.

5.1 Contributions of Thesis

This thesis work provided a possibility for the use of the MFPA technology for

multi-spectral cameras. New demosaicking algorithms were developed which are

generic in nature and can be adapted for any kind of multi-spectral images. For

practical applications of the technology, the work also addressed the possibility

of degradations and noise creeping into the image acquisition process. A detailed
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MAP based algorithm was developed to denoise, and deblur the multi-spectral

image with a possibility of performing demosaicking at the same time. The use

of this algorithm makes it possible to generate an optimal demosaicking process

that will be automatic in itself and provide the best demosaicking result based

on the parameters of the system. The results show an improvement over the

interpolation-based strategies and strengthens the claim for the use of the MFPA

technology for multi-spectral images. The use of multi-spectral images for appli-

cations like target recognition has also been addressed. The results for the classi-

fication accuracies of the demosaicked multi-spectral images have proved that the

use of the MFPA technology not only comes with its traditional advantages but

also is suitable for classification applications of the multi-spectral images.

5.2 Future Work

These are some things which we would like to do to extend the work in this thesis.

There is a possibility to improve the image restoration algorithm. Instead of

tackling the problem of removing the degradation and simultaneously filling the

missing pixels, we can treat it as a pure demosaicking problem. Consider an ideal

case of performing demosaicking on the mosaicked image. The mosaicked image

can be further perceived as a combination of multiple images (with the number of

images equal to the number of spectral bands in the multi-spectral image) with

each spectral band image having a combination of existing and missing pixels. The

missing pixels may be considered to have been produced due to a degradation upon

the original multi-spectral image. If this kind of degradation (which causes some

pixels to vanish) can be mathematically found, then its inverse could be used to

revert the degradation effect. In other words, the degradation function can be used

to find the missing pixels in the mosaicked image and thus producing a perfectly

demosaicked output. The advantage of using such a technique is that firstly,

unlike interpolation based strategies there is no need of a prior knowledge about

the mosaicking array. Secondly, the demosaicking process will become purely

automatic and will provide greater control over the kind of output produced.

A hardware simulation of the MFPA technology for multi-spectral images will
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give a greater insight on the real advantages of the technology. The hardware

simulation will also act as a guide of the creation of real world multi-spectral

cameras.

The use of hexagonal tessellations for the detector geometry should be explored

in detail. The hexagonal tessellations have proved to have an upper hand over

the traditional square tessellations with respect to lesser sampling rates, lesser

processing time, etc.

105



Bibliography

106



Bibliography

[Andrews and Hunt, 1977] Andrews, H. and Hunt, B. (1977). Digital Image

Restoration. Prentice-Hall Signal Processing Series. Prentice-Hall Inc., 1st edi-

tion.

[Audley, 1997] Audley, M. D. (1997). Charge-coupled devices. Technical re-

port, Laboratory for High Energy Astrophysics, NASA, http://lheawww.

gsfc.nasa.gov/users/audley/diss/node31.html.

[Bayer, 1976] Bayer, B. E. (1976). Color Imaging Array. United States Patent

3,971,065.

[Cok, 1987] Cok, D. R. (1987). Signal Processing method and apparatus for pro-

ducing interpolated chrominance values in a sampled color image signal. United

States Patent 4,642,678.

[Company, 2004] Company, E. K. (2004). Image sensor solutions. Technical

report, Eastman Kodak Company, http://www.kodak.com/global/en/

digital/ccd/products/cmos/KAC-0311/indexKAC-0311.jhtml?id=0.1.10.

6.5&lc=en.

[Cutin, 2004] Cutin, D. P. (2004). Image sensors - capturing the photograph.

Technical report, ShortCourses.Com, http://www.shortcourses.com/how/

sensors/sensors.htm.

[Dudgeon and Mersereau, 1984] Dudgeon, D. E. and Mersereau, R. M. (1984).

Multidimensional Digital Signal Processing. Prentice-Hall Signal Processing

Series. Prentice-Hall, 1st edition.

107



[FillFactory, 2005] FillFactory (2005). Color filter arrays. Technical report,

Fill Factory Image Sensors, http://www.fillfactory.com/htm/technology/

htm/rgbfaq.htm.

[Freeman, 1988] Freeman, W. T. (1988). Median Filter for reconstructing missing

color samples. United States Patent 4,724,395.

[Gonzalez and Woods, 2003] Gonzalez, R. C. and Woods, R. E. (2003). Digital

Image Processing. Pearson Education, 2nd edition.

[Hamilton and Adams, 1997] Hamilton, J. F. and Adams, J. E. (1997). Adaptive

color plan interpolation in single sensor color electronic camera. United States

Patent 5,629,734.

[Laroche and Prescott, 1994] Laroche, C. A. and Prescott, M. A. (1994). Appara-

tus and method for adaptively interpolating a full color image utilizing chromi-

nance gradients. United States Patent 5,373,322.

[Longere et al., 2002] Longere, P., Zhang, X., Delahunt, P. B., and Brainard,

D. H. (2002). Perceptual assessment of demosaicing algorithm performance.

In Proceedings of IEEE, volume 90, pages 123–132.

[Miao et al., 2003] Miao, L., Qi, H., and Snyder, W. (2003). A generic method

for generating multi-spectral filter arrays. IEEE International Conference on

Image Processing (ICIP).

[Mullen, 1985] Mullen, K. (1985). The contrast sensitivity of human colour vi-

sion to red-green and blue-yellow chromatic gratings. Journal of Physiology,

359(1):381–400.

[Qi, 1999] Qi, H. (1999). A High-Resolution, Large-Area, Digital Imaging System.

PhD thesis, North Carolina State University.

[Ramanath et al., 2002] Ramanath, R., Snyder, W. E., Bilbro, G. L., and

Sander III, W. A. (2002). Demosaicking methods for bayer color arrays. Journal

of Electronic Imaging, 11(3):306–315.

108



[Ramanath et al., 2004] Ramanath, R., Snyder, W. E., and Qi, H. (2004). Mosaic

multispectral focal plane array cameras. Infrared Technology and Applications

XXX at SPIE Defense and Security Symposium.

[Roberts, 2003] Roberts, M. (2003). Signals and Systems: Analysis Using Trans-

form Methods and Matlab. Tata McGraw-Hill Publishing Company Limited,

1st edition.

[Rosenfeld and Kak, 1982] Rosenfeld, A. and Kak, A. C. (1982). Digital Picture

Processing, volume 1. Academic Press Inc., 2nd edition.

[Rosenfled, 1970] Rosenfled, A. (1970). Connectivity in digital pictures. Journal

of the ACM, 17.

[Snyder, 1991] Snyder, W. (1991). Image File System Reference Manual. NC

State University Image Analysis Laboratory Database, 5.1 edition.

[Snyder et al., 2000] Snyder, W. E., Qi, H., Head, J., and Wang, C. X. (2000).

Increasing the effective resolution of thermal infrared images. IEEE Engineering

in Medicine and Biology Magazine, 19(3):63–70.

[Sonka, 2004] Sonka, M. (2004). Class notes on image pre-processing: Image

restoration. Technical report, University of Iowa, http://www.icaen.uiowa.

edu/∼dip/LECTURE/PreProcessing4.html.

[Wensel et al., 1990] Wensel, D., Eberly, D., and Longbotham, H. (1990). Hexag-

onal tessellations in image algebra. Image Algebra and Morphological Image

Processing, SPIE, 1350:25–30.

[Zhu et al., 1999] Zhu, W., Parker, K., and Kriss, M. A. (1999). Color filter arrays

based on mutually exclusive blue noise patterns. Journal of Vision Communi-

cation and Image Representation, 10(3):245–267.

109



Vita

Gaurav Ashok Baone was born in Nagpur, India, on March 12, 1982. He com-

pleted his elementary education in Hyderabad, India. Pursuing his keen interest

in mathematics, he went on to do his engineering. He graduated from Osmania

University, India in 2003 with a Bachelor of Engineering degree in Electronics and

Communications Engineering. During his undergraduate study, he implemented

a new Anti-Slip and Anti-Slide system for Diesel-Electric Locomotives. This work

was done at Bharat Heavy Electrical Limited, R&D, Hyderabad, India. In Fall

2003, he came to The University of Tennessee as a graduate student in Electrical

and Computer Engineering department. He then joined the Advanced Imaging

and Collaborative Information Processing lab of Dr. Hairong Qi with a major

topic in Multi-Spectral Image Processing. He explored new methods for imple-

menting the mosaic focal plane array technology for multi-spectral image acqui-

sition systems. He developed demosaicking algorithms for multi-spectral images.

He developed a novel image restoration based approach to perform demosaicking

in the presence of noise and degradations. He was also involved in the develop-

ment of mobile robots that were provided intelligence to move around a closed

enclosure without human intervention. The robot development was a part of a

successful initial venture of AICIP lab into the field of computer vision. He took

a course in microelectronic systems design which added an additional aspect to

his interests. He was a part of a team which designed a FPGA based handwrit-

ten digit recognition processor. His major interests and research areas are image

processing, computer vision, embedded systems and digital systems design.

110


	De-velopment of Demosaicking Techniques for Multi-Spectral Imaging Using Mosaic Focal Plane Arrays
	Recommended Citation

	tmp.1376080793.pdf.3Qlsq

