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Abstract This paper deals with a methodology of computer modeling and simulatiorasf m
ket competitive situations using game theory. The situations are thematicallgefd mostly
to models of commodity markets but the applications of the methodology eavider. This
methodology covers the whole modeling work, including a primary spatiific of a problem,
making an abstract model, making a simulation model, design of a state spte problem
and the simulator itself. As a whole, the methodology represents a comyaleteviork for im-
plementation of computer models of commodity markets suitable for theheuanalysis and
prediction of their future evolution. The main contribution of the paper isteig the algorith-
mic implementation of computer processing of large strategic game.
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1. Introduction

Game theory is traditionally considered to be a disciplihpuse mathematicians and
mathematically oriented economists. The literature oney#mory is quite large and
includes various (analytical) models of elementary situst These models describe
every-day decision problems of people playing games, tsadeing their business,
politicians in elections and others. But the scale factoqulity and advisability of
every theory is expressed by its real applications arisingfreal requirements. In
this point, the literature is not so rich and practical caadiss can be found mostly in
commercial papers advertising a particular analysis tool.

Research connected to this paper was motivated by colle&gom EQJ Brno
company. They are experts in analyzing and predicting teetétity markets which
they do using their own computer models. In the recent yeees;reated a package
of interconnected computer models covering the elegiritiarkets in the region of
Central Europe (Hrupand Toufar 2006). Our models include several aspects of the
electricity market commodities, behavior of the produceosisumers and the overall
legislation. Although the architecture of the mentioneddele might be of interest
of the readers, their detail description would exceed the of a journal paper. For
that reason, this particular paper focuses mostly to thénenadtical and modeling
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fundamentals of our models. It deals with methods of appglyire game theoretical
principles in computer science. From the computer scieng pf view, we work on

artificial intelligence in the computer modeling. The maamtribution of the paper is
supposed to be in the presented methodology of designingatimputer models and
in the algorithms of their simulation. It might be an insgiioa for those who like to

implement the game theory in practical computer models. wayy as the world of
electricity is very close to our thinking, we will recall therminology of the electricity
markets to demonstrate the described ideas in suitable nmeme

Computer modeling and simulation together with artifiaréiligence are both tra-
ditional areas of computer science. Model of a systeisiusually defined as another
systemB which is somehow similar té. By sayingmodelingwe mean a process of
expressing the model in form of some modeling formalism gpaonming or simula-
tion language, for example). Systeédns always a simplified version of the systéin
it contains just a part of its elements and their internadtiehs. We usually do not
know the whole structure of the systéinwe are not capable to cover the systarim
its whole complexity or the systehis not realizable in our physical world.

The computer simulation is a processdafing experimentsvith the model. We
gain a new knowledge & during experimenting with its representation by syst&m
The term simulation is also understood as an execution ahalation model (when
speaking about models in programming languages). Duriagiperimental phase,
we have to confirm thaB system is really similar té\. We validate the model, or
debug or calibrate the model.

Both the game theory and computer science deals with thelinga systems and
their further analysis through the models. But there is ai@ant difference in doing
that: the mathematical approach usually chosen by gamesteis called thanaly-
tical modeling the computer approach is called thimulation or computer modeling
(numerical). The analytical model in form of mathematiagliations is a perfect con-
ception of the studied system. We input the parameters tedghations and obtain the
results immediately. The computer model must be put intoeg @ad time consuming
experimenting. Moreover, as a numerical solution, it giwely approximate results.
The experimenter has to keep in his mind, that he works witimgerfect and incom-
plete model, and the results are always infected by a ceztean corresponding to the
time spent in experimenting.

The analytical modeling seems to be the best way of doing thaeis. However, it
is almost impossible to construct an analytical model ofgdasystem. It is practical
to model the problems in analytical manner just in casesgffumdamental problems
or in cases of some elementary parts of larger problems. Heorest of the tasks, it
is highly recommended to build a computer model and to enduime consuming
experimentations. Modern computers already allow that.

The computer representation of a model always discrettzestudied problem.
No matter if it is a meteorological model of atmosphere or medheoretical model
of a decision problem, its domain (naturally continuoudjasisferred to a finite enu-
meration — to a finite set. The cardinality of the discrete dionimplies the number
of computing operation necessary to proceed in the modeluéo®. The computer
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approach to model design is useful also for other reasons. pdlver of computers
substitutes a human intellect spent in the analytical model Contemplation of a
mathematician can be transferred to a quanta of computiegatipns done by the
machine.

The computer modeling has evident advantages in the fieldoofeliimg of com-
plex systems, e.g. game situations. But we have to face dueoectical and practical
computing constraints — the memory constraints and the tiomstraints. They both
come from the algorithmic principle of the machine procegst searching the state
(strategy) space. We have to keep in mind that every operafithe machine takes
some time to be processed. The whole simulation may takeshdays or even years.
Methods of Atrtificial Intelligence (Al) based on searchihg state space use so called
heuristics The heuristics is an expert knowledge helping the Al athamito predict
(observing the passed computation) what sub-spaces ofdfeespace are not recom-
mended for the further searching. Unfortunately, the Istics are very connected with
the particular model and they are not re-usable, they makmtidel over-complicated
and decrease its flexibility.

We look for some universal heuristics which is not integiaite the application
model. This approach should arise from some general gaewdtical law or a prin-
ciple. Such a mechanism shall not require the modeler toeinfla his model with
some application-specific heuristics. Such a mechanisthestieriment with an ap-
plication model to find a faster way towards its solution.

We are going to introduce a framework suitable for develapnoé such automa-
tized mechanism and two examples of these mechanisms.ulidshe emphasized that
the methods and algorithms described here were developetyduany years of de-
velopment of computer models of electro-energy marketseGtudies made by these
models are requested by the government and commercidliigstis in this sphere of
industry.

The paper is organized as follows: the section 2 introduoésexplains the ba-
sic assumptions and terms used in the paper. The sectionomeatspecific internal
model cellModel evaluating the members of game state space. Let us imagne th
cellModel as a procedure written is some programming imperative laggu The
cellModel takes the majority of the processor time and the whole metlogg at-
tempts to find a such algorithms which minimize the count sfiilvocations. The
section 3 brings a more formal description of the game sfadeesand its meaning
in game-theoretical modeling. In the 4th section, the abstrchitecture of a game
model is presented. Its abstract parts will be concretinesctions 5 and 6, where an
example of an equilibrium solver and example of a state speshection mechanism
are deposed. The last section 7 concludes the paper.

2. The modeling methodology
In market games, competitive situations are subject of firagien order to be able to

betterunderstand the behavior of the playémghe real life or to be able tpredict the
behaviorof real players (producers, traders and consumers). Ttiearkterature on
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gaming shows sometimes a certain measure of skepticisnt ahether the game the-
ory can be successfully used for the prediction of futureefg interesting experiment
is described in Green (2002)); in other cases, the usefuloethe game theory for
predictions is defended (Erev et al. 2002). The game theamdoubtedly a relatively
successful and usable method. A number of papers (Kraude28Qd, Yigun et al.
2002, Gountis and Bakirtzis 2004, Kwang-Ho and Baldrick®0femonstrate that in
the area of the electricity markets modeling (which is oéiest of the author), mostly
use the analytic models developing certain game-theatgdiciples.

In this section, we introduce an approach of modeling thepsiitive situations.
The whole methodology is heading towards a computer modetalpredict the future
evolution of the modeled systems.

We are specialized particularly in markets with centralisading where all con-
tracts are signed in the same time or the decision must recoaistant for a certain
time period (year). These situations are then modeled akegic games — games in
normal form (Myerson 2004). Let us first define a game in ggiateorm and some
basic important terms.

Definition 1. A game in strategic form dfl players is defined as:
r=(QS,%, -, S\;U1,Uz, ... ,Un),
where
() Q={1,2,...,N}is a (finite) set of the players.

(i) §,i € Q are finite sets of (pure) strategies of player®roduct of strategy sets
makes thegame state spaceSS; x § x ... x §y. Members of state space are
calledstrategic profiles s= (s1,%, ...,Sn). LetS_j denote similarly a subspace of
SwithoutS. S j notation will be frequently used to express a context ofi tthe
player's decision situation. Finallg_; = (s1,...,S-1,S+1,.--,SN) iS @ member
of S .

(i) Ui:S— R,i e Qare utility functions assigning a payoff to each playareach
profile s€ S We shall not delve too deeply into the analysis of the form of
player’s payoff; the payoff will simply be a number (ofterpegssing player’s fi-
nancial profit). We expect the utility function not to be defirfor some profiles.

In that cases, utility function assigns sogeme neutral payoftzero or a nega-
tive value). The utility functiong); are usually implemented &—dimensional
arrays indexed by strategy profiles S

In some parts it will be preferred to denote shoftly= (Q; S U) to describe a game
I with a state spac8& and utility functionsU. We may write that the state space is
computedo emphasize that the utility functions are known forsall S.

Modeling of games should lead to some equilibrium pointse $trategic profile
s" € Sconsisting of the actiors made by individual players will be referred agame
solution We expect the players to choose the best response on tipginept’s possi-
ble action. Theequilibriumis the mutually best response, which is formally defined in
Definition[2.
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Definition 2. Strategic profiles* is the equilibrium in the gamk, if:
VieQvs eS,s #5 :Ui(s,s5) = Ui(s,sh)

2.1 Strategy dominance

We have mentioned a need of some automatized mechanism oluéd @xperiment
with the model to speed-up the classical searching in sptees The mechanism is
supposed to reduce automatically the game state spaceifallgome general game-
theoretical principle. The algorithms described here ased on examination of do-
minant and dominated strategies. Let us formulate theickstefinition of the domi-
nance.

Definition 3. Let us have a strategic form garfie= (Q;SU). Strategy§l of a player
i strictly dominates strategs, if

Vs ie S Ui (él,S,i) > U; (§27&i)
Strategys, of a playeri weakly dominates strateg, if
Jdsje Sy (Sﬁl,&i) > U; (§2,S,i) AVS €S Ui(§l,&i) > Ui(§-z,S,i)

The strategy dominance is connected to a technique dédliesdive elimination of do-
minated strategiesvhich reduces the game state space. This technique is wial tri
in the time-complexity point of view. On the other hand, weyrhandle the strategy
dominance from the characteristics of Best-responserhe Best-response characte-
ristics studies the player’s behavior in situation whendgponents play strategies in
sub-profiles._;.

Definition 4. Strategiess'oestg S of a playeri are his best-response in the strategy
contexts_j € S, if:

Vb € Sheer VS € §.57# 51 Ui(%,5-1) > Ui(s,5)

Set of Best-response strategies of the playerithe contexs_j € S_; will be denoted
asBR(s_i), or simplyBR(s); BR(s_i,I") to emphasize the particular gafieLet us
define a set of relevant (good) strategigg; of a player:

Sri= (J BR(s) @
S €S
Obviously, ifVs;, s € § : Ui(s1,5-i) = Ui(sp,5-i) holds for somes_j € S j, the
best-response is equal $ We will consider this state to b®ot suitablefor the game
analysis. Itis preferable to work with such games, wherg € S : IBR(s-i)| < |S].
Anyway, it is ideal if BR(s_i)| = 1.
With the framework of strategy dominance, these statentamte considered:
(i) Arational player never plays a strategy, which is (dlyior weakly) dominated
by another strategy (see G-solve in secfion 5.4).
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(i) A rational player always plays a strategy frdBiR (s_i) in the sub-profiles._;.
The fact of|BR(s_i)| > 1 introduces a certain uncertainty and hence a mixed
behavior.

(i) A player always decides within the s&g;. The strategie§ \ Ssr; have no
meaning for him. We are going to call them simply theminated strategies
The strategieSgr; Will be called thedominant strategies

Distinguishing the dominant and the dominated is the stguioint for proxessing
the game tasks. Splitting the strategies to dominant andraded is not evident di-
rectly from thel" game specification. To analyze the dominance, the algonitust
go through the whole state space. This is impossible in maagtipal cases for the
complexity reasons (see sectfon]2.3). In this paper, we @ireggo demonstrate that
it is realizable to analyze a relevant sub-part of fhgtate space to compute the best-
response characteristics of the players. ConcentratihgtonSgr; strategies (as a
minimal representative of the origing) the computer can find the game solutior of
without analyzing the whole state space.

2.2 Strategic equivalence of games

Strategic equivalence of games (Myerson 2004) is a wider.t&e introduce a spe-
cific definition of the term relevant for this paper.

Definition 5. A gamerl’, = (Q;S;Uy) is strategically equivalent to another game-
(Q;S V), if holds:

(i) S € Sand
(i) Vs €S,VieQ:Ui(s) =Ui(s) and
("I) Vie Q: US—iE&i BR (S—i7 r) = US{,—iESr.fi BR(Sr,—h rr)

This means that a ganig is strategically equivalent tb if it is played in the same
set of players, just the state spageis a subset oS and no strategically important
(dominant) strategies are omitted.

The task is to find a strategically equivalent gamdor a given gamd  using an
efficient algorithm, i.e. using an algorithm with better &rand memory complexity
than the method of iterative elimination of dominated st&s (or its equivalent in
the meaning of best-response characteristics). More mgastor that is given in the
following section.

2.3 Algorithmic complexity of the game analysis

The time and memory algorithmic complexity is the essemtiablem in area of these
models. We are not going to study rigorously a complexityha &lgorithms, nei-
ther from the point of view of game theory nor from computdesce point of view.

This particular research is connected to the real existindets. The algorithms and
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methods are developed to allow their user to proceed hidipahexperiments in rea-
sonable time using the available computer machines. Thassimply differentiate
between the good and bad complexity. We keep in mind the woird&mal Jain:
“If your PC cannot find it, then neither can the market.” As tharket can findt, we
have to make a model which finds it as well. This sort of dispriopn between the
complexity of the reality and its model is common for all Agatithms.

The time complexity of an algorithm is given by number of caipg operations
necessary for computing the response for a given input.dratha of real computers,
this is the time we have to wait for the resuilt.

The memory (space) complexity is given by number of memotigs ececessary
to finish the computation for a given input. The real compugae limited by their
physical operation memory. In the game theoretical modedsifically, we are often
limited by the fact that the whold-dimensional matrix of utility functions) can not
be present in the computer memory.

Which one of these two complexity problems is the one stoppéng complete the
task? Practically, we do not care about the time compleXith@analytical algorithm
solving for example the strategy dominance. Mostly, we haveare about the input
game state space which does not fit the computer memory. ldgraenstrate that on
the following example.

Example of the algorithmic complexity

Let us assume a rather simple algorithm (Algorithim 1), whicimputes theBest-
responsecharacteristics for a given playeand a given context ;. The Algorithm1
terminates with a set @R (s_;) strategies.

Algorithm 1 Best-response algorithm
Input: sub-profiles_;, playeri
max := -MAXIMUM _-NUMBER
list :=1]
forsinS:
u = Ui(s,s.i); Comment: If Y(s) is not known, it must be computed by
cellModel(s) first — this is the main computational load in the whole algfom.
if (u=max):
adds to list
else:
if (u>max):
list:=[s]; max :=u
return list;

Now, let us consider a 8-player game where each player hasti@ggies, so
Q=1{12,..,8} and|S| = 100Vi € Q. The size of the whole state space|$ =
100 = 10'6 cells. Each celk € Skeeps an utility(U1(s),Uz(s), ...,Us(s)) — a vector
of eight numbers. Let a number takes 4 bytes of computer mgmsothe cell of eight
utilities takes 32 bytes in total.
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ComputingSgr; in (@) using Algorithm[1 requires the utility functiod; to be
known for allse S, At first, let us assume that the whdlg(s) is stored in the com-
puter memory. Then, it requires ¥0 32 bytes of memory which is 320 bytes,
or approximately 3210’ Gigabytes (GB) of RAM memory (the current PC computers
have usually 1-8 GB RAM). This whole eight-dimensional meadf eight-dimensional
vectors clearly can not be stored in memory of any existingmater.

Secondly, let us assume tha{s) is not stored in memory, but there is a function
(a computer procedure) computing ikt player’s utility for anys € S(this computer
procedure will be calledellModelin this paper). Such a function is computed in a
physically existing computer and it takes certain time -ukesay Ls= 10 8s (using
a standard PC processor doing approximately 500 millionifiggooint operations per
second). The computer thus can compute one million reqimstise utility function
cellMode(s) per second. We will use the transcriptidifs) to highlight that the value
of the utility for sis known and the transcriptiorellIModel’s) (or cellMode|(s)) to
emphasize the need to compute (as a computer program) thesfirsk.

Let us recall the Algorithni]1. ComputinBR (s_;) for a giveni € Q ands_; €
S_i requires thecellMode|(s) function to be invokedS| times (i.e. 100 times in our
example). There is surely some computing overhead in therikgn[1 it-selves but we
neglectit. To compute afigr; for all i € Q we need to invokeellMode|(s) [Micq|S|-
IS.i]] = |Q|-|S = 8- 10 times. Doing one million iterations afellMode](s) per
second, we need-80'. 106 seconds to get know afgr;, which means about 2500
years.

We can see, that the game-theoretical algorithms analyzengames work only in
cases of very small games.

2.4 Designing a game-theoretical numerical model

The game theory usually regarfi{see an example in Figuré 1) according to the De-
finition @ as theproblem specificatioffi.e. including the assignmeht). The game
theory is then a package of analytic tools helping us to firdstilution out of the set
of players, their strategies and the numerical analysiheif fpayoffs (Osborne and
Rubinstein 1994).

Figure 1. An example of a gamE

| left right

top 10,2 84
bottom | 5,4 7.3

In this paper, we deal with modeling of problems implementine game theory
and its algorithmization (so called algorithmic game tlyedisan et al. (2007)). The
specification ofl” is not regarded as an input for our deliberations but ratkeara
interim result of our computations. Searching for the finadiction in form of the
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equilibrium is just a final step of the long process which pagkrough the following
phases (i)-(vi). First ideas of this methodology were mh#id in Hrufy and Toufar
(2006).

(i) Specification of an abstract model of the situatiothe main objective of the
model and its known and unknown parts must be specified. loabe of market
models, we specify the purpose of the model, the market catitiee under the
study, time range of the forecasting and others.

(ii) Identification of players and their mutual relatiorsmapping of real institu-
tions (e.g. producers and buyers) to strategic game playsrgecified. This is
followed by the modeling of their economic potential, thieirowledge of the
system and key features of their strategic behavior (idealpetition, oligopoly,
leader-follower,...). For example, all regional traderishwelectricity are ag-
gregated to a single national buyer. Let us note that at thel l&f a large
international-scale business operation (as e.g. lomg-tamtracts for the deli-
very of electricity) we assumeomplete informatiombout the game among the
players (game structure including utility functionscemmon knowledg® all
players).

(i) Game rules determination and selection of the type of gfiatequilibria— in
the sense of the game theory we differentiate between twio game classes:
strategic and sequential. In most cases, our games aregitrégames in strate-
gic form, normal-form games, matrix games). There are ugsiaf equilibria
including Nash equilibrium (Nash 1951), Stackelberg equim (Latorre and
Granville 2003), correlated equilibrium (Aumann 1974, &dimitriou 2005)
and others. The games also contain nested (inner) stratabicecisions in
form of nested games or auctions (Krishna 2002).

(iv) Model of the game strategy and strategy generatiowe work with numeri-
cal models and, therefore, with a certain degree of disattin of unknowns.
Moreover, in real game situations, we introduce variousn®pof hierarchical
decision-making with multi-dimensional strategies. Earaple, let us consider
the decision of a producer to supply his product to variousonal markets
(geographically) or to allocate his production capabititydifferent particular
products. In the electricity case, we differentiate betwearious time-defined
commodities (year base supply, monthly base supply, peedk:l..) or system
reserves. The producer decides about to sell his produtibis domestic cus-
tomers or to export it abroad.

(v) Game payoff determination modelthis part represents the expert core of the
whole issue. The objective is to design and to implement théehof the situa-
tion specified by the given strategic profile. To put it in otherds, we are de-
veloping an application-specific functi@elIModel(s,C). This function returns
the players’ utility vector for the given profikec Sand the global game context
C. Itis a modeling and computational implementation of fimtsU; : S— R.
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There is a significant difference between the utility fuoe§U and the func-
tion cellModel From the Computer science point of vidwy,is a mathematical
function returning the player’s payoff instantly (in zeime); U; is a memory
record, an array indexed by strategy profiles S. On the other hand, this in-
formation must be computed first (by tbellMode), this computing load takes
some processor time and makes the simulation experimeatiimsuming. Re-
sulting value otellModelis then stored iU . A similar approach was published
in Viguier et al. (2006). The whole state space is computetitienloop as it is
shown in Algorithm2. Time complexity of this computation yriae very high,
as the upper border of the complexity is defined by the numbiermations|S|
and by the complexity ofellModel Indeed, we do try to establish theoretical
principles which will allow a reduction of the computatiéi@ad (Hruby and
Cambala 2008). That is the sense of this paper.

(vi) Theoretical analysis of the game and the determinationeétfuilibrium- once
all information describing the game according to the dedinil is complete (all
U; are computed), we need to algorithmically determine thiemat behavior
of players within the game. The result of the game is thus thélps* € S
which we compute (according to the particular equilibriunmcept) as the most
probable strategic decision of players participating ia ame. This phase is
enormously demanding computationally too. The complegéy be reduced
by the analysis of the state space and by the eliminationrafegfies, which a
rationally thinking player would not be likely to play.

It should be emphasized very strongly, that the so callesiad modetellModel
computing the payoff vector for each strategy praditeSis not just a simple function
revenues- costs The cellModel for certains € Sis supposed to be a rather com-
plex model of what all happen in the real life if players Q adopt their strategies
s. Regarding the particular applicatiocellModelmay model their strategic offer to
various markets, their behavior in inner sub-decision mgkiheir bids in auctions and
their production model. If we sagevenues- costs some mechanism must compute
the level of the revenues and some other mechanism musfisfieeicosts. In our
particular case, computing the costs is very complex agjitires an optimization of
the production process. For example, in the models withtana-time granularity,
the cellModel procedure computes an optimization of working point of atluded
power plants (linear programming task) for 8760 hours of yhar. This explains
why cellModel can not be expressed analytically as a mathematical funbtib im-
plemented as a numerical model and the whole applicatioremadrks in discrete
strategies.

Example of a numerical model

Successive phases of the game-theoretical modeling caadbesitown in a fictitious
oligopoly example. Let us start from a situation involvingraup ofN players, where
each playef is fully defined by his production machink = {m),m,,...}. Operation
of the machines is simplified to these three parameters:
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(i) fixce M — R ; fixed costs of the machine which must by paid no matter if the
machine produces or not (it is mostly an amortization of tkaehmne).

(i) prodc M — R ; production costs per unit of production (e.g. coal, gas, ..
(i) cap M — R ; production capacity of the machine in number of units.

The demand for the (single) commodity is considered to bariably demand
(which is a usual situation at energy markets). In terms efaigopoly price gaming
we ask a question: What are the price and volume of produdiatrinidividual players
will successfully achieve at the market? We assume thatpagnow each others
production parameters. The game is regarded as a strabegighme, i.e. all players
i € Qchoose their strategiess concurrently, at the same time, and the result of the total
selected profils' = (s],s;,...,sy) are payoffdJ;(s). As for the equilibrium concept,
Nash equilibrium is selected. In this manner we pass phgsés)(

Furthermore, we have to specify sets of strate§ies individual players and sub-
sequently to design the game internal modellModel computing payoffdJ;(s) in
profiless € S. We treat the game as a discrete system, and, therefore swevalld
like to havediscretesets of strategies. The searched quantity,coenmodity price
is expected to be in the interva = (ps,pt) (pt, pt € R). When modeling a real
commodity market, we indeed expect that the resulting prididie in a certain rea-
sonable range and, therefore, the finitenesp & acceptable. The price range can
be converted to a discrete form in an arbitrary manner, a.¢hé form of a regular
seriesPrices= ps, ps + step ps + 2-step ..., pr. We may se§ = Pricesfor all play-
ersi € Q; generally, however, sets of players’ strategies canrdiffeeach individual
player. The main problem in this approach consists in theecbdetermination of the
discretization stegtepwhich also defines the precision of the prediction model. The
correct construction of the set of strategies is a sepaxatereproblem which will be
analyzed later on.

The determination of yields the state spac®@= S x S x ... x Sy. In order to
evaluate the payoff of players in the game, we have to invateri@in internal model
cellModels,C) for all s€ Sand a certain global context. In our case, the context is
given byC = {demand. ThecellModel(s;,,...,Sn),C) is a procedure computing
what offers are the players going to makesaprice, how they will succeed in the
competition and what profit they can make in the prafilsee Hruly and Toufar (2006)
for more details). The following proceducellModel’s,C) models what happen in one
strategic profilese S. ThecellModelprocedure is a sequence of the offer, trading and
production settlement.

Let us say that every playeoffers the production capacity of those machines that
are profitable in the context of his price strategys € S

MP(s) = {me Mi|prodgm) + fixc(m) > 5}

offer,(s) = Z cap(m)

meM;"(s)
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The total offer of all players € Q is then:

totalOffer(s) = _%offeri(s)

The buyer receivel®) offers in formbid; = (i,amount, ) wheres represents the price
required by the playdarandamount is the number of units of the modeled commaodity.
The buyer wants to bugemandunits of the commodity (we assume no price-demand
elasticity). LetBidsis a list of bids ordered by price (supply curve).

By trading, we mean a transformation of the IBids to a similar listSells=
{(i,selk,s),..} of amountssel accepted by the buyer from each produictar price
s. In the profiles, if totalOffer(sx demand all bids are accepted, self = amount
for all i € Q. Otherwise, the buyer buys up ttemandunits respecting the offered
price.

The producer receives the information about the contradenfamounsell sold
for s price). He arrange his production set to prodsed; for optimal cost — let
Yi(selk) is a optimizing procedure spreading #ell load over his set of machin®4.
The result of the optimization is a list of tupleséchine, productiopwhere [2) holds.

sell = Z o] 2
(mj,pj)eYi(selt)
optimalProductionCogsell) = Z prodgm;) - p;
(mj.pj)€Yi(selt)
profiti(sell,s) = sell -5 — optimalProductionCogselk) — fixe(m)

me Vi

To complete the procedure, thellModel’s,C) is a sequence of steps:

(i) Collect bids from all players.

(i) Intersect the supply curve with thdemandand generate messages} to the
players.

(iif) Players optimize their production units regarding thiccepted amounsell and
enumerate their outcome
profiti(selt,s).

(iv) cellModels,C) := (profity, profity, ..., profity)

ThiscellModel(s,C) is invoked for alls € S(see Algorithni2). AftetS iterations,
all information of the game is evaluated, and we can prooeedrd the analysis of the
game to determine the expected forecast — the equilibritmplementing the model
would be trivial for anyone. We just wanted to demonstrageftimctionality of the so
calledinternal modelcomputing the payoff of all playeisc Q acting in thes strategic
profile and the global contet — cellMode(s,C).

Let us remind théneuristicsand the preference. Can the playgenerally know
whether he makes better (selling more for a higher price)n/\v:ﬂaying§1 rather than
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s, in the contexs_j? Can the heuristics during QomputatiorceﬂModel((%,&i),C)
easily predict the player’s contract in the profi,s_;)? No, the player (all players)
musttry that invoking cellModelfor both profiles. All attempts to implement heuris-
tics into cellModel which, having a knowledge of the value célIModels;), shall
predict the next outcome ig profile will fail. Moreover, such a functionality makes
thecellModelprocedure more complicated and restrain to the further fication of
the internal model. For this reason, we look for an autoredtizeuristics which does
not need to see inside the internal model.

2.5 The status of game equilibrium

The equilibrium is understood to be a rule, or a model spawifa probable behavior

of players in the game context — it means, within the strateghd known payoff func-
tions. In our models, we strictly assume that the utilitydtions and other parameters
arecommon knowledgeThis paper also shows that when using our methodology,
choosing a particular equilibrium concept is just a final potmg operation over the
game state space.

The time and space complexity is very important for the aosion of these mo-
dels and computing the equilibrium in the simulation expents. We differentiate
between the equilibrium algorithms where we expect or doaxpect theU to be
computed:

— TheU is expected to be computed. We just analyze the computezisgiate to
find the equilibrium points (traditional algorithms comimgt Nash equilibrium).

— TheU is not expected to be computed. The algorithm starts fromkasowledge
of U and touchesagllModel) just that cells which the algorithm needs for its
operation. Putting theellModelcomputation and the equilibrium determination
together may decrease the number of accessed cellsSi@gmcompare to the
previous concept). This may decrease the computing timeftacdion of the
conventional approach (G-solve).

2.6 Two-level approach to modeling of game situations

An efficient computer implementation of game model was trenapg idea for the two-
level model architecture. The efficiency means the comguificiency mainly. The
software engineerings the second view to the efficiency. We also require the model
(as a software work) to be easy to understand and flexibleisfard modifications.

The traditional Al algorithms work with the state space Jesate its cells in form of
some utility and search for the optimum (methods of seagrinithe state space, prob-
lems solving, playing games). All these methods employousrforms of heuristics to
decrease the computing complexity. The heuristics areepietprograms containing a
particular expert knowledge of the problem to be solved.yTtedp the Al algorithm to
predict that parts of the state space which are uselessd@antlysis and redundant for
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the search of the optimum. From the modeling (software exgging) point of view,
the heuristics are parts of the model badly influencing asitgl and erxibiIityE|

There is a compromise and rather good solution: computirtgeofitility of each
particular cell ¢ellModel) is separated from the mechanism searching in the state
space. We say that the mechanism searching in the state esgae@ments with the
modelcellMode} of a given gamé . The basic mechanism is shown in Algorithin 2.

Algorithm 2 Basic search in state space

for s in S
U's] = cell Mbdel (s, C

eq = deterni neEquilibriunmPoint (S, V)

The Algorithm[2 goes through the whole state space and eratestr(s) for all
se S The time complexity of Algorithnill2 is given by the cardinglbf S and the
programming implementation eelIModel The computing complexity afellModel
is not trivial as thecellModelmay contain other sub-decisions (inner games), produc-
tion optimization and so on. Moreover, we do not expect thatthole contents d®
can fit the computer memory. The AlgoritHth 2 is thus jusheoretical demonstra-
tion. Its time and memory complexity makes the theoretical ugymemdary of the
state space computation. It is the worst solution and wengttéo find the better ones.
An algorithm verifying that a given profils® is or is not the equilibrium, is the lower
boundary.

We expect that thenechanisnprocesses the state spacé af such a way which is
efficient from the point of view the particular game, and tgiehe chosen equilibria
concept. The algorithm searching the state spadesbiall terminate (output) with:

(i) A minimized gamerl’, = (Q;S;U;) without dominated strategies (\ Sgri)
which is strategically equivalent fo. The equilibrium of” is then computed us-
ing some other procedure (for example using some alreadieimgnted solver
like GAMBIT (Gambit homepage 2008).

(ii) Solution of I' in form of a game equilibriuns* (analyzed usind or I';).

We are going to present two different approaches in thispdje first one demon-
strates an efficient computing of the equilibria (the cated equilibrium (Aumann
1974) in our case). The second one searches the state sgadeeimely huge games
to reduce the given game into its strategically equivalemsion without dominated
strategies. Both methods are based on analysis of strategindnce.

1 There are some other very efficient methods of dynamic reduofistrategy sets. However, they exceed
the topic of this paper.
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3. State space of the strategic games

We model the decision processes. An intelligent entity pssed to make a decision
and therefore, it analyzes ibptions A strategy is taken in this context as a possibility
to act somehow. The entity thus collects all its options aadsto evaluate them. We
know, that in the strategic games, the entity evaluatestth&egies in context of other
players.

We follow the model design and experimenter’s point of viévis then necessary
to include this important factConstruction of a representative and reasonable strategy
sets is an inseparable phase of the model desige artificial intelligence yet has not
advanced so far that the Al algorithms would be able to paasisih their own. To
put it in other words, we do not expect the Al algorithm (or firediction model as a
whole) to specify itself a task. Specification of the tasKiileft on the experimenter
(user).

3.1 Generating the strategy sets

Let us assume that the model and all the computations willdbe in discrete state
space. We may understand the modeled commodities to bengons in their basic
principle (price, quantity). In the real life, we treat thasdiscrete anyway (elements
of currency (cents), production attributes of the machisesisfying the quotas and
rules,...). We just have to specify the way of making thegegthdiscrete. The quan-
tities related to manufacturing are rather clear (proaunctinits, size of a package and
so on). The meaning of commodity price is the only trouble.

The continuous intervaP = (ps, pr), within the price decision is expected, can
be easily discretized by a sampling perisietp It makes a regular sequenge=
{s1,S2,.--} =St,St +step....,s. The size ofstepis essential here. We lose an in-
formation value and sense of the model when a too kteg(stepis a big number)
is used. When having a too shatep(a small number), one would assume that the
accuracy of the model gets increased (no matter if it in@ge#se computational load).
However, the too shostepjust influence the model with mixed behaviar

Let us have an example. The price of a commodity is expectduk twithing
P = (0,10). Setting thestep= 1 makes the player distinguishing his optimal prite
(for example let’, = 7) very clearly. On the other hand, when operatingtap= 0.1,
after a significantly longer computation, we achieve a pbdliga distribution over the
pure strategies like.Q-s x_1,0.7-5x,0.1-s 1 (price strategies.8,7,7.1). Can be
such a result accepted e better solutiod Does the model operating step= 0.1
a better job than the model witie p= 1? When doing predictions of the commodity
price in the far future (e.g. year 2025), does anybody beltee model to predict the
price with Q1 precision?

3.2 Differentiation of strategies

We have described choosing of the right (reasonable) dization step and its influ-
ence to complexity of making the decision. A rational playerst always be able to
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show (to satisfy the definition of the rationality) for anyawis actionss;, s, if s1 is
preferred tcs, or vice versa, or that both strategies are equal in theiifgignce. We
compare the strategies using their corresponding utility.

Definition 6. A set of strategie§ of a playeri is distinguishablen sub-profiles_; €
S, if
Vs1,% €S, # % Ui(s,5-1) # Ui(s,50).
Similarly, we define that the strategigss, € S of a playeri are distinguishable, if
Vs € Sii 1 Ui(sy,8.) # Ui(s5,80). 3

Differentiation of strategies is useful for analysis of tieme state space. It also
forbids the mixed behavior in the game. A player can cleanlyé€ly) see his good and
bad strategies. We say that the strategySseff a playeri is well distinguishableif
the previous conditiori{3) holds for aﬂ, §2 € §. This condition is perhaps too strong
and very rare in the real world. Moreover, the dominanceratsgies is never obvious
when the utility functions are not available (it is not ditlgaclear that a player gains
more for price strategg30 than for price strategg€25). Let us express the comple-
mentary view on the distinguishability in the form of the Bessponse characteristics.
The state space is well distinguishable if

VieQ,Vsie€S:|BR(s )| =1, 4

or the number of best-response strategies for some subbegr#imains small in com-
pare with the size of the strategy sets. Such a setting wiltaose a state space ex-
plosion during the game analysis and the whole computatithmemain in reasonable
response time.

Such a situation can be achieved if telModelmodel is designed with a special
care about enumerating the final payoff in the profiles. Latarmonstrate the situation
using a game where the players choose their strategy in fotuples(price,amouny.
We will call that themulti-dimensional decisionLet us imagine a player who suc-
ceeded to sell the same amosatl when playing strategieﬁl = (price,amount) and
s‘2 = (price,amount) in the same contexd_;, but mainlyamoung > amount. That
is an extension of the example in section 2.4. His payofftiersold amounsell and
strategy(price,amouny is (the production costs are ignored):

Ui(s}) = profiti(s;,sell) = sell- price
The strategies, ands, are indistinguishable ds;(s,) = Uj(s,) holds. It is rather
evident that a real player would prefer the strategpecauses; reserves a smaller
production capacity. If we include this reservation of thstalled production capacity

to the equation on the side of production costs (R™ is the cost of the capacity
reservation or lost income per unit), we achieve the wanigtthduishability:

Ui(s}) = profiti(s], sell) = sell- price— amount r
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Let us conclude, that the situation Whéimél, si)=U; (§2, s_j) expresses that both
strategiess| ands, are equally preferred by the playerThis state must have some
reasonand motivation. It may become, that two different contrgtgheir structure)
give the player an equal profit, but this is very rare in ourezignce. It is mostly an
inability of a player to make a decision or an inability of a deter to evaluate the
contracts properly.

3.3 Multi-dimensional strategies in decision making

In the preceding section, we briefly introduced the modebhgnulti-dimensional
decisions, i.e. a situation when a player makes a decisitmnhe framework of
strategies generated in the form of Cartesian products of igueantities. In the previ-
ous example, the player has been choosing the strategiesnin price,amouny. In
our decision models, the players make decisions composetddther sub-decisions.
Multi-dimensional decisions model the situations with smdraded commodities or
more possible markets to make the contracts. The playeestbalecide about spread-
ing their production capacity to more commodities, theyehtvdecide the price for
each particular commaodity and the particular market toglac

If the price is supposed to be within the interfaices= (ps, p;) and the amount
within Offer = (0,cap), then the strategy set of the playes given byS = Pricesx
Offer (and discretized somehow again). We are not going to prosid®mplete
methodology of modeling multi-dimensional decisions cosgd of elementary sub-
decisions. More can be found in H2007).

We know that the state spa&eof the gamd™ is given byS= lMjcqS. The state
space represents an exhaustive listing of variants, thgtaoeur in the game. Nash
(1951) proved thaeach finite game has at least one Nash equilibrigenerally in
mixed strategies). This means that, in any finite state sBage may find a stochastic
outcomes® € Sthat will satisfy the definition of the Nash equilibrium.$fis the input
for the computational model, the model will always point &oéution. For that reason,
the design of5 is of key importance. A false specification of the strategplafyers
may tilt the result so that it departs from the real situation

The composition of the strategy sets of individual playsrscalable and thus well
suited for experimentation. |§ = 1, then the solution is clear and there will be no
game at all. The classic game theory usually assumes thlatpbaygeri has at least
two strategies so as to be thategic player In our concept, a player belongs to the
game as long as his impact is included in the internal modéModelregardless of
the number of his strategies. Playewrith § = {§1} is the participating player with
constant behavioris

A similar situation arises in the pattern of multi-dimensb strategies. If the
playeri is modeled in such a manner that he has a sBt efementary decision-making
problems, where each elementary probhﬁn& D; belongs to the finite non-empty list-

ing Dbaséd} ), the set of strategie$ of a player is again given ais|(5).

S= I‘IdijeDiDbast}) (5)
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From the algorithmic point of view, the multi-dimensionaiategy (a vector) is funda-
mentally equal to a scalar-type strategy. The whole metloggaf two-level modeling
and automatized mechanisms searching in the state spaaamseumchanged. Multi-
dimensionality of strategies just extends the size of afrasets. But significantly.

4. Implementing the model

The purpose of the modeling in this area is to design the petersiof a game follo-
wing the specification in sectidn 2.4, to identify partiaud@cisionsD; of players and
their domainDbas€d),d € D; (sectior3.B). Proper designing a#lIModelfunction
is an individual expert problem. It is rather important ttiz cellModel well differ-
entiates between the player’s strategies. This will mingrthe mixed behavior in the
game which makes the computing unnecessarily more congdiqand the result is
not better in our opinion). The mixed behavior must have smeason in the game.

Havingan uniquepure equilibria is the preferable end of the analysis. Hayst a
single equilibrium eliminates the need of further intetjmg the results. Otherwise we
have to decide (algorithmically) what equilibrium is the shauthentic as a behavior
of the players.

The described methodology shows a possible computer ingpitation in form
of a programming library. The application model can be thenstructed from the
predefined program elements. We develop a C++ library c&lachelLIB to support
rapid development of the application models. There is arottixample of a rather
general game library called GAMBIT (Gambit homepage 2008 GAMBIT library
contains just the basic equilibrium algorithms and is noy \weiitable for this type of
modeling.

4.1 An example (MCE)

In one of our models — Model of Central Europe (MCE) — we modstrategic de-
cision of eight Central-European electricity producergha region. They have to
negotiate year and month contracts of electricity delivéfie model all their power
stations and their detail operation including their tinggiable production availability,
fuel consumption, interconnection to other industrial ee The decision on contracts
(amounts, prices) for the main yearly contract and twelvathmy contracts must be
done in one moment. The strategy (as one possible actionhaivi®) is thus a large
vector including many sub-decisions like: amount of yearigduction to offer at the
domestic market, amount to export in yearly contracts, arhtaureserve for monthly
contracts, required price for the commaodity, and the saneesidas for monthly con-
tracts. Moreover, the model includes another eight stiategyers who decide how
to purchase their demand effectively (from the domestidpeer or from the import,
their price-demand elasticity and the value added basetkotrieity consumption).
The state spac8 has then sixteen dimensions (eight producers and eight buy-
ers). Every strategic profilec S consisting of players’ multi-dimensional strategies
S = (S},S5, 55,5, ...) predestinates their behavior in the profilethe player-producer
i offerss; amount to its domestic market fej price, s, offers to the export (which
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Figure 2. Basic composition of computation (Top view to the model)

Original game state spack
Reduction Mechanism

cellModel

Equilibrium Solver

requires an inner decision about the particular marketsporé and about the strate-
gic bids to offer in auction for electricity transmissiondis) and reserve% for the
twelve monthly contracting. The yearly contracts are madéése eight markets and
the similar process is repeated twelve times to make the hihyoobntracts. Buyers
strategically decides about the splitting their demand/beh the yearly, monthly con-
tracts and various electricity producers to achieve thefréses. ThecellModelagain
implements all the activities regarding the processingotimticular profiles.

This paper does not study a particular model, it describesesof the methods
developed together with our models. Detail description @f/{or other model) would
be a topic for another large paper.

4.2 Top-level of computation

Computing the prediction of players’ behavior in a given gais well scalable by
specification of its state space. The computation is vergdépnt on the particular
application, especially on its internal model of behavibich we callcellModelhere.
We proceed the practical experiments using a machine h&xig§Us Xeon 2.66 GHz
and 16 GB of the RAM memory (or alternatively on 4xCPUs AMD @pin 2.8GHz
with 32 GB RAM). The computation may take minutes, hours ertime exceeding
our requirements.

The general structure of the whole experiments passes tgio phases (see Fi-
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gure2). The initial game state space (Original game) hamably a plenty of redun-
dant dominated strategies which the rational player is mgeing to play. The state
space has an extreme cardinality. This is the task whichxpergnenter formulated
for the simulation. Usually, it contains all possible anghbghetical strategies to ensure
that no behavior was forgot. It is not possible to analyzestiage space in this form
(see sectioh 2] 3 for a brief demonstration of the algorithoaimplexity). A reduction
mechanism is invoked to predict subsets of good stratefpegxample there might
be tens of them for each player).

The equilibrium solver is then responsible for determmatbf the equilibria. In
this two-level game modeling, the expert cocel(Mode) and the rather general ex-
perimenting mechanism (reduction mechanism, equilibragiver mechanism) are
separated. Let us conclude the overall motivation for thgeach:

(i) We have to construct a practical computer model capafdernain analysis and
prediction.

(i) The model must be enormously flexible and ready to acaaptmodification of
its structure, specification and mission.

(iif) The experimenter may not be limited in specifying hisegies (state spaces).

(iv) Model execution must be maximally efficient and fastp@sding. We assume
the experimenter doing large batches of experiments.

(v) The model (and the simulation method) must be ready foalf@h processing.

The following two sections give some response to these reqpants.

5. Computing the correlated equilibria

Correlated equilibrium (CE) (Aumann 1974, Papadimitri@02) is a well know game
theoretic concept extending the classical Nash equilibriith a special synchroniza-
tion device helping the players to make their decision. Aorel player then agree
that incoming event (signal) recommends him the best glyale choose. This is an
opposite to the Nash equilibrium (NE), which assumes no conication platform
between players and their surrounding environment. Thgepdathen prefer to make
careful actions, often leading to lower common social onte@nd misunderstandings.
Following our experience and results, we do believe thatiaral player in market
competition (where the rationality is a common knowledgedves in the manner of
correlated equilibrium. More reasoning for the use of thealated equilibria has been
done in Samuelson (2004).

Correlated equilibrium is computable in polynomial timeRdimitriou 2005) as
a linear programming (LP) task maximizing the common outearhall players in
context of game constraints. Unfortunately, in our pradtgames with large number
of players and their strategies, the task is still too hugeetsolvable on standard PC
computers. On the other hand, most of the games coming fratrsiteiations can
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be converted to their minimized strategic equivalents ¢@ldeminated strategieare
eliminated) which are computable in a fraction of the ordgicomputing time. And
we would like to algorithmize this transformation.

Let us assume a previously defindeplayer gamd™ with already computed stra-
tegy state spac8, so that allU; are known for alli € Q ands € S. Let us assume
that all strategy profiles are ordergsh,s,,...,Sg) and can be indexed by an inte-
gerj e {1,...,|9}. By computing the correlated equilibria we obtain a row wect
p = (P1,P2; .-, Pig) of probabilities assigned to all strategy profiles (we alap, &
probability distribution on strategy space). CE is a formNafsh equilibria inmixed
strategie{MNE) and similarly like in Nash equilibria, more than oneudidprium point
can satisfy definition of CE. Regarding the presumption Gbrelity among players
we search for a unique Pareto efficient CE. The following méphe gives a profile
with maximum payoff for all players where no one wants to dei

5.1 Basic approach

Correlated equilibrium is computable as a linear programgniiLP) problem where we
maximize the global objective functiahin (€) with probability variablep; satisfying
(@) to obtain the best solution for all players together éRaoptimal solution). The
LP-task in [6) and{7) is bounded by linear constraifls (8).

IS
Z="73% piZ (6)
=1
1S
pj€(0.1), 5 pj=1 ™
=1
Gp' >0 ®)

The [8) is a set of linear inequalities with as a matrix of coefficientsG-matrix
completely describes all possible actions of the playedstiaeir consequences. Algo-
rithm to computeG-matrix will be described bellowZ; in (9) denotes one complex
payoff of all players together in thith strategy profile.

N
Zj= _;WiUi(Sj) 9)

There are generally three approaches to that= 1, w; = % w; are different to
each player (for example to normalize them if they are nofilaityg strong). These
weights are for everyone to tune for his own particular aggtion. There is absolutely
no general recommendation for that.

Solving the LP-problem, we obtain an optimal po{f, ..., pjg), Z contains a
(Pareto) optimal outcome for all players which is the highesssible and no player
wishes to deviate. The vectop, pz,..., pjg) is the wanted correlated equilibrium.
Anyway, there is a strong influence of the linear constrailefining whatstrategies
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will each player never play The LP-solver constructs a problem domain defined by
given inequalities modelling the basic Nash rule of equigid{G-matrix) — thei-th
player will not change his strategyto k in s* profile if he will not get bettetJ; (k,s*;)
thanU;(j,s";). And finally, the LP-solver will find the best profile with thisnstraint.
Computing the G-matrix

G-matrix collects all relative preferences of players igame regarding their strategies
and can be constructed by following rules:

(i) Rows of G-matrix are indexedjk wherei indexes a playerj his strategy and
k his alternative strategy. Theth player evaluates how his profit is going to
change if he moves froistrategy tck strategy. There argl , [S|.(|S| — 1) of
rows in the G-matrix.

(i) Columns of G are particular strategy profilesc S of thel" game. There are
NN ,|S| of columns.

(i) Cell gjjk,s in the G—matrix atijk row and columrs € S

_JUi(s)—Ui(k;si)) s=]
Giiks = {0 otherwise (10)

The G-matrix is a very simple structure (2D matrix) appropriate further game-
theoretic analysis of strategy space. The multi-dimeradipnoblem is transformed
into a 2D matrix. It simplifies the following analysis.

5.2 An example of solving a game

Let us have a two player ganfie= ({1,2};{a,b}, {c,d};Us,Uz) with payoffs written
in Figure[3. The G-matrix for this game is computed in Figureith profiles ordering
(ac,ad, bc, bd). This system will generate a following LP problem:

MAXIMISE: Z = 12p; +12p; + 9p3 + 10p4 (12)
pr.a€(0,1) (12)
4

pi=1 (13)

2P
5p1+p2>0 (14)
—5p3—ps>0 (15)
—2p1+p3>0 (16)
2p2—ps >0 (17)

The Nash equilibrium is clearlgd. From [15) we see thais 4 = 0, then from[(IE) that
p1 = 0 and so,[(I4) together with {113) gives = 1. We interpret the resu(D, 1,0,0)
that the profilead wins with probability 100%.
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Figure 3. Payoffs in the example

| ¢ d
al| 10,2 84

b| 54 73

Figure 4. G-Matrix in the example

| ac ad bc bd

a—b| 5 1

b—a -5 -1
c—d| -2 1
d—c 2 -1

5.3 lterative elimination of dominated strategies

We have implemented a linear programming solver of cordlaquilibrium using
GLPK library (GLPK homepage 2008, GNU Linear Programming) K8olving CE
hastheoreticallyalways a solution as it is just another view to Nash equilitoriin
mixed strategies (Nash 1951). Moreover, solving this gwbhas a polynomial time
complexity (Papadimitriou 2005). However, for a very laggme, the computation
takes too much time or computer memory. The LP-solver carogétin some nu-
merical instability too. Thus, getting a proper solutiom@at absolutely guaranteed in
practice. This trouble can be cured by reducing the games tenitaller equivalent, as
we will see now.

Iterative elimination through the G-matrix

We are going to explain this approach using the previous plauiffrigure[8). Let
us examine the Figufd 4. The first row shows that all payoffspasitive. It means
that the row-player has his payoffs always higher when plagistrategy rather then
b-strategy. The rows with zero elements are redundant ashiénay no effect to the
LP-problem solving.

The second row is more interesting, because all differeaesegative (we do not
care about the zero elements). It indicates that the utiltign playingb-strategy is
always worse then when playirsgstrategy, thus strongly dominates the-strategy.
No matter, ifb is dominated by all other strategies of row player, to satiké con-
straints [[I2) and(d5), probabilities assignedotoand bd profiles must be zero, so
ps = ps = 0. The negative row and corresponding columns, i.e. the tRblas, ps
andpy4 are removed then.

The process may continue until the G-matrix is minimizedyétans without nega-
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tive rows (see Figurgl5). In some cases, this elimination l@ag to a single-profile
state. Otherwise, we normally apply the LP-solver to theiced game specification, it
means to the reduced set of profiles (probability variatdes) corresponding strategy
sets.

Figure 5. Elimination steps

| ab ad | ad
asb| 5 1 > el 1
c—d | -2 dec | 2
d—c 2 e B

5.4 G-solve: An efficient algorithm for solving the correlated equilibr ia

Having this elimination procedure we may turn the order ahpating activities from
the former sequence of (i) computing the state space, fiiieghting dominated strate-
gies, and (iii) equilibria computing to a new optimized aigfun wherecomputing the
state spacés being done on-the-fly as a sub-part of the elimination @doce.

By our experience, th&-solveterminates in shorter time than the classical app-
roach (unfortunately, it has not been studied deeply at ardtieal level) and it is

significantly less memory consumiEg.Let us define following data structures and
data types:

(i) valid : S— Booleanis a Boolean array displaying what profiles are valid or
non-valid (zero/non-zero probability). Initially, all giiles are valid.

(i) umap: S— RN is a dynamic dictionary (items can be added and removedaglurin
the computation) assigning payoff vectors to particulafifgs. Initially, umap
is empty.

(i) dominated Q x § — Booleanis a boolean array displaying what strategies are
already found to be dominated. Initially, all are Fetse

(iv) type profListis a list of tuplefS R).
(v) typegRow= (pos: profList,neg: profList)
(vi) Gli, ], K] is adynamic list ofRowindexed by(i, j, k). G represents the G-matrix.

The G-solvealgorithm (Algorithm[3) is started and goes through all pleyof
thel game and all variants of their behavior. The whole algorithreplit into parts,
Algorithm[3,[3,[6 and17 (see the Appendix), to make it easiesttmly. At the end,
remainingG list andvalid array contain the resulting minimized gaimne

2 The algorithm has been developed and tested on PC with 8xG#ld X.66GHz and 16 GB RAM.
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Algorithm 3 G-solve — main part

for i inQ
for j in S[i]:
for kin g[i]:
if (j!=k):
if (not(dominated[i][j] or dominated[i][k])):
row = solveRow(i,j, Kk);

if (row!=([].[1)):
if (rowpos !'=1[]):
di,j,k] :=row
el se:
domi nated[i][k] := true
for (s,r) in row neg:
di sabl eProf (i,s);

Letlr = (Q;S4,..-,SN;Ur1, -..,Ur2) is the minimized gamé,. Strategy sets are
reduced ta&5; in (I8) and only the utility function§(19) are selected te tlew game.

Si = {s|se Savalid[g} (18)

Ui (s) =Ui(s);Vse S (29)

The G-solve elimination may terminate in state wiSen- {s*}. In that cases" is
the equilibrium (in strictly dominant strategies). Oth&®y if |S;| > 1 for some player
i € Q, the CE-solver can be applied to the resultihggame. The G-matrix foF; is
already completed i5[i, j, k], just some mapping frorh state space tb, state space
has to be specified.

5.5 Meaning of this method

G-solve is an exact method of efficient computing the coteelaquilibria in multi-
player games. The method combines the computing of the gatawn together
with computing the utility functions. In this way, only thelevant cells of state space
are analyzed. It is a type of a heuristics which does not effezcellModel and
reduces the number of cells searched during the game amalysi

When comparing the time and memory complexity of computingv@Bout G-
solve and with G-solve approach, we can see that complexihout G-solve defines
the worst case complexity for the approach with G-solve kthlrhe final complexity
of the equilibrium determination may be improved dependingarticular game and
formulation of the internal modelelIModel This is very application specific.

The G-aolve method is suitable for computing the CE in reddyi small games
where the size of state space does not exce€d-10'° cells. The method can be
used as a terminating operation after another mechanistatef space reduction (for
example FDDS in the following section).
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Table 1. Demonstration of computing speed-up with G-solve enabled

Experiment . Execution time with Execution time with-
number Number of profiles G-solve enabled out G-solve

nl 11,520 0.305s 1.084 s

n2 155,520 59s 14.8 s

n3 5,054,400 4min51s 16 min12s

n4 15,300,000 13 min54s memory shortage

As a demonstration of the method in operation, we provide allsexperiment
(Table[1). The cases (games) were generated out of our MCEIr(smk sectiop 4l.1).
From the equilibrium determination point of view, just thenmber of strategic profiles
is relevant. The part solving the correlated equilibria wascuted as an independent
program where its execution time is measured. The expetimas done on PC with
4xCPU AMD Opteron 2.8GHz and 32 GB RAM. We show the executiotes with
G-Solve operational and without G-Solve — the program suilee whole G-matrix
with no reductions (see sectibnb.1).

We can see that the processing time with G-solve enablednigyal about 3-4
times shorter. The last experimemt without G-solve did not terminate correctly as
the memory requirements exceeded the computer’s cap&&it@B RAM).

Unfortunately, we are not able to compare our implementatibthe correlated
equilibrium solver (with or without the G-Solver reductiamechanism) with another
computer implementation of such a solver. To our best kndgée there is no pub-
lished paper on technical details of this problem or a coempgiol solving that.

6. Fast Detection of Dominant Strategies (FDDS)

Analyzing the strategy dominance was the starting idea isf itethod again. We
expect the input state spageéo be entered extremely widé§( ~ 10°C is often in our
models) and tha® will get significantly reduced. We assume that existencetriagts
dominance for some players is probable as well. When doingrtetical experiments
in multi-dimensional decision modeling (s€é (5)), it is mate that a certain subpart
of the decision variableB; yom C D; of a playeri demonstrates a strictly dominant
behavior. In such a case, the player makes his decision tiejéest inD; \ Dj gom For
example, some players are sure that they make better whieig $keéir total production
to the domestic buyer rather then exporting that (then thedgeisions "sell maximum
home” strictly dominates "sell a part home and export th&€yes

Let us assume the distinguishability of the players’ sgi@® The player then
exactly knows in any profils € Sif he wants to change his strategy(if 5 ¢ BR(s_;))
or not. If BR(s_i) = {5}, then the player exactly knows the strategy to move into.
Otherwise he decides oneBR (s_;).

The following algorithm (FDDS) allows various forms of outp including the fast
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detection of dominant strategies, pure Nash equilibrijeiection of certain cycles
demonstrating the mixed behavior (sources of mixed Nashilega). So called Graph

of Reachable Profiles (GRP) is constructed during FDDS diperaSolution to the

games comes out from the GRP analysis.

It is very important to emphasize at the very beginning, tieérmining the game
equilibria is not the primarily goal of FDDS. The goal is to keaa very fast and
representative preview at the important strategies of ldygeps. FDDS is a simulation
method and hence its quality strongly depends on effortsgerment with the model.
There is definitely no absolute guarantee that the FDDS idihgoreducing the input
gamel to I, transforms the input to its strategically equivalent gdmeProving that
is currently not possible neither analytically nor expeitally (it might be possible
for small games as a case verification). We are pretty sutéhtbebehavior i, is
not significantly far fronT . It is the best available solution to the large games at the
moment, and rather satisfactory for our applications.

Definition 7. Graph of Reachable Profiles of a given game (Q; SU) is a structure
GRP= |V, E], where

() V is a (finite) set of nodess,Qa,Qr), wherese S, Qa,Qr C Q;QaNQr = 0.
Qr is a subset of players who agree with the pradileSimilarly, Q; are those
who does not agree with Only players havings € BR(s_;) do agree with the
profiles.

(i) ECV xV xQis aset of edges. Edges are relevant just for analyzing #yghgr
topology (cycles, trees). The edges are restricted justidaragreeing players,
thusV(vi,vo,i) € E;vi = (5,Qa,Qr) 1 i € Qr. The edge expresses thth player
deviation from thes; node to the profile corresponding to the nage

In the following text, we demonstrate the algorithm of conipgithe GRP for a given
game and we introduce its analysis.

6.1 Analysis of GRP

Let us have a graph of reachable profi@RP= [V, E] of a given gamé = (Q;SU).
The set of profiles iM{20) is called tiset of reachable profilesA nodev € V is called
to be solvedf QU Q; = Q. The nodev €V is a pure Nash equilibrium iQ; = Q
(i.e.Qr =0).

Ses= {5| (S,0a,0r) €V} (20)

If the GRPis topologically a tree and all its nodes are solved, thetedlgame
I has a solution in form of pure Nash equilibria. If the numbEPOIES is greater
then one, we shall compute their MNE complements using sdher enathematical
methods.

Studying cycles (or clusters of cycles) in GRPs is more diffiand it exceeds the
range of this paper. We believe that their analysis can leadrts fast computation
of mixed equilibria. Generally, a cycle in graph is a closathpwith no other repeated
node than the starting (ending) one. In the meaning of gfi@behavior, a playarin a
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profiles® does not agree with the profile and chooses another psbfild BR (), <, ).
The next playelj then continues ts® and so on until the starting playemoves back
into & again.

In the current state, there is no proper experimental andréiieal conclusion
about logic connection between cycles and equilibria. doeiced gamé, is thus
defined as a game within the set of reachable prafilesn (20) of . So,l, is defined
as follows:

Mr=(QS;Ur); S = {S[S € Ses} (21)
We compute the equilibria basedigrusing conventional methods (for example G-solve).

6.2 Algorithm of GRP construction

A potential dominant strategg of a playeri will become evident in any strategic
profiles. Thus, we may start with any randomly chosen profifes Sin our analysis.
We study, if the player would deviate ire profile. The set of strategies given [n]22)
is a set of potential deviations of the player

Bi(s”) = {be S|Ui(b,s%) > Ui(s")} (22)

Clearly,BR (%) C Bi(s?). The playei will react in the profiles® moving into some
b € BR(s?). If |BR(s?)| > 1 holds, we have to analyze concurrently more similar
options of the player (branching). As it was mentioned mame tbefore, it is highly
preferable if the strategies are well distinguishable arth s state does not appeatr.

Inserting a node to the GRP structure

This procedure (see Algorithid 4) adds@RP= |V, E] all best-response strategiBs
of the player playing from the current node= (s, Qa,Qr).

Algorithm 4 Inserting new nodes3(v,GRP
forbin B:
if 5 =bthen add to Qa,
else:
addi to Q,
if existsV = (8,Q,,Q;) inV that(b,s_;) =
addi to Q;,

else:
add anew’ = ((b,sj),{i},0) toV
add a new edgév,V,i) to E

Main algorithm of GRP construction
The top view on the algorithm is as follows:

() Initialize the GRP= [Vy, 0] with randomly generated nodes.Sfnq C Sis a set
of random profiles, the initial set of nodesMs= {(s,0,0)|S € Sand}-
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(i) Select randomly a node= (s,Qa, Q) fromV which isnot solvedyet. If there
is no such a node left, terminate the algorithm.

(iii) ComputeB := BR(s) using the Algorithni L. Let is a player randomly chosen
invfromQ\ (QaUQ;). We would like to remind that this operation requires to
invoke thecellModels,C) for all s€ {(s,s_i)|s € S}. It means]S| times.

(iv) Insert allB chosen by the play@rcoming fromv to the GRP structure (Algo-
rithm[4).

(v) Gotostep 2.

The algorithm terminates if all nodes of iI@BRP being constructed are solved, or if
the number of nodes is equal to the cardinality of the setldftedtegic profiles (the
state space). Termination of the algorithm is thus guagdn(ihe computability). If
we study this case in point of view of the algorithmic (timeymplexity, the algorithm
does not always terminates practically because the si3enafy be huge.

The practical experiments conclude that expressing sopleixermination con-
dition may have its reasons. There are two possible comdifior enforcing the algo-
rithm to halt:

(i) |V|exceeds a given limit,

(i) age of GRP exceeds a given limit. Age of GRP is a length of uninterrupted
sequence of the main algorithm iterating with no new nodedddV .

The FDDS algorithm can be also scalable by number of iniéiatlomly generated
nodes. The practical experiments demonstrate that eveinitia¢ node can cause a
large spread over the game state space. The algorithm i f@goarallel processing,
so that the steps (ii)-(v) are done in parallel.

6.3 Meaning of the FDDS algorithm

The algorithm is suitable for a very fast analysis of a garatestpace, and for detection
of good strategies given ifil(1). The FDDS algorithm is sdala@he computation
complexity can be regulated by number of initial nodes, neindi maximal nodes in
the graph and number of steps with the graph unchanged.

Areduced gamé, is the output from the FDDS algorithm. Probability of stite
equivalence (see sectibnP.2) betwé&emand the originall grows with the effort of ex-
perimenting. Let us emphasize once more thagthaity of the output is significantly
influenced by the strategy distinguishability the state space is well distinguishable
as defined in{4), the FDDS analysis converges quickly.

7. Conclusion

The paper presented the methodology and algorithms whiclrgveurrently using in
the design and development of computer models of commodiinkets. The models
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are intended for analysis of the markets and for forecasfitigeir further evolution in
horizons of 1-15 years. There is surely a plenty of similadeling techniques related
to this research area. We have focused mostly to a very ngraoiof them, specifi-
cally to the methods of state space reduction. The paperrduemalyze a particular
model or a case study. It is rather a general descriptionobiiteicture of these models.
Anyone should be able to build his own model following thisthoelology.

The models are conceived as a tool for massive experimeriimgser-experimen-
ter works with them in the simulation manner, i.e. specifissqueries and obtains a
new knowledge of the modeled system. Allowing the user teretfite experimental
domain (strategy sets) as wide as possible was the veryreggigature of these mo-
dels. A limited state spacgmay cause that some reasonable variant of the behavior is
neglected. The experiment thus fails or ends up with wroeglte.

When implementing the reduction techniques, we have to keemnd the ques-
tion, if the reduced and original game are strategicallyiedent, i.e. that all strate-
gically important strategies of the original game are ideldi in the reduced game as
well. We presented two methods: it is clear that the strateguivalence is not dama-
ged in G-solve method (in the meaning of correlated equal)biThis correspondence
may be corrupted by the FDDS method, or to be more precisgrdimbility of non-
correspondence gets close to zero as we spent the time inragpéng. The quality
of the whole process is highly influenced by the proper desigrellModel Every
small detail of the player’s strategy and the current cantexst be included in the
computing of the player’s payoff. It makes the differentatbetween the strategies
easier.

We presented a very wide framework of all actions headingatde/ the imple-
mentation of an operating game theoretical computer m@&iwhe of the details were
probably not discussed properly. However, the framewafiis a mosaic where any
its internal component may be substituted by another one. efample, the equilib-
rium solver (Figur€R) can be concretized with an implemimeof Nash-equilibrium
solver, or correlated equilibrium solver (G-solve), or&elberg-equilibrium, or any
user-specific way of predicting the players’ behavior. Thpgr comes from the Com-
puter science background and its main contribution staysaking the sophisticated
algorithms of large problems and their use in computer satuts.
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Appendix. G-solve code

Algorithm 5 G-solve — solveRow(i,},k)

pos :=[]; neg :=[];
for sin S # run this in parallel
if (s[i]==] and valid[s]):
s2 =s; s2[i] :=Kk;
if (valid[s2]):
u = getU(s,i);
uk 1= getU(s2,i);

if (u !'= NI and uk '= NI):
diff :=uj - uk;
if (diff !'=0):
if (diff>0):
pos. append( (s, diff) );
el se:

neg. append( (s, diff) );
return (pos, neg);

Algorithm 6 G-solve — getU(s,i)

if (umap[s]==Nil):
# this is the main conputation |oad
umap[s] := cell Model (s, O);

return umap[s][i];

Algorithm 7 G-solve — disableProf(it,s)

valid[s] := False
umap[s] := Nl # free the umap item
for i in[1,...,it]:

for j in §i]:
for k in S[i]:
row := Ji,j, k]
row. neg. r enoveKeyl f Present (s);
row. pos. r emoveKeyl f Present (s);
if (row.pos == 1[]):
for (s2,r) in row neg:
di sabl eProf (it, s2)

di,j, k] := NI
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