6 research outputs found

    Periodic nonlinear economic model predictive control with changing horizon for water distribution networks

    Get PDF
    A periodic nonlinear economic model predictive control (EMPC) with changing prediction horizon is proposed for the optimal management of water distribution networks (WDNs). The control model of the WDN is built by means of nonlinear differential-algebraic equations in which both the hydraulic pressure and flow variables are taken into account. The model allows the controller to consider minimum pressure constraints at the demands. A periodic terminal constraint is employed in order to guarantee closed-loop stability. The prediction horizon is modified on-line in order to guarantee convergence to the optimal periodic trajectory. The proposed control strategy is verified with the case study of the Richmond water network in a realistic hydraulic simulator. Although there are modeling errors between the control model and hydraulic model, the closed-loop system converges to a sub-optimal periodic trajectory satisfying all the constraints.Peer ReviewedPostprint (author's final draft

    Economic model predictive control based on a periodicity constraint

    Get PDF
    This paper addresses a novel economic model predictive control (MPC) formulation based on a periodicity constraint to achieve an optimal periodic operation for discrete-time linear systems. The proposed control strategy does not rely on forcing the terminal state by means of a terminal equality constraint and hence it does not require a priori knowledge of a periodic steady trajectory. Instead, at each sampling time step the economic cost function is optimized based on a periodicity constraint over all the periodic trajectories that include the current state. The recursive feasibility and the closed-loop convergence to a periodic steady trajectory are discussed. Moreover, an optimality certificate of this steady trajectory is provided based on the Karush–Kuhn–Tucker (KKT) optimality conditions. Finally, an application to a well-known water distribution network benchmark is presented to demonstrate the proposed economic MPC in which the closed-loop simulation results obtained with a linear model and a virtual–reality simulator are both providedUnión Europea, European Development Research Fund (EDRF) DEOCS (DPI2016-76493) and SCAV (DPI2017-88403-R),Generalitat de Catalunya 2017-SGR-482FPI Grant BES-2014-06831

    Economic model predictive control based on a periodicity constraint

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/This paper addresses a novel economic model predictive control (MPC) formulation based on a periodicity constraint to achieve an optimal periodic operation for discrete-time linear systems. The proposed control strategy does not rely on forcing the terminal state by means of a terminal equality constraint and hence it does not require a priori knowledge of a periodic steady trajectory. Instead, at each sampling time step the economic cost function is optimized based on a periodicity constraint over all the periodic trajectories that include the current state. The recursive feasibility and the closed-loop convergence to a periodic steady trajectory are discussed. Moreover, an optimality certificate of this steady trajectory is provided based on the Karush–Kuhn–Tucker (KKT) optimality conditions. Finally, an application to a well-known water distribution network benchmark is presented to demonstrate the proposed economic MPC in which the closed-loop simulation results obtained with a linear model and a virtual–reality simulator are both provided.Peer ReviewedPostprint (author's final draft

    Advances in state estimation, diagnosis and control of complex systems

    Get PDF
    This dissertation intends to provide theoretical and practical contributions on estimation, diagnosis and control of complex systems, especially in the mathematical form of descriptor systems. The research is motivated by real applications, such as water networks and power systems, which require a control system to provide a proper management able to take into account their specific features and operating limits in presence of uncertainties related to their operation and failures from component malfunctions. Such a control system is expected to provide an optimal operation to obtain efficient and reliable performance. State estimation is an essential tool, which can be used not only for fault diagnosis but also for the controller design. To achieve a satisfactory robust performance, set theory is chosen to build a general framework for descriptor systems subject to uncertainties. Under certain assumptions, these uncertainties are propagated and bounded by deterministic sets that can be explicitly characterized at each iteration step. Moreover, set-invariance characterizations for descriptor systems are also of interest to describe the steady performance, which can also be used for active mode detection. For the controller design for complex systems, new developments of economic model predictive control (EMPC) are studied taking into account the case of underlying periodic behaviors. The EMPC controller is designed to be recursively feasible even with sudden changes in the economic cost function and the closed-loop convergence is guaranteed. Besides, a robust technique is plugged into the EMPC controller design to maintain these closed-loop properties in presence of uncertainties. Engineering applications modeled as descriptor systems are presented to illustrate these control strategies. From the real applications, some additional difficulties are solved, such as using a two-layer control strategy to avoid binary variables in real-time optimizations and using nonlinear constraint relaxation to deal with nonlinear algebraic equations in the descriptor model. Furthermore, the fault-tolerant capability is also included in the controller design for descriptor systems by means of the designed virtual actuator and virtual sensor together with an observer-based delayed controller.Esta tesis propone contribuciones de carácter teórico y aplicado para la estimación del estado, el diagnóstico y el control óptimo de sistemas dinámicos complejos en particular, para los sistemas descriptores, incluyendo la capacidad de tolerancia a fallos. La motivación de la tesis proviene de aplicaciones reales, como redes de agua y sistemas de energía, cuya naturaleza crítica requiere necesariamente un sistema de control para una gestión capaz de tener en cuenta sus características específicas y límites operativos en presencia de incertidumbres relacionadas con su funcionamiento, así como fallos de funcionamiento de los componentes. El objetivo es conseguir controladores que mejoren tanto la eficiencia como la fiabilidad de dichos sistemas. La estimación del estado es una herramienta esencial que puede usarse no solo para el diagnóstico de fallos sino también para el diseño del control. Con este fin, se ha decidido utilizar metodologías intervalares, o basadas en conjuntos, para construir un marco general para los sistemas de descriptores sujetos a incertidumbres desconocidas pero acotadas. Estas incertidumbres se propagan y delimitan mediante conjuntos que se pueden caracterizar explícitamente en cada instante. Por otra parte, también se proponen caracterizaciones basadas en conjuntos invariantes para sistemas de descriptores que permiten describir comportamientos estacionarios y resultan útiles para la detección de modos activos. Se estudian también nuevos desarrollos del control predictivo económico basado en modelos (EMPC) para tener en cuenta posibles comportamientos periódicos en la variación de parámetros o en las perturbaciones que afectan a estos sistemas. Además, se demuestra que el control EMPC propuesto garantiza la factibilidad recursiva, incluso frente a cambios repentinos en la función de coste económico y se garantiza la convergencia en lazo cerrado. Por otra parte, se utilizan técnicas de control robusto pata garantizar que las estrategias de control predictivo económico mantengan las prestaciones en lazo cerrado, incluso en presencia de incertidumbre. Los desarrollos de la tesis se ilustran con casos de estudio realistas. Para algunas de aplicaciones reales, se resuelven dificultades adicionales, como el uso de una estrategia de control de dos niveles para evitar incluir variables binarias en la optimización y el uso de la relajación de restricciones no lineales para tratar las ecuaciones algebraicas no lineales en el modelo descriptor en las redes de agua. Finalmente, se incluye también una contribución al diseño de estrategias de control con tolerancia a fallos para sistemas descriptores

    Integration of Process Design, Scheduling, and Control Via Model Based Multiparametric Programming

    Get PDF
    The conventional approach to assess the multiscale operational activities sequentially often leads to suboptimal solutions and even interruptions in the manufacturing process due to the inherent differences in the objectives of the individual constituent problems. In this work, integration of the traditionally isolated process design, scheduling, and control problems is investigated by introducing a multiparametric programming-based framework, where all decision layers are based on a single high fidelity model. The overall problem is dissected into two constituent parts, namely (i) design and control, and (ii) scheduling and control problems. The proposed framework was first assessed on these constituent subproblems, followed by the implementation on the overall problem. The fundamental steps of the framework consists of (i) developing design dependent offline control and scheduling strategies, and (ii) exact implementation of these offline rolling horizon strategies in a mixed-integer dynamic optimization problem for the optimal design. The design dependence of the offline operational strategies allows for the integrated problem to consider the design, scheduling, and control problems simultaneously. The proposed framework is showcased on (i) a binary distillation column for the separation of toluene and benzene, (ii) a system of two continuous stirred tank reactor, (iii) a small residential heat and power network, and (iv) two batch reactor systems. Furthermore, a novel algorithm for large scale multiparametric programming problems is proposed to solve the classes of problems frequently encountered as a result of the integration of rolling horizon strategies
    corecore