341 research outputs found

    Algorithmic Approaches to Game-theoretical Modeling and Simulation

    Get PDF
    This paper deals with a methodology of computer modeling and simulation of market competitive situations using game theory. The situations are thematically focused mostly to models of commodity markets but the applications of the methodology can be wider. This methodology covers the whole modeling work, including a primary specification of a problem, making an abstract model, making a simulation model, design of a state space of the problem and the simulator itself. As a whole, the methodology represents a complete framework for implementation of computer models of commodity markets suitable for their further analysis and prediction of their future evolution. The main contribution of the paper consists in the algorithmic implementation of computer processing of large strategic game.Market models, non-cooperative game theory, modeling and simulation, artificial intelligence

    Wireless Resource Management in Industrial Internet of Things

    Get PDF
    Wireless communications are highly demanded in Industrial Internet of Things (IIoT) to realize the vision of future flexible, scalable and customized manufacturing. Despite the academia research and on-going standardization efforts, there are still many challenges for IIoT, including the ultra-high reliability and low latency requirements, spectral shortage, and limited energy supply. To tackle the above challenges, we will focus on wireless resource management in IIoT in this thesis by designing novel framework, analyzing performance and optimizing wireless resources. We first propose a bandwidth reservation scheme for Tactile Internet in the local area network of IIoT. Specifically, we minimize the reserved bandwidth taking into account the classification errors while ensuring the latency and reliability requirements. We then extend to the more challenging long distance communications for IIoT, which can support the global skill-set delivery network. We propose to predict the future system state and send to the receiver in advance, and thus the delay experienced by the user is reduced. The bandwidth usage is analysed and minimized to ensure delay and reliability requirements. Finally, we address the issue of energy supply in IIoT, where Radio frequency energy harvesting (RFEH) is used to charge unattended IIoT low-power devices remotely and continuously. To motivate the third-party chargers, a contract theory-based framework is proposed, where the optimal contract is derived to maximize the social welfare

    Cooperative Control And Advanced Management Of Distributed Generators In A Smart Grid

    Get PDF
    Smart grid is more than just the smart meters. The future smart grids are expected to include a high penetration of distributed generations (DGs), most of which will consist of renewable energy sources, such as solar or wind energy. It is believed that the high penetration of DGs will result in the reduction of power losses, voltage profile improvement, meeting future load demand, and optimizing the use of non-conventional energy sources. However, more serious problems will arise if a decent control mechanism is not exploited. An improperly managed high PV penetration may cause voltage profile disturbance, conflict with conventional network protection devices, interfere with transformer tap changers, and as a result, cause network instability. Indeed, it is feasible to organize DGs in a microgrid structure which will be connected to the main grid through a point of common coupling (PCC). Microgrids are natural innovation zones for the smart grid because of their scalability and flexibility. A proper organization and control of the interaction between the microgrid and the smartgrid is a challenge. Cooperative control makes it possible to organize different agents in a networked system to act as a group and realize the designated objectives. Cooperative control has been already applied to the autonomous vehicles and this work investigates its application in controlling the DGs in a micro grid. The microgrid power objectives are set by a higher level control and the application of the cooperative control makes it possible for the DGs to utilize a low bandwidth communication network and realize the objectives. Initially, the basics of the application of the DGs cooperative control are formulated. This includes organizing all the DGs of a microgrid to satisfy an active and a reactive power objective. Then, the cooperative control is further developed by the introduction of clustering DGs into several groups to satisfy multiple power objectives. Then, the cooperative distribution optimization is introduced iii to optimally dispatch the reactive power of the DGs to realize a unified microgrid voltage profile and minimize the losses. This distributed optimization is a gradient based technique and it is shown that when the communication is down, it reduces to a form of droop. However, this gradient based droop exhibits a superior performance in the transient response, by eliminating the overshoots caused by the conventional droop. Meanwhile, the interaction between each microgrid and the main grid can be formulated as a Stackelberg game. The main grid as the leader, by offering proper energy price to the micro grid, minimizes its cost and secures the power. This not only optimizes the economical interests of both sides, the microgrids and the main grid, but also yields an improved power flow and shaves the peak power. As such, a smartgrid may treat microgrids as individually dispatchable loads or generators

    Energy and performance-aware scheduling and shut-down models for efficient cloud-computing data centers.

    Get PDF
    This Doctoral Dissertation, presented as a set of research contributions, focuses on resource efficiency in data centers. This topic has been faced mainly by the development of several energy-efficiency, resource managing and scheduling policies, as well as the simulation tools required to test them in realistic cloud computing environments. Several models have been implemented in order to minimize energy consumption in Cloud Computing environments. Among them: a) Fifteen probabilistic and deterministic energy-policies which shut-down idle machines; b) Five energy-aware scheduling algorithms, including several genetic algorithm models; c) A Stackelberg game-based strategy which models the concurrency between opposite requirements of Cloud-Computing systems in order to dynamically apply the most optimal scheduling algorithms and energy-efficiency policies depending on the environment; and d) A productive analysis on the resource efficiency of several realistic cloud–computing environments. A novel simulation tool called SCORE, able to simulate several data-center sizes, machine heterogeneity, security levels, workload composition and patterns, scheduling strategies and energy-efficiency strategies, was developed in order to test these strategies in large-scale cloud-computing clusters. As results, more than fifty Key Performance Indicators (KPI) show that more than 20% of energy consumption can be reduced in realistic high-utilization environments when proper policies are employed.Esta Tesis Doctoral, que se presenta como compendio de artículos de investigación, se centra en la eficiencia en la utilización de los recursos en centros de datos de internet. Este problema ha sido abordado esencialmente desarrollando diferentes estrategias de eficiencia energética, gestión y distribución de recursos, así como todas las herramientas de simulación y análisis necesarias para su validación en entornos realistas de Cloud Computing. Numerosas estrategias han sido desarrolladas para minimizar el consumo energético en entornos de Cloud Computing. Entre ellos: 1. Quince políticas de eficiencia energética, tanto probabilísticas como deterministas, que apagan máquinas en estado de espera siempre que sea posible; 2. Cinco algoritmos de distribución de tareas que tienen en cuenta el consumo energético, incluyendo varios modelos de algoritmos genéticos; 3. Una estrategia basada en la teoría de juegos de Stackelberg que modela la competición entre diferentes partes de los centros de datos que tienen objetivos encontrados. Este modelo aplica dinámicamente las estrategias de distribución de tareas y las políticas de eficiencia energética dependiendo de las características del entorno; y 4. Un análisis productivo sobre la eficiencia en la utilización de recursos en numerosos escenarios de Cloud Computing. Una nueva herramienta de simulación llamada SCORE se ha desarrollado para analizar las estrategias antes mencionadas en clústers de Cloud Computing de grandes dimensiones. Los resultados obtenidos muestran que se puede conseguir un ahorro de energía superior al 20% en entornos realistas de alta utilización si se emplean las estrategias de eficiencia energética adecuadas. SCORE es open source y puede simular diferentes centros de datos con, entre otros muchos, los siguientes parámetros: Tamaño del centro de datos; heterogeneidad de los servidores; tipo, composición y patrones de carga de trabajo, estrategias de distribución de tareas y políticas de eficiencia energética, así como tres gestores de recursos centralizados: Monolítico, Two-level y Shared-state. Como resultados, esta herramienta de simulación arroja más de 50 Key Performance Indicators (KPI) de rendimiento general, de distribucin de tareas y de energía.Premio Extraordinario de Doctorado U

    A Snapshot of the Frontiers of Client Selection in Federated Learning

    Get PDF
    Federated learning (FL) has been proposed as a privacy-preserving approach in distributed machine learning. A federated learning architecture consists of a central server and a number of clients that have access to private, potentially sensitive data. Clients are able to keep their data in their local machines and only share their locally trained model's parameters with a central server that manages the collaborative learning process. FL has delivered promising results in real-life scenarios, such as healthcare, energy, and finance. However, when the number of participating clients is large, the overhead of managing the clients slows down the learning. Thus, client selection has been introduced as a strategy to limit the number of communicating parties at every step of the process. Since the early na\"{i}ve random selection of clients, several client selection methods have been proposed in the literature. Unfortunately, given that this is an emergent field, there is a lack of a taxonomy of client selection methods, making it hard to compare approaches. In this paper, we propose a taxonomy of client selection in Federated Learning that enables us to shed light on current progress in the field and identify potential areas of future research in this promising area of machine learning.Comment: 17 pages, 3 figures, 1 appendix, submitted to TML

    To Honor and Obey: Efficiency, Inequality and Patriarchal Property Rights

    Get PDF
    Published in Feminist Economics, March 2001, 7(1): 25-44.
    corecore