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Algorithmic Approaches to Game-theoretical
Modeling and Simulation

Martin Hrub ý∗

Abstract This paper deals with a methodology of computer modeling and simulation of mar-
ket competitive situations using game theory. The situations are thematically focused mostly
to models of commodity markets but the applications of the methodology can be wider. This
methodology covers the whole modeling work, including a primary specification of a problem,
making an abstract model, making a simulation model, design of a state space of the problem
and the simulator itself. As a whole, the methodology represents a complete framework for im-
plementation of computer models of commodity markets suitable for their further analysis and
prediction of their future evolution. The main contribution of the paper consists in the algorith-
mic implementation of computer processing of large strategic game.
Keywords Market models, non-cooperative game theory, modeling and simulation, artificial
intelligence
JEL classification C51, C53, C63, C72∗

1. Introduction

Game theory is traditionally considered to be a discipline of pure mathematicians and
mathematically oriented economists. The literature on game theory is quite large and
includes various (analytical) models of elementary situations. These models describe
every-day decision problems of people playing games, traders doing their business,
politicians in elections and others. But the scale factor ofquality and advisability of
every theory is expressed by its real applications arising from real requirements. In
this point, the literature is not so rich and practical case studies can be found mostly in
commercial papers advertising a particular analysis tool.

Research connected to this paper was motivated by colleagues from EGÚ Brno
company. They are experts in analyzing and predicting the electricity markets which
they do using their own computer models. In the recent years,we created a package
of interconnected computer models covering the electricity markets in the region of
Central Europe (Hrub́y and Toufar 2006). Our models include several aspects of the
electricity market commodities, behavior of the producers, consumers and the overall
legislation. Although the architecture of the mentioned models might be of interest
of the readers, their detail description would exceed the size of a journal paper. For
that reason, this particular paper focuses mostly to the mathematical and modeling
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fundamentals of our models. It deals with methods of applying the game theoretical
principles in computer science. From the computer science point of view, we work on
artificial intelligence in the computer modeling. The main contribution of the paper is
supposed to be in the presented methodology of designing thecomputer models and
in the algorithms of their simulation. It might be an inspiration for those who like to
implement the game theory in practical computer models. Anyway, as the world of
electricity is very close to our thinking, we will recall theterminology of the electricity
markets to demonstrate the described ideas in suitable moments.

Computer modeling and simulation together with artificial intelligence are both tra-
ditional areas of computer science. Model of a systemA is usually defined as another
systemB which is somehow similar toA. By sayingmodelingwe mean a process of
expressing the model in form of some modeling formalism (programming or simula-
tion language, for example). SystemB is always a simplified version of the systemA,
it contains just a part of its elements and their internal relations. We usually do not
know the whole structure of the systemA, we are not capable to cover the systemA in
its whole complexity or the systemA is not realizable in our physical world.

The computer simulation is a process ofdoing experimentswith the model. We
gain a new knowledge ofA during experimenting with its representation by systemB.
The term simulation is also understood as an execution of a simulation model (when
speaking about models in programming languages). During the experimental phase,
we have to confirm thatB system is really similar toA. We validate the model, or
debug or calibrate the model.

Both the game theory and computer science deals with the modeling of systems and
their further analysis through the models. But there is a significant difference in doing
that: the mathematical approach usually chosen by game theorists is called theanaly-
tical modeling, the computer approach is called thesimulation or computer modeling
(numerical). The analytical model in form of mathematical equations is a perfect con-
ception of the studied system. We input the parameters to theequations and obtain the
results immediately. The computer model must be put into a deep and time consuming
experimenting. Moreover, as a numerical solution, it givesonly approximate results.
The experimenter has to keep in his mind, that he works with animperfect and incom-
plete model, and the results are always infected by a certainerror corresponding to the
time spent in experimenting.

The analytical modeling seems to be the best way of doing the models. However, it
is almost impossible to construct an analytical model of a larger system. It is practical
to model the problems in analytical manner just in cases of very fundamental problems
or in cases of some elementary parts of larger problems. For the rest of the tasks, it
is highly recommended to build a computer model and to endurea time consuming
experimentations. Modern computers already allow that.

The computer representation of a model always discretizes the studied problem.
No matter if it is a meteorological model of atmosphere or a game-theoretical model
of a decision problem, its domain (naturally continuous) istransferred to a finite enu-
meration – to a finite set. The cardinality of the discrete domain implies the number
of computing operation necessary to proceed in the model execution. The computer
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approach to model design is useful also for other reasons. The power of computers
substitutes a human intellect spent in the analytical modeling. Contemplation of a
mathematician can be transferred to a quanta of computing operations done by the
machine.

The computer modeling has evident advantages in the field of modeling of com-
plex systems, e.g. game situations. But we have to face some theoretical and practical
computing constraints – the memory constraints and the timeconstraints. They both
come from the algorithmic principle of the machine processing – searching the state
(strategy) space. We have to keep in mind that every operation of the machine takes
some time to be processed. The whole simulation may take hours, days or even years.
Methods of Artificial Intelligence (AI) based on searching the state space use so called
heuristics. The heuristics is an expert knowledge helping the AI algorithm to predict
(observing the passed computation) what sub-spaces of the state space are not recom-
mended for the further searching. Unfortunately, the heuristics are very connected with
the particular model and they are not re-usable, they make the model over-complicated
and decrease its flexibility.

We look for some universal heuristics which is not integrated in the application
model. This approach should arise from some general game-theoretical law or a prin-
ciple. Such a mechanism shall not require the modeler to influence his model with
some application-specific heuristics. Such a mechanism shall experiment with an ap-
plication model to find a faster way towards its solution.

We are going to introduce a framework suitable for development of such automa-
tized mechanism and two examples of these mechanisms. It should be emphasized that
the methods and algorithms described here were developed during many years of de-
velopment of computer models of electro-energy markets. Case studies made by these
models are requested by the government and commercial institutions in this sphere of
industry.

The paper is organized as follows: the section 2 introduces and explains the ba-
sic assumptions and terms used in the paper. The section mentions a specific internal
model cellModel evaluating the members of game state space. Let us imagine the
cellModel as a procedure written is some programming imperative language. The
cellModel takes the majority of the processor time and the whole methodology at-
tempts to find a such algorithms which minimize the count of its invocations. The
section 3 brings a more formal description of the game state space and its meaning
in game-theoretical modeling. In the 4th section, the abstract architecture of a game
model is presented. Its abstract parts will be concretized in sections 5 and 6, where an
example of an equilibrium solver and example of a state spacereduction mechanism
are deposed. The last section 7 concludes the paper.

2. The modeling methodology

In market games, competitive situations are subject of modeling, in order to be able to
betterunderstand the behavior of the playersin the real life or to be able topredict the
behaviorof real players (producers, traders and consumers). Theoretical literature on
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gaming shows sometimes a certain measure of skepticism about whether the game the-
ory can be successfully used for the prediction of future (a very interesting experiment
is described in Green (2002)); in other cases, the usefulness of the game theory for
predictions is defended (Erev et al. 2002). The game theory is undoubtedly a relatively
successful and usable method. A number of papers (Krause et al. 2004, Yiqun et al.
2002, Gountis and Bakirtzis 2004, Kwang-Ho and Baldrick 2003) demonstrate that in
the area of the electricity markets modeling (which is of interest of the author), mostly
use the analytic models developing certain game-theoretical principles.

In this section, we introduce an approach of modeling the competitive situations.
The whole methodology is heading towards a computer model able to predict the future
evolution of the modeled systems.

We are specialized particularly in markets with centralized trading where all con-
tracts are signed in the same time or the decision must remainconstant for a certain
time period (year). These situations are then modeled as strategic games – games in
normal form (Myerson 2004). Let us first define a game in strategic form and some
basic important terms.

Definition 1. A game in strategic form ofN players is defined as:

Γ = (Q;S1,S2, ...,SN;U1,U2, ...,UN),

where

(i) Q = {1,2, ...,N} is a (finite) set of the players.

(ii) Si , i ∈ Q are finite sets of (pure) strategies of playersi. Product of strategy sets
makes thegame state space S= S1×S2× ...×SN. Members of state space are
calledstrategic profiles s= (s1,s2, ...,sN). LetS−i denote similarly a subspace of
SwithoutSi . S−i notation will be frequently used to express a context of thei-th
player’s decision situation. Finally,s−i = (s1, ...,si−1,si+1, ...,sN) is a member
of S−i .

(iii) Ui : S→ R, i ∈ Q are utility functions assigning a payoff to each playeri in each
profile s∈ S. We shall not delve too deeply into the analysis of the form of
player’s payoff; the payoff will simply be a number (often expressing player’s fi-
nancial profit). We expect the utility function not to be defined for some profiles.
In that cases, utility function assigns somegame neutral payoff(zero or a nega-
tive value). The utility functionsUi are usually implemented asN−dimensional
arrays indexed by strategy profiless∈ S.

In some parts it will be preferred to denote shortlyΓ = (Q;S;U) to describe a game
Γ with a state spaceS and utility functionsU . We may write that the state space is
computedto emphasize that the utility functions are known for alls∈ S.

Modeling of games should lead to some equilibrium points. The strategic profile
s∗ ∈Sconsisting of the actionss∗i made by individual players will be referred as agame
solution. We expect the players to choose the best response on their opponent’s possi-
ble action. Theequilibrium is the mutually best response, which is formally defined in
Definition 2.
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Definition 2. Strategic profiles∗ is the equilibrium in the gameΓ, if:

∀i ∈ Q,∀si ∈ Si ,si 6= s∗i : Ui(s
∗
i ,s

∗
−i) ≥Ui(si ,s

∗
−i)

2.1 Strategy dominance

We have mentioned a need of some automatized mechanism that would experiment
with the model to speed-up the classical searching in state space. The mechanism is
supposed to reduce automatically the game state space following some general game-
theoretical principle. The algorithms described here are based on examination of do-
minant and dominated strategies. Let us formulate the classical definition of the domi-
nance.

Definition 3. Let us have a strategic form gameΓ = (Q;S;U). Strategysi
1 of a player

i strictly dominates strategysi
2, if

∀s−i ∈ S−i : Ui(s
i
1,s−i) > Ui(s

i
2,s−i)

Strategysi
1 of a playeri weakly dominates strategysi

2, if

∃s−i ∈ S−i : Ui(s
i
1,s−i) > Ui(s

i
2,s−i)∧∀s−i ∈ S−i : Ui(s

i
1,s−i) ≥Ui(s

i
2,s−i)

The strategy dominance is connected to a technique callediterative elimination of do-
minated strategieswhich reduces the game state space. This technique is not trivial
in the time-complexity point of view. On the other hand, we may handle the strategy
dominance from the characteristics of theBest-response. The Best-response characte-
ristics studies the player’s behavior in situation when hisopponents play strategies in
sub-profiles−i .

Definition 4. StrategiesSi
best⊆ Si of a playeri are his best-response in the strategy

contexts−i ∈ S−i , if:

∀sb ∈ Si
best,∀s∈ Si ,s 6= sb : Ui(sb,s−i) > Ui(s,s−i)

Set of Best-response strategies of the playeri in the contexts−i ∈ S−i will be denoted
asBRi(s−i), or simplyBRi(s); BRi(s−i ,Γ) to emphasize the particular gameΓ. Let us
define a set of relevant (good) strategiesSBR,i of a playeri:

SBR,i =
⋃

s−i∈S−i

BRi(s−i) (1)

Obviously, if ∀s1,s2 ∈ Si : Ui(s1,s−i) = Ui(s2,s−i) holds for somes−i ∈ S−i , the
best-response is equal toSi . We will consider this state to benot suitablefor the game
analysis. It is preferable to work with such games, where∀s−i ∈S−i : |BRi(s−i)|� |Si |.
Anyway, it is ideal if|BRi(s−i)| = 1.

With the framework of strategy dominance, these statementscan be considered:

(i) A rational player never plays a strategy, which is (strictly or weakly) dominated
by another strategy (see G-solve in section 5.4).
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(ii) A rational player always plays a strategy fromBRi(s−i) in the sub-profiles−i .
The fact of|BRi(s−i)| > 1 introduces a certain uncertainty and hence a mixed
behavior.

(iii) A player always decides within the setSBR,i . The strategiesSi \SBR,i have no
meaning for him. We are going to call them simply thedominated strategies.
The strategiesSBR,i will be called thedominant strategies.

Distinguishing the dominant and the dominated is the starting point for proxessing
the game tasks. Splitting the strategies to dominant and dominated is not evident di-
rectly from theΓ game specification. To analyze the dominance, the algorithmmust
go through the whole state space. This is impossible in many practical cases for the
complexity reasons (see section 2.3). In this paper, we are going to demonstrate that
it is realizable to analyze a relevant sub-part of theΓ state space to compute the best-
response characteristics of the players. Concentrating only to SBR,i strategies (as a
minimal representative of the originalΓ) the computer can find the game solution ofΓ
without analyzing the whole state space.

2.2 Strategic equivalence of games

Strategic equivalence of games (Myerson 2004) is a wider term. We introduce a spe-
cific definition of the term relevant for this paper.

Definition 5. A gameΓr = (Q;Sr ;Ur) is strategically equivalent to another gameΓ =
(Q;S;U), if holds:

(i) Sr ⊆ Sand

(ii) ∀sr ∈ Sr ,∀i ∈ Q : Ur,i(sr) = Ui(sr) and

(iii) ∀i ∈ Q :
⋃

s−i∈S−i
BRi(s−i ,Γ) =

⋃

sr,−i∈Sr,−i
BRi(sr,−i ,Γr).

This means that a gameΓr is strategically equivalent toΓ if it is played in the same
set of players, just the state spaceSr is a subset ofS and no strategically important
(dominant) strategies are omitted.

The task is to find a strategically equivalent gameΓr for a given gameΓ using an
efficient algorithm, i.e. using an algorithm with better time and memory complexity
than the method of iterative elimination of dominated strategies (or its equivalent in
the meaning of best-response characteristics). More reasoning for that is given in the
following section.

2.3 Algorithmic complexity of the game analysis

The time and memory algorithmic complexity is the essentialproblem in area of these
models. We are not going to study rigorously a complexity of the algorithms, nei-
ther from the point of view of game theory nor from computer science point of view.
This particular research is connected to the real existing models. The algorithms and

AUCO Czech Economic Review, vol. 2, no. 3 273



M. Hrubý

methods are developed to allow their user to proceed his practical experiments in rea-
sonable time using the available computer machines. Thus, we simply differentiate
between the good and bad complexity. We keep in mind the wordsof Kamal Jain:
“If your PC cannot find it, then neither can the market.” As themarket can findit, we
have to make a model which finds it as well. This sort of disproportion between the
complexity of the reality and its model is common for all AI algorithms.

The time complexity of an algorithm is given by number of computing operations
necessary for computing the response for a given input. In the area of real computers,
this is the time we have to wait for the result.

The memory (space) complexity is given by number of memory cells necessary
to finish the computation for a given input. The real computers are limited by their
physical operation memory. In the game theoretical models specifically, we are often
limited by the fact that the wholeN-dimensional matrix of utility functionsU can not
be present in the computer memory.

Which one of these two complexity problems is the one stoppingus to complete the
task? Practically, we do not care about the time complexity of the analytical algorithm
solving for example the strategy dominance. Mostly, we haveto care about the input
game state space which does not fit the computer memory. Let usdemonstrate that on
the following example.

Example of the algorithmic complexity

Let us assume a rather simple algorithm (Algorithm 1), whichcomputes theBest-
responsecharacteristics for a given playeri and a given contexts−i . The Algorithm 1
terminates with a set ofBRi(s−i) strategies.

Algorithm 1 Best-response algorithm
Input: sub-profiles−i , playeri
max := -MAXIMUM NUMBER
list := []
for si in Si :

u := Ui(si ,s−i); Comment: If Ui(s) is not known, it must be computed by
cellModel(s) first – this is the main computational load in the whole algorithm.

if (u=max):
addsi to list

else:
if (u>max):

list := [si ]; max := u
return list;

Now, let us consider a 8-player game where each player has 100strategies, so
Q = {1,2, ...,8} and |Si | = 100 ∀i ∈ Q. The size of the whole state space is|S| =
1008 = 1016 cells. Each cells∈ Skeeps an utility(U1(s),U2(s), ...,U8(s)) – a vector
of eight numbers. Let a number takes 4 bytes of computer memory, so the cell of eight
utilities takes 32 bytes in total.

274 AUCO Czech Economic Review, vol. 2, no. 3



Algorithmic Approaches to Game-theoretical Modeling and Simulation

ComputingSBR,i in (1) using Algorithm 1 requires the utility functionUi to be
known for alls∈ S. At first, let us assume that the wholeUi(s) is stored in the com-
puter memory. Then, it requires 1016 · 32 bytes of memory which is 32· 1016 bytes,
or approximately 32·107 Gigabytes (GB) of RAM memory (the current PC computers
have usually 1-8 GB RAM). This whole eight-dimensional matrix of eight-dimensional
vectors clearly can not be stored in memory of any existing computer.

Secondly, let us assume thatUi(s) is not stored in memory, but there is a function
(a computer procedure) computing thei-th player’s utility for anys∈ S(this computer
procedure will be calledcellModel in this paper). Such a function is computed in a
physically existing computer and it takes certain time – letus say 1µs= 10−6s (using
a standard PC processor doing approximately 500 million floating-point operations per
second). The computer thus can compute one million requestsfor the utility function
cellModeli(s) per second. We will use the transcriptionU(s) to highlight that the value
of the utility for s is known and the transcriptioncellModel(s) (or cellModeli(s)) to
emphasize the need to compute (as a computer program) the value first.

Let us recall the Algorithm 1. ComputingBRi(s−i) for a given i ∈ Q and s−i ∈
S−i requires thecellModeli(s) function to be invoked|Si | times (i.e. 100 times in our
example). There is surely some computing overhead in the Algorithm 1 it-selves but we
neglect it. To compute allSBR,i for all i ∈Q we need to invokecellModeli(s) [Πi∈Q|Si | ·
|S−i |] = |Q| · |S| = 8 · 1016 times. Doing one million iterations ofcellModeli(s) per
second, we need 8·1016 ·10−6 seconds to get know allSBR,i , which means about 2500
years.

We can see, that the game-theoretical algorithms analyzingthe games work only in
cases of very small games.

2.4 Designing a game-theoretical numerical model

The game theory usually regardsΓ (see an example in Figure 1) according to the De-
finition 1 as theproblem specification(i.e. including the assignmentUi). The game
theory is then a package of analytic tools helping us to find the solution out of the set
of players, their strategies and the numerical analysis of their payoffs (Osborne and
Rubinstein 1994).

Figure 1. An example of a gameΓ

left right

top 10,2 8,4
bottom 5,4 7,3

In this paper, we deal with modeling of problems implementing the game theory
and its algorithmization (so called algorithmic game theory Nisan et al. (2007)). The
specification ofΓ is not regarded as an input for our deliberations but rather as an
interim result of our computations. Searching for the final prediction in form of the
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equilibrium is just a final step of the long process which passes through the following
phases (i)-(vi). First ideas of this methodology were published in Hrub́y and Toufar
(2006).

(i) Specification of an abstract model of the situation– the main objective of the
model and its known and unknown parts must be specified. In thecase of market
models, we specify the purpose of the model, the market commodities under the
study, time range of the forecasting and others.

(ii) Identification of players and their mutual relations– mapping of real institu-
tions (e.g. producers and buyers) to strategic game playersis specified. This is
followed by the modeling of their economic potential, theirknowledge of the
system and key features of their strategic behavior (ideal competition, oligopoly,
leader-follower,...). For example, all regional traders with electricity are ag-
gregated to a single national buyer. Let us note that at the level of a large
international-scale business operation (as e.g. long-term contracts for the deli-
very of electricity) we assumecomplete informationabout the game among the
players (game structure including utility functions iscommon knowledgeto all
players).

(iii) Game rules determination and selection of the type of strategic equilibria – in
the sense of the game theory we differentiate between two basic game classes:
strategic and sequential. In most cases, our games are strategic (games in strate-
gic form, normal-form games, matrix games). There are variants of equilibria
including Nash equilibrium (Nash 1951), Stackelberg equilibrium (Latorre and
Granville 2003), correlated equilibrium (Aumann 1974, Papadimitriou 2005)
and others. The games also contain nested (inner) strategicsub-decisions in
form of nested games or auctions (Krishna 2002).

(iv) Model of the game strategy and strategy generation– we work with numeri-
cal models and, therefore, with a certain degree of discretization of unknowns.
Moreover, in real game situations, we introduce various forms of hierarchical
decision-making with multi-dimensional strategies. For example, let us consider
the decision of a producer to supply his product to various national markets
(geographically) or to allocate his production capabilityto different particular
products. In the electricity case, we differentiate between various time-defined
commodities (year base supply, monthly base supply, peak-load,...) or system
reserves. The producer decides about to sell his productionto his domestic cus-
tomers or to export it abroad.

(v) Game payoff determination model– this part represents the expert core of the
whole issue. The objective is to design and to implement the model of the situa-
tion specified by the given strategic profile. To put it in other words, we are de-
veloping an application-specific functioncellModel(s,C). This function returns
the players’ utility vector for the given profiles∈ Sand the global game context
C. It is a modeling and computational implementation of functionsUi : S→ R.
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There is a significant difference between the utility functionsU and the func-
tion cellModel. From the Computer science point of view,Ui is a mathematical
function returning the player’s payoff instantly (in zero time); Ui is a memory
record, an array indexed by strategy profiless∈ S. On the other hand, this in-
formation must be computed first (by thecellModel), this computing load takes
some processor time and makes the simulation experiment time consuming. Re-
sulting value ofcellModelis then stored inU . A similar approach was published
in Viguier et al. (2006). The whole state space is computed inthe loop as it is
shown in Algorithm 2. Time complexity of this computation may be very high,
as the upper border of the complexity is defined by the number of iterations|S|
and by the complexity ofcellModel. Indeed, we do try to establish theoretical
principles which will allow a reduction of the computational load (Hrub́y and
Čambala 2008). That is the sense of this paper.

(vi) Theoretical analysis of the game and the determination of the equilibrium– once
all information describing the game according to the definition Γ is complete (all
Ui are computed), we need to algorithmically determine the rational behavior
of players within the game. The result of the game is thus the profile s∗ ∈ S,
which we compute (according to the particular equilibrium concept) as the most
probable strategic decision of players participating in the game. This phase is
enormously demanding computationally too. The complexitycan be reduced
by the analysis of the state space and by the elimination of strategies, which a
rationally thinking player would not be likely to play.

It should be emphasized very strongly, that the so called internal modelcellModel
computing the payoff vector for each strategy profiles∈ S is not just a simple function
revenues− costs. The cellModel for certains∈ S is supposed to be a rather com-
plex model of what all happen in the real life if playersi ∈ Q adopt their strategies
si . Regarding the particular application,cellModelmay model their strategic offer to
various markets, their behavior in inner sub-decision making, their bids in auctions and
their production model. If we sayrevenues− costs, some mechanism must compute
the level of the revenues and some other mechanism must specify the costs. In our
particular case, computing the costs is very complex as it requires an optimization of
the production process. For example, in the models with one-hour time granularity,
the cellModel procedure computes an optimization of working point of all included
power plants (linear programming task) for 8760 hours of theyear. This explains
why cellModelcan not be expressed analytically as a mathematical function but im-
plemented as a numerical model and the whole application model works in discrete
strategies.

Example of a numerical model

Successive phases of the game-theoretical modeling can be best shown in a fictitious
oligopoly example. Let us start from a situation involving agroup ofN players, where
each playeri is fully defined by his production machinesMi = {mi

1,m
i
2, ...}. Operation

of the machines is simplified to these three parameters:
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(i) fixc: M → R ; fixed costs of the machine which must by paid no matter if the
machine produces or not (it is mostly an amortization of the machine).

(ii) prodc: M → R ; production costs per unit of production (e.g. coal, gas,...).

(iii) cap: M → R ; production capacity of the machine in number of units.

The demand for the (single) commodity is considered to be invariably demand
(which is a usual situation at energy markets). In terms of the oligopoly price gaming
we ask a question: What are the price and volume of production that individual players
will successfully achieve at the market? We assume that players know each others
production parameters. The game is regarded as a strategic form game, i.e. all players
i ∈Q choose their strategiess∗i concurrently, at the same time, and the result of the total
selected profiles∗ = (s∗1,s

∗
2, ...,s

∗
N) are payoffsUi(s∗). As for the equilibrium concept,

Nash equilibrium is selected. In this manner we pass phases (i)-(iii).
Furthermore, we have to specify sets of strategiesSi of individual players and sub-

sequently to design the game internal modelcellModel computing payoffsUi(s) in
profiless∈ S. We treat the game as a discrete system, and, therefore, we also would
like to havediscretesets of strategies. The searched quantity, i.e.commodity price,
is expected to be in the intervalp = 〈pf , pt〉 (pf , pt ∈ R). When modeling a real
commodity market, we indeed expect that the resulting pricewill lie in a certain rea-
sonable range and, therefore, the finiteness ofp is acceptable. The price range can
be converted to a discrete form in an arbitrary manner, e.g. in the form of a regular
seriesPrices= pf , pf +step, pf +2·step, ..., pt . We may setSi = Pricesfor all play-
ersi ∈ Q; generally, however, sets of players’ strategies can differ for each individual
player. The main problem in this approach consists in the correct determination of the
discretization stepstepwhich also defines the precision of the prediction model. The
correct construction of the set of strategies is a separate expert problem which will be
analyzed later on.

The determination ofSi yields the state spaceS= S1×S2× ...×SN. In order to
evaluate the payoff of players in the game, we have to invoke acertain internal model
cellModel(s,C) for all s∈ S and a certain global context. In our case, the context is
given byC = {demand}. ThecellModel((s1,s2, ...,sN),C) is a procedure computing
what offers are the players going to make atsi price, how they will succeed in the
competition and what profit they can make in the profiles(see Hrub́y and Toufar (2006)
for more details). The following procedurecellModel(s,C) models what happen in one
strategic profiles∈ S. ThecellModelprocedure is a sequence of the offer, trading and
production settlement.

Let us say that every playeri offers the production capacity of those machines that
are profitable in the context of his price strategysi ; s∈ S:

Mp
i (si) = {m∈ Mi |prodc(m)+ f ixc(m) ≥ si}

offeri(si) = ∑
m∈Mp

i (si)

cap(m)
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The total offer of all playersi ∈ Q is then:

totalOffer(s) = ∑
i∈Q

offeri(si)

The buyer receives|Q| offers in formbidi = (i,amounti ,si) wheresi represents the price
required by the playeri andamounti is the number of units of the modeled commodity.
The buyer wants to buydemandunits of the commodity (we assume no price-demand
elasticity). LetBids is a list of bids ordered by price (supply curve).

By trading, we mean a transformation of the listBids to a similar listSells=
{(i,selli ,si), ..} of amountsselli accepted by the buyer from each produceri for price
si . In the profiles, if totalOffer(s)≤ demand, all bids are accepted, soselli = amounti
for all i ∈ Q. Otherwise, the buyer buys up todemandunits respecting the offered
price.

The producer receives the information about the contract made (amountselli sold
for si price). He arrange his production set to produceselli for optimal cost – let
Yi(selli) is a optimizing procedure spreading theselli load over his set of machinesMi .
The result of the optimization is a list of tuples (machine, production) where (2) holds.

selli = ∑
(mj ,p j )∈Yi(selli)

p j (2)

optimalProductionCost(selli) = ∑
(mj ,p j )∈Yi(selli)

prodc(mj) · p j

pro f iti(selli ,si) = selli ·si −optimalProductionCost(selli)− ∑
m∈Mi

fixc(m)

To complete the procedure, thecellModel(s,C) is a sequence of steps:

(i) Collect bids from all players.

(ii) Intersect the supply curve with thedemandand generate messagesselli to the
players.

(iii) Players optimize their production units regarding the accepted amountsselli and
enumerate their outcome
pro f iti(selli ,si).

(iv) cellModel(s,C) := (pro f it1, pro f it2, ..., pro f itN)

ThiscellModel(s,C) is invoked for alls∈ S(see Algorithm 2). After|S| iterations,
all information of the game is evaluated, and we can proceed toward the analysis of the
game to determine the expected forecast – the equilibrium. Implementing the model
would be trivial for anyone. We just wanted to demonstrate the functionality of the so
calledinternal modelcomputing the payoff of all playersi ∈ Q acting in thesstrategic
profile and the global contextC – cellModel(s,C).

Let us remind theheuristicsand the preference. Can the playeri generally know
whether he makes better (selling more for a higher price) when playingsi

1 rather than
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si
2 in the contexts−i? Can the heuristics during computation ofcellModel((si

1,s−i),C)
easily predict the player’s contract in the profile(si

2,s−i)? No, the player (all players)
musttry that invoking cellModel for both profiles. All attempts to implement heuris-
tics into cellModel which, having a knowledge of the value ofcellModel(s1), shall
predict the next outcome ins2 profile will fail. Moreover, such a functionality makes
thecellModelprocedure more complicated and restrain to the further modification of
the internal model. For this reason, we look for an automatized heuristics which does
not need to see inside the internal model.

2.5 The status of game equilibrium

The equilibrium is understood to be a rule, or a model specifying a probable behavior
of players in the game context – it means, within the strategies and known payoff func-
tions. In our models, we strictly assume that the utility functions and other parameters
are common knowledge. This paper also shows that when using our methodology,
choosing a particular equilibrium concept is just a final computing operation over the
game state space.

The time and space complexity is very important for the construction of these mo-
dels and computing the equilibrium in the simulation experiments. We differentiate
between the equilibrium algorithms where we expect or do notexpect theU to be
computed:

– TheU is expected to be computed. We just analyze the computed state space to
find the equilibrium points (traditional algorithms computing Nash equilibrium).

– TheU is not expected to be computed. The algorithm starts from zero knowledge
of U and touches (cellModel) just that cells which the algorithm needs for its
operation. Putting thecellModelcomputation and the equilibrium determination
together may decrease the number of accessed cells fromS (in compare to the
previous concept). This may decrease the computing time to afraction of the
conventional approach (G-solve).

2.6 Two-level approach to modeling of game situations

An efficient computer implementation of game model was the opening idea for the two-
level model architecture. The efficiency means the computing efficiency mainly. The
software engineeringis the second view to the efficiency. We also require the model
(as a software work) to be easy to understand and flexible for future modifications.

The traditional AI algorithms work with the state space, evaluate its cells in form of
some utility and search for the optimum (methods of searching in the state space, prob-
lems solving, playing games). All these methods employ various forms of heuristics to
decrease the computing complexity. The heuristics are pieces of programs containing a
particular expert knowledge of the problem to be solved. They help the AI algorithm to
predict that parts of the state space which are useless for the analysis and redundant for
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the search of the optimum. From the modeling (software engineering) point of view,
the heuristics are parts of the model badly influencing its clarity and flexibility.1

There is a compromise and rather good solution: computing ofthe utility of each
particular cell (cellModel) is separated from the mechanism searching in the state
space. We say that the mechanism searching in the state spaceexperiments with the
modelcellModelΓ of a given gameΓ. The basic mechanism is shown in Algorithm 2.

Algorithm 2 Basic search in state space

for s in S:
U[s] = cellModel(s,C)

eq = determineEquilibriumPoint(S,U)

The Algorithm 2 goes through the whole state space and enumeratesU(s) for all
s∈ S. The time complexity of Algorithm 2 is given by the cardinality of S and the
programming implementation ofcellModel. The computing complexity ofcellModel
is not trivial as thecellModelmay contain other sub-decisions (inner games), produc-
tion optimization and so on. Moreover, we do not expect that the whole contents ofS
can fit the computer memory. The Algorithm 2 is thus just atheoretical demonstra-
tion. Its time and memory complexity makes the theoretical upperboundary of the
state space computation. It is the worst solution and we attempt to find the better ones.
An algorithm verifying that a given profiles∗ is or is not the equilibrium, is the lower
boundary.

We expect that themechanismprocesses the state space ofΓ in such a way which is
efficient from the point of view the particular game, and typeof the chosen equilibria
concept. The algorithm searching the state space ofΓ shall terminate (output) with:

(i) A minimized gameΓr = (Q;Sr ;Ur) without dominated strategies (Si \ SBR,i)
which is strategically equivalent toΓ. The equilibrium ofΓ is then computed us-
ing some other procedure (for example using some already implemented solver
like GAMBIT (Gambit homepage 2008).

(ii) Solution of Γ in form of a game equilibriums∗ (analyzed usingΓ or Γr ).

We are going to present two different approaches in this paper. The first one demon-
strates an efficient computing of the equilibria (the correlated equilibrium (Aumann
1974) in our case). The second one searches the state space inextremely huge games
to reduce the given game into its strategically equivalent version without dominated
strategies. Both methods are based on analysis of strategy dominance.

1 There are some other very efficient methods of dynamic reductionof strategy sets. However, they exceed
the topic of this paper.
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3. State space of the strategic games

We model the decision processes. An intelligent entity is supposed to make a decision
and therefore, it analyzes itsoptions. A strategy is taken in this context as a possibility
to act somehow. The entity thus collects all its options and starts to evaluate them. We
know, that in the strategic games, the entity evaluates the strategies in context of other
players.

We follow the model design and experimenter’s point of view.It is then necessary
to include this important fact:Construction of a representative and reasonable strategy
sets is an inseparable phase of the model design. The artificial intelligence yet has not
advanced so far that the AI algorithms would be able to pass that by their own. To
put it in other words, we do not expect the AI algorithm (or theprediction model as a
whole) to specify itself a task. Specification of the task is still left on the experimenter
(user).

3.1 Generating the strategy sets

Let us assume that the model and all the computations will be held in discrete state
space. We may understand the modeled commodities to be continuous in their basic
principle (price, quantity). In the real life, we treat themas discrete anyway (elements
of currency (cents), production attributes of the machines, satisfying the quotas and
rules,...). We just have to specify the way of making these things discrete. The quan-
tities related to manufacturing are rather clear (production units, size of a package and
so on). The meaning of commodity price is the only trouble.

The continuous intervalP = 〈pf , pt〉, within the price decision is expected, can
be easily discretized by a sampling periodstep. It makes a regular sequenceSi =
{si,1,si,2, ...} = sf ,sf + step, ...,st . The size ofstepis essential here. We lose an in-
formation value and sense of the model when a too longstep(stepis a big number)
is used. When having a too shortstep(a small number), one would assume that the
accuracy of the model gets increased (no matter if it increases the computational load).
However, the too shortstepjust influence the model with amixed behavior.

Let us have an example. The price of a commodity is expected tobe withing
P = 〈0,10〉. Setting thestep= 1 makes the player distinguishing his optimal prices∗i,x
(for example lets∗i,x = 7) very clearly. On the other hand, when operating atstep= 0.1,
after a significantly longer computation, we achieve a probability distribution over the
pure strategies like 0.2 · si,x−1,0.7 · si,x,0.1 · si,x+1 (price strategies 6.9,7,7.1). Can be
such a result accepted asthe better solution? Does the model operating onstep= 0.1
a better job than the model withstep= 1? When doing predictions of the commodity
price in the far future (e.g. year 2025), does anybody believe the model to predict the
price with 0.1 precision?

3.2 Differentiation of strategies

We have described choosing of the right (reasonable) discretization step and its influ-
ence to complexity of making the decision. A rational playermust always be able to
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show (to satisfy the definition of the rationality) for any two his actionss1,s2, if s1 is
preferred tos2 or vice versa, or that both strategies are equal in their significance. We
compare the strategies using their corresponding utility.

Definition 6. A set of strategiesSi of a playeri is distinguishablein sub-profiles−i ∈
S−i , if

∀si
1,s

i
2 ∈ Si ,s

i
1 6= si

2 : Ui(s
i
1,s−i) 6= Ui(s

i
2,s−i).

Similarly, we define that the strategiessi
1,s

i
2 ∈ Si of a playeri are distinguishable, if

∀s−i ∈ S−i : Ui(s
i
1,s−i) 6= Ui(s

i
2,s−i). (3)

Differentiation of strategies is useful for analysis of thegame state space. It also
forbids the mixed behavior in the game. A player can clearly (purely) see his good and
bad strategies. We say that the strategy setSi of a playeri is well distinguishable, if
the previous condition (3) holds for allsi

1,s
i
2 ∈ Si . This condition is perhaps too strong

and very rare in the real world. Moreover, the dominance of strategies is never obvious
when the utility functions are not available (it is not directly clear that a player gains
more for price strategye30 than for price strategye25). Let us express the comple-
mentary view on the distinguishability in the form of the Best-response characteristics.
The state space is well distinguishable if

∀i ∈ Q,∀s−i ∈ S−i : |BRi(s−i)| = 1, (4)

or the number of best-response strategies for some sub-profiles remains small in com-
pare with the size of the strategy sets. Such a setting will not cause a state space ex-
plosion during the game analysis and the whole computation will remain in reasonable
response time.

Such a situation can be achieved if thecellModelmodel is designed with a special
care about enumerating the final payoff in the profiles. Let usdemonstrate the situation
using a game where the players choose their strategy in form of tuples(price,amount).
We will call that themulti-dimensional decision. Let us imagine a player who suc-
ceeded to sell the same amountsell when playing strategiessi

1 = (price,amount1) and
si
2 = (price,amount2) in the same contexts−i , but mainlyamount2 > amount1. That

is an extension of the example in section 2.4. His payoff for the sold amountsell and
strategy(price,amount) is (the production costs are ignored):

Ui(s
i
j) = pro f iti(s

i
j ,sell) = sell· price

The strategiessi
1 andsi

2 are indistinguishable asUi(si
1) = Ui(si

2) holds. It is rather
evident that a real player would prefer the strategysi

1 becausesi
1 reserves a smaller

production capacity. If we include this reservation of the installed production capacity
to the equation on the side of production costs (r ∈ R

+ is the cost of the capacity
reservation or lost income per unit), we achieve the wanted distinguishability:

Ui(s
i
j) = pro f iti(s

i
j ,sell) = sell· price−amount· r

AUCO Czech Economic Review, vol. 2, no. 3 283



M. Hrubý

Let us conclude, that the situation whenUi(si
1,s−i) =Ui(si

2,s−i) expresses that both
strategiessi

1 andsi
2 are equally preferred by the playeri. This state must have some

reasonand motivation. It may become, that two different contracts(in their structure)
give the player an equal profit, but this is very rare in our experience. It is mostly an
inability of a player to make a decision or an inability of a modeler to evaluate the
contracts properly.

3.3 Multi-dimensional strategies in decision making

In the preceding section, we briefly introduced the modelingof multi-dimensional
decisions, i.e. a situation when a player makes a decision within the framework of
strategies generated in the form of Cartesian products of more quantities. In the previ-
ous example, the player has been choosing the strategies in form (price,amount). In
our decision models, the players make decisions composed from other sub-decisions.
Multi-dimensional decisions model the situations with more traded commodities or
more possible markets to make the contracts. The players have to decide about spread-
ing their production capacity to more commodities, they have to decide the price for
each particular commodity and the particular market to place it.

If the price is supposed to be within the intervalPrices= 〈pf , pt〉 and the amount
within Offer= 〈0,cap〉, then the strategy set of the playeri is given bySi = Prices×
Offer (and discretized somehow again). We are not going to providea complete
methodology of modeling multi-dimensional decisions composed of elementary sub-
decisions. More can be found in Hrubý (2007).

We know that the state spaceS of the gameΓ is given byS= Πi∈QSi . The state
space represents an exhaustive listing of variants, that may occur in the game. Nash
(1951) proved thateach finite game has at least one Nash equilibrium(generally in
mixed strategies). This means that, in any finite state spaceS, we may find a stochastic
outcomes∗ ∈ S that will satisfy the definition of the Nash equilibrium. IfS is the input
for the computational model, the model will always point to asolution. For that reason,
the design ofSi is of key importance. A false specification of the strategy ofplayers
may tilt the result so that it departs from the real situation.

The composition of the strategy sets of individual players is scalable and thus well
suited for experimentation. If|S| = 1, then the solution is clear and there will be no
game at all. The classic game theory usually assumes that each playeri has at least
two strategies so as to be thestrategic player. In our concept, a player belongs to the
game as long as his impact is included in the internal modelcellModel regardless of
the number of his strategies. Playeri with Si = {si

1} is theparticipating player with
constant behavior si1.

A similar situation arises in the pattern of multi-dimensional strategies. If the
playeri is modeled in such a manner that he has a set ofDi elementary decision-making
problems, where each elementary problemdi

j ∈Di belongs to the finite non-empty list-
ing Dbase(di

j), the set of strategiesSi of a player is again given as (5).

Si = Πdi
j∈Di

Dbase(di
j) (5)
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From the algorithmic point of view, the multi-dimensional strategy (a vector) is funda-
mentally equal to a scalar-type strategy. The whole methodology of two-level modeling
and automatized mechanisms searching in the state space remains unchanged. Multi-
dimensionality of strategies just extends the size of strategy sets. But significantly.

4. Implementing the model

The purpose of the modeling in this area is to design the parameters of a game follo-
wing the specification in section 2.4, to identify particular decisionsDi of players and
their domainsDbase(d),d ∈ Di (section 3.3). Proper designing ofcellModelfunction
is an individual expert problem. It is rather important thatthecellModelwell differ-
entiates between the player’s strategies. This will minimize the mixed behavior in the
game which makes the computing unnecessarily more complicated (and the result is
not better in our opinion). The mixed behavior must have somereason in the game.

Havingan uniquepure equilibria is the preferable end of the analysis. Having just a
single equilibrium eliminates the need of further interpreting the results. Otherwise we
have to decide (algorithmically) what equilibrium is the most authentic as a behavior
of the players.

The described methodology shows a possible computer implementation in form
of a programming library. The application model can be then constructed from the
predefined program elements. We develop a C++ library calledGameLIB to support
rapid development of the application models. There is another example of a rather
general game library called GAMBIT (Gambit homepage 2008).The GAMBIT library
contains just the basic equilibrium algorithms and is not very suitable for this type of
modeling.

4.1 An example (MCE)

In one of our models – Model of Central Europe (MCE) – we model astrategic de-
cision of eight Central-European electricity producers inthe region. They have to
negotiate year and month contracts of electricity delivery. We model all their power
stations and their detail operation including their time-variable production availability,
fuel consumption, interconnection to other industrial useetc. The decision on contracts
(amounts, prices) for the main yearly contract and twelve monthly contracts must be
done in one moment. The strategy (as one possible action of behavior) is thus a large
vector including many sub-decisions like: amount of yearlyproduction to offer at the
domestic market, amount to export in yearly contracts, amount to reserve for monthly
contracts, required price for the commodity, and the same decisions for monthly con-
tracts. Moreover, the model includes another eight strategic buyers who decide how
to purchase their demand effectively (from the domestic producer or from the import,
their price-demand elasticity and the value added based on electricity consumption).

The state spaceS has then sixteen dimensions (eight producers and eight buy-
ers). Every strategic profiles∈ S consisting of players’ multi-dimensional strategies
si = (si

1,s
i
2,s

i
3,s

i
4, ...) predestinates their behavior in the profiles: the player-producer

i offers si
1 amount to its domestic market forsi

4 price, si
2 offers to the export (which
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Figure 2. Basic composition of computation (Top view to the model)

Original game state space

Reduction Mechanism

Reduced game

Equilibrium Solver

cellModel

Solution

requires an inner decision about the particular markets to export and about the strate-
gic bids to offer in auction for electricity transmission lines) and reservessi

3 for the
twelve monthly contracting. The yearly contracts are made in these eight markets and
the similar process is repeated twelve times to make the monthly contracts. Buyers
strategically decides about the splitting their demand between the yearly, monthly con-
tracts and various electricity producers to achieve the best prices. ThecellModelagain
implements all the activities regarding the processing theparticular profiles.

This paper does not study a particular model, it describes some of the methods
developed together with our models. Detail description of MCE (or other model) would
be a topic for another large paper.

4.2 Top-level of computation

Computing the prediction of players’ behavior in a given game is well scalable by
specification of its state space. The computation is very dependent on the particular
application, especially on its internal model of behavior which we callcellModelhere.
We proceed the practical experiments using a machine having8xCPUs Xeon 2.66 GHz
and 16 GB of the RAM memory (or alternatively on 4xCPUs AMD Opteron 2.8GHz
with 32 GB RAM). The computation may take minutes, hours or the time exceeding
our requirements.

The general structure of the whole experiments passes two basic phases (see Fi-
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gure 2). The initial game state space (Original game) has obviously a plenty of redun-
dant dominated strategies which the rational player is never going to play. The state
space has an extreme cardinality. This is the task which the experimenter formulated
for the simulation. Usually, it contains all possible and hypothetical strategies to ensure
that no behavior was forgot. It is not possible to analyze thestate space in this form
(see section 2.3 for a brief demonstration of the algorithmic complexity). A reduction
mechanism is invoked to predict subsets of good strategies (for example there might
be tens of them for each player).

The equilibrium solver is then responsible for determination of the equilibria. In
this two-level game modeling, the expert core (cellModel) and the rather general ex-
perimenting mechanism (reduction mechanism, equilibriumsolver mechanism) are
separated. Let us conclude the overall motivation for this approach:

(i) We have to construct a practical computer model capable of certain analysis and
prediction.

(ii) The model must be enormously flexible and ready to acceptany modification of
its structure, specification and mission.

(iii) The experimenter may not be limited in specifying his queries (state spaces).

(iv) Model execution must be maximally efficient and fast responding. We assume
the experimenter doing large batches of experiments.

(v) The model (and the simulation method) must be ready for parallel processing.

The following two sections give some response to these requirements.

5. Computing the correlated equilibria

Correlated equilibrium (CE) (Aumann 1974, Papadimitriou 2005) is a well know game
theoretic concept extending the classical Nash equilibrium with a special synchroniza-
tion device helping the players to make their decision. A rational player then agree
that incoming event (signal) recommends him the best strategy do choose. This is an
opposite to the Nash equilibrium (NE), which assumes no communication platform
between players and their surrounding environment. The players then prefer to make
careful actions, often leading to lower common social outcome and misunderstandings.
Following our experience and results, we do believe that a rational player in market
competition (where the rationality is a common knowledge) behaves in the manner of
correlated equilibrium. More reasoning for the use of the correlated equilibria has been
done in Samuelson (2004).

Correlated equilibrium is computable in polynomial time (Papadimitriou 2005) as
a linear programming (LP) task maximizing the common outcome of all players in
context of game constraints. Unfortunately, in our practical games with large number
of players and their strategies, the task is still too huge tobe solvable on standard PC
computers. On the other hand, most of the games coming from real situations can
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be converted to their minimized strategic equivalents (where dominated strategiesare
eliminated) which are computable in a fraction of the original computing time. And
we would like to algorithmize this transformation.

Let us assume a previously definedN-player gameΓ with already computed stra-
tegy state spaceS, so that allUi are known for alli ∈ Q ands∈ S. Let us assume
that all strategy profiles are ordered(s1,s2, ...,s|S|) and can be indexed by an inte-
ger j ∈ {1, ..., |S|}. By computing the correlated equilibria we obtain a row vector
p = (p1, p2, ..., p|S|) of probabilities assigned to all strategy profiles (we also say, a
probability distribution on strategy space). CE is a form ofNash equilibria inmixed
strategies(MNE) and similarly like in Nash equilibria, more than one equilibrium point
can satisfy definition of CE. Regarding the presumption of rationality among players
we search for a unique Pareto efficient CE. The following technique gives a profile
with maximum payoff for all players where no one wants to deviate.

5.1 Basic approach

Correlated equilibrium is computable as a linear programming (LP) problem where we
maximize the global objective functionZ in (6) with probability variablesp j satisfying
(7) to obtain the best solution for all players together (Pareto optimal solution). The
LP-task in (6) and (7) is bounded by linear constraints (8).

Z =
|S|

∑
j=1

p jZ j (6)

p j ∈ 〈0,1〉,
|S|

∑
j=1

p j = 1 (7)

GpT ≥ 0 (8)

The (8) is a set of linear inequalities withG as a matrix of coefficients.G-matrix
completely describes all possible actions of the players and their consequences. Algo-
rithm to computeG-matrix will be described bellow.Z j in (9) denotes one complex
payoff of all players together in thej-th strategy profile.

Z j =
N

∑
i=1

wiUi(sj) (9)

There are generally three approaches to that:wi = 1, wi = 1
N , wi are different to

each player (for example to normalize them if they are not similarly strong). These
weights are for everyone to tune for his own particular application. There is absolutely
no general recommendation for that.

Solving the LP-problem, we obtain an optimal point(p1, ..., p|S|), Z contains a
(Pareto) optimal outcome for all players which is the highest possible and no player
wishes to deviate. The vector(p1, p2, ..., p|S|) is the wanted correlated equilibrium.
Anyway, there is a strong influence of the linear constraintsdefining whatstrategies
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will each player never play. The LP-solver constructs a problem domain defined by
given inequalities modelling the basic Nash rule of equilibria (G-matrix) – thei-th
player will not change his strategyj to k in s∗ profile if he will not get betterUi(k,s∗−i)
thanUi( j,s∗−i). And finally, the LP-solver will find the best profile with thisconstraint.
Computing the G-matrix

G-matrix collects all relative preferences of players inΓ game regarding their strategies
and can be constructed by following rules:

(i) Rows of G-matrix are indexedi jk wherei indexes a player,j his strategy and
k his alternative strategy. Thei-th player evaluates how his profit is going to
change if he moves fromj strategy tok strategy. There are∑N

i=1 |Si |.(|Si |−1) of
rows in the G-matrix.

(ii) Columns ofG are particular strategy profiless∈ S of the Γ game. There are
ΠN

i=1|Si | of columns.

(iii) Cell gi jk,s in theG−matrix ati jk row and columns∈ S:

gi jk,s =

{

Ui(s)−Ui((k,s−i)) si = j

0 otherwise
(10)

TheG-matrix is a very simple structure (2D matrix) appropriate for further game-
theoretic analysis of strategy space. The multi-dimensional problem is transformed
into a 2D matrix. It simplifies the following analysis.

5.2 An example of solving a game

Let us have a two player gameΓ = ({1,2};{a,b},{c,d};U1,U2) with payoffs written
in Figure 3. The G-matrix for this game is computed in Figure 4with profiles ordering
(ac,ad,bc,bd). This system will generate a following LP problem:

MAXIMISE: Z = 12p1 +12p2 +9p3 +10p4 (11)

p1..4 ∈ 〈0,1〉 (12)

4

∑
i=1

pi = 1 (13)

5p1 + p2 ≥ 0 (14)

−5p3− p4 ≥ 0 (15)

−2p1 + p3 ≥ 0 (16)

2p2− p4 ≥ 0 (17)

The Nash equilibrium is clearlyad. From (15) we see thatp3,4 = 0, then from (16) that
p1 = 0 and so, (14) together with (13) givesp2 = 1. We interpret the result(0,1,0,0)
that the profilead wins with probability 100%.
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Figure 3. Payoffs in the example

c d

a 10,2 8,4
b 5,4 7,3

Figure 4. G-Matrix in the example

ac ad bc bd

a→ b 5 1
b→ a −5 −1
c→ d −2 1
d → c 2 −1

5.3 Iterative elimination of dominated strategies

We have implemented a linear programming solver of correlated equilibrium using
GLPK library (GLPK homepage 2008, GNU Linear Programming Kit). Solving CE
hastheoreticallyalways a solution as it is just another view to Nash equilibrium in
mixed strategies (Nash 1951). Moreover, solving this problem has a polynomial time
complexity (Papadimitriou 2005). However, for a very largegame, the computation
takes too much time or computer memory. The LP-solver can getlost in some nu-
merical instability too. Thus, getting a proper solution isnot absolutely guaranteed in
practice. This trouble can be cured by reducing the game to its smaller equivalent, as
we will see now.

Iterative elimination through the G-matrix

We are going to explain this approach using the previous example (Figure 3). Let
us examine the Figure 4. The first row shows that all payoffs are positive. It means
that the row-player has his payoffs always higher when playing a-strategy rather then
b-strategy. The rows with zero elements are redundant as theyhave no effect to the
LP-problem solving.

The second row is more interesting, because all differencesare negative (we do not
care about the zero elements). It indicates that the utilitywhen playingb-strategy is
always worse then when playinga-strategy, thusa strongly dominates theb-strategy.
No matter, ifb is dominated by all other strategies of row player, to satisfy the con-
straints (12) and (15), probabilities assigned tobc andbd profiles must be zero, so
p3 = p4 = 0. The negative row and corresponding columns, i.e. the LP variables,p3

andp4 are removed then.
The process may continue until the G-matrix is minimized, itmeans without nega-
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tive rows (see Figure 5). In some cases, this elimination maylead to a single-profile
state. Otherwise, we normally apply the LP-solver to the reduced game specification, it
means to the reduced set of profiles (probability variables)and corresponding strategy
sets.

Figure 5. Elimination steps

ab ad

a→ b 5 1
c→ d −2
d → c 2

⇒

ad

a→ b 1
d → c 2

5.4 G-solve: An efficient algorithm for solving the correlated equilibr ia

Having this elimination procedure we may turn the order of computing activities from
the former sequence of (i) computing the state space, (ii) eliminating dominated strate-
gies, and (iii) equilibria computing to a new optimized algorithm wherecomputing the
state spaceis being done on-the-fly as a sub-part of the elimination procedure.

By our experience, theG-solveterminates in shorter time than the classical app-
roach (unfortunately, it has not been studied deeply at a theoretical level) and it is
significantly less memory consuming.2 Let us define following data structures and
data types:

(i) valid : S→ Booleanis a Boolean array displaying what profiles are valid or
non-valid (zero/non-zero probability). Initially, all profiles are valid.

(ii) umap: S→R
N is a dynamic dictionary (items can be added and removed during

the computation) assigning payoff vectors to particular profiles. Initially, umap
is empty.

(iii) dominated: Q×Si → Booleanis a boolean array displaying what strategies are
already found to be dominated. Initially, all are setFalse.

(iv) type pro f List is a list of tuples(S,R).

(v) typegRow= (pos: pro f List,neg: pro f List)

(vi) G[i, j,k] is a dynamic list ofgRowindexed by(i, j,k). G represents the G-matrix.

The G-solvealgorithm (Algorithm 3) is started and goes through all players of
theΓ game and all variants of their behavior. The whole algorithmis split into parts,
Algorithm 3, 5, 6 and 7 (see the Appendix), to make it easier tostudy. At the end,
remainingG list andvalid array contain the resulting minimized gameΓr .

2 The algorithm has been developed and tested on PC with 8xCPU Xeon 2.66GHz and 16 GB RAM.
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Algorithm 3 G-solve – main part

for i in Q:
for j in S[i]:
for k in S[i]:
if (j!=k):
if (not(dominated[i][j] or dominated[i][k])):

row = solveRow(i,j,k);
if (row != ([],[])):

if (row.pos != []):
G[i,j,k] := row;

else:
dominated[i][k] := true
for (s,r) in row.neg:
disableProf(i,s);

Let Γr = (Q;Sr1, ...,SrN ;Ur1, ...,Ur2) is the minimized gameΓr . Strategy sets are
reduced toSri in (18) and only the utility functions (19) are selected to the new game.

Sri = {si |s∈ S∧valid[s]} (18)

Uri (s) = Ui(s);∀s∈ Sr (19)

The G-solve elimination may terminate in state whenSr = {s∗}. In that case,s∗ is
the equilibrium (in strictly dominant strategies). Otherwise, if |Sri |> 1 for some player
i ∈ Q, the CE-solver can be applied to the resultingΓr game. The G-matrix forΓr is
already completed inG[i, j,k], just some mapping fromΓ state space toΓr state space
has to be specified.

5.5 Meaning of this method

G-solve is an exact method of efficient computing the correlated equilibria in multi-
player games. The method combines the computing of the game optimum together
with computing the utility functions. In this way, only the relevant cells of state space
are analyzed. It is a type of a heuristics which does not effect the cellModel and
reduces the number of cells searched during the game analysis.

When comparing the time and memory complexity of computing CEwithout G-
solve and with G-solve approach, we can see that complexity without G-solve defines
the worst case complexity for the approach with G-solve enabled. The final complexity
of the equilibrium determination may be improved dependingon particular game and
formulation of the internal modelcellModel. This is very application specific.

The G-aolve method is suitable for computing the CE in relatively small games
where the size of state space does not exceed 108 − 1010 cells. The method can be
used as a terminating operation after another mechanism of state space reduction (for
example FDDS in the following section).
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Table 1. Demonstration of computing speed-up with G-solve enabled

Experiment
number Number of profiles

Execution time with
G-solve enabled

Execution time with-
out G-solve

n1 11,520 0.305 s 1.084 s
n2 155,520 5.9 s 14.8 s
n3 5,054,400 4 min 51 s 16 min 12 s
n4 15,300,000 13 min 54 s memory shortage

As a demonstration of the method in operation, we provide a small experiment
(Table 1). The cases (games) were generated out of our MCE model (see section 4.1).
From the equilibrium determination point of view, just the number of strategic profiles
is relevant. The part solving the correlated equilibria wasexecuted as an independent
program where its execution time is measured. The experiment was done on PC with
4xCPU AMD Opteron 2.8GHz and 32 GB RAM. We show the execution times with
G-Solve operational and without G-Solve – the program builds the whole G-matrix
with no reductions (see section 5.1).

We can see that the processing time with G-solve enabled is always about 3-4
times shorter. The last experimentn4 without G-solve did not terminate correctly as
the memory requirements exceeded the computer’s capacity (32 GB RAM).

Unfortunately, we are not able to compare our implementation of the correlated
equilibrium solver (with or without the G-Solver reductionmechanism) with another
computer implementation of such a solver. To our best knowledge, there is no pub-
lished paper on technical details of this problem or a computer tool solving that.

6. Fast Detection of Dominant Strategies (FDDS)

Analyzing the strategy dominance was the starting idea of this method again. We
expect the input state spaceS to be entered extremely wide (|S| ' 1030 is often in our
models) and thatS will get significantly reduced. We assume that existence of strict
dominance for some players is probable as well. When doing thepractical experiments
in multi-dimensional decision modeling (see (5)), it is notrare that a certain subpart
of the decision variablesDi,dom⊆ Di of a playeri demonstrates a strictly dominant
behavior. In such a case, the player makes his decision de facto just inDi \Di,dom. For
example, some players are sure that they make better when selling their total production
to the domestic buyer rather then exporting that (then the sub-decisions ”sell maximum
home” strictly dominates ”sell a part home and export the rest”).

Let us assume the distinguishability of the players’ strategies. The playeri then
exactly knows in any profiles∈ S if he wants to change his strategysi (if si /∈ BR(s−i))
or not. If BRi(s−i) = {s′i}, then the playeri exactly knows the strategys′i to move into.
Otherwise he decides one ofBRi(s−i).

The following algorithm (FDDS) allows various forms of outputs including the fast
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detection of dominant strategies, pure Nash equilibria, ordetection of certain cycles
demonstrating the mixed behavior (sources of mixed Nash equilibria). So called Graph
of Reachable Profiles (GRP) is constructed during FDDS operation. Solution to the
games comes out from the GRP analysis.

It is very important to emphasize at the very beginning, thatdetermining the game
equilibria is not the primarily goal of FDDS. The goal is to make a very fast and
representative preview at the important strategies of the players. FDDS is a simulation
method and hence its quality strongly depends on efforts to experiment with the model.
There is definitely no absolute guarantee that the FDDS algorithm reducing the input
gameΓ to Γr transforms the input to its strategically equivalent gameΓr . Proving that
is currently not possible neither analytically nor experimentally (it might be possible
for small games as a case verification). We are pretty sure that the behavior inΓr is
not significantly far fromΓ. It is the best available solution to the large games at the
moment, and rather satisfactory for our applications.

Definition 7. Graph of Reachable Profiles of a given gameΓ = (Q;S;U) is a structure
GRP= [V,E], where

(i) V is a (finite) set of nodes(s,Qa,Qr), wheres∈ S; Qa,Qr ⊆ Q;Qa ∩Qr = /0.
Qr is a subset of players who agree with the profiles. Similarly, Qr are those
who does not agree withs. Only playersi havingsi ∈ BRi(s−i) do agree with the
profiles.

(ii) E ⊆V ×V ×Q is a set of edges. Edges are relevant just for analyzing the graph
topology (cycles, trees). The edges are restricted just fornon-agreeing players,
thus∀(v1,v2, i) ∈ E,v1 = (s,Qa,Qr) : i ∈ Qr . The edge expresses thei-th player
deviation from thev1 node to the profile corresponding to the nodev2.

In the following text, we demonstrate the algorithm of computing the GRP for a given
game and we introduce its analysis.

6.1 Analysis of GRP

Let us have a graph of reachable profilesGRP= [V,E] of a given gameΓ = (Q;S;U).
The set of profiles in (20) is called theset of reachable profiles. A nodev∈V is called
to be solvedif Qa∪Qr = Q. The nodev ∈ V is a pure Nash equilibrium ifQa = Q
(i.e.Qr = /0).

Sres = {s|(s,qa,qr) ∈V} (20)

If the GRP is topologically a tree and all its nodes are solved, the related game
Γ has a solution in form of pure Nash equilibria. If the number of PNEs is greater
then one, we shall compute their MNE complements using some other mathematical
methods.

Studying cycles (or clusters of cycles) in GRPs is more difficult and it exceeds the
range of this paper. We believe that their analysis can lead towards fast computation
of mixed equilibria. Generally, a cycle in graph is a closed path with no other repeated
node than the starting (ending) one. In the meaning of strategic behavior, a playeri in a
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profiles0 does not agree with the profile and chooses another profiles1 =(BRi(s0),s0
−i).

The next playerj then continues tos2 and so on until the starting playeri moves back
into s0 again.

In the current state, there is no proper experimental and theoretical conclusion
about logic connection between cycles and equilibria. The reduced gameΓr is thus
defined as a game within the set of reachable profilesSres in (20) ofΓ. So,Γr is defined
as follows:

Γr = (Q;Sr ;Ur);Sr,i = {si |s∈ Sres} (21)

We compute the equilibria basedonΓr using conventional methods(for example G-solve).

6.2 Algorithm of GRP construction

A potential dominant strategysi of a playeri will become evident in any strategic
profiles. Thus, we may start with any randomly chosen profiless0 ∈ S in our analysis.
We study, if the playeri would deviate ins0 profile. The set of strategies given in (22)
is a set of potential deviations of the playeri.

Bi(s
0) = {b∈ Si |Ui(b,s0

−i) ≥Ui(s
0)} (22)

Clearly,BRi(s0)⊆Bi(s0). The playeri will react in the profiles0 moving into some
b ∈ BRi(s0). If |BRi(s0)| > 1 holds, we have to analyze concurrently more similar
options of the player (branching). As it was mentioned many time before, it is highly
preferable if the strategies are well distinguishable and such a state does not appear.

Inserting a node to the GRP structure

This procedure (see Algorithm 4) adds toGRP= [V,E] all best-response strategiesB
of the playeri playing from the current nodev = (s,Qa,Qr).

Algorithm 4 Inserting new nodes (B,v,GRP)
for b in B:

if si = b then addi to Qa,
else:

addi to Qr

if existsv′ = (s′,Q′
a,Q

′
r) in V that(b,s−i) = s′:

addi to Q′
a

else:
add a newv′ = ((b,s−i),{i}, /0) to V

add a new edge(v,v′, i) to E

Main algorithm of GRP construction

The top view on the algorithm is as follows:

(i) Initialize theGRP= [V0, /0] with randomly generated nodes. IfSrand ⊂ S is a set
of random profiles, the initial set of nodes isV0 = {(s, /0, /0)|s∈ Srand}.
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(ii) Select randomly a nodev = (s,Qa,Qr) from V which isnot solvedyet. If there
is no such a node left, terminate the algorithm.

(iii) ComputeB := BRi(s) using the Algorithm 1. Leti is a player randomly chosen
in v from Q\ (Qa∪Qr). We would like to remind that this operation requires to
invoke thecellModel(s,C) for all s∈ {(si ,s−i)|si ∈ Si}. It means,|Si | times.

(iv) Insert all B chosen by the playeri coming fromv to theGRPstructure (Algo-
rithm 4).

(v) Go to step 2.

The algorithm terminates if all nodes of itsGRPbeing constructed are solved, or if
the number of nodes is equal to the cardinality of the set of all strategic profiles (the
state space). Termination of the algorithm is thus guarantied (the computability). If
we study this case in point of view of the algorithmic (time) complexity, the algorithm
does not always terminates practically because the size ofSmay be huge.

The practical experiments conclude that expressing some explicit termination con-
dition may have its reasons. There are two possible conditions for enforcing the algo-
rithm to halt:

(i) |V| exceeds a given limit,

(ii) age of GRP exceeds a given limit. Age of GRP is a length of uninterrupted
sequence of the main algorithm iterating with no new node added toV.

The FDDS algorithm can be also scalable by number of initial randomly generated
nodes. The practical experiments demonstrate that even oneinitial node can cause a
large spread over the game state space. The algorithm is ready for parallel processing,
so that the steps (ii)-(v) are done in parallel.

6.3 Meaning of the FDDS algorithm

The algorithm is suitable for a very fast analysis of a game state space, and for detection
of good strategies given in (1). The FDDS algorithm is scalable. The computation
complexity can be regulated by number of initial nodes, number of maximal nodes in
the graph and number of steps with the graph unchanged.

A reduced gameΓr is the output from the FDDS algorithm. Probability of strategic
equivalence (see section 2.2) betweenΓr and the originalΓ grows with the effort of ex-
perimenting. Let us emphasize once more that thequality of the output is significantly
influenced by the strategy distinguishability. If the state space is well distinguishable
as defined in (4), the FDDS analysis converges quickly.

7. Conclusion

The paper presented the methodology and algorithms which weare currently using in
the design and development of computer models of commodity markets. The models
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are intended for analysis of the markets and for forecastingof their further evolution in
horizons of 1–15 years. There is surely a plenty of similar modeling techniques related
to this research area. We have focused mostly to a very narrowpart of them, specifi-
cally to the methods of state space reduction. The paper doesnot analyze a particular
model or a case study. It is rather a general description of architecture of these models.
Anyone should be able to build his own model following this methodology.

The models are conceived as a tool for massive experimenting. An user-experimen-
ter works with them in the simulation manner, i.e. specifies his queries and obtains a
new knowledge of the modeled system. Allowing the user to enter the experimental
domain (strategy sets) as wide as possible was the very required feature of these mo-
dels. A limited state spaceSmay cause that some reasonable variant of the behavior is
neglected. The experiment thus fails or ends up with wrong results.

When implementing the reduction techniques, we have to keep in mind the ques-
tion, if the reduced and original game are strategically equivalent, i.e. that all strate-
gically important strategies of the original game are included in the reduced game as
well. We presented two methods: it is clear that the strategic equivalence is not dama-
ged in G-solve method (in the meaning of correlated equilibria). This correspondence
may be corrupted by the FDDS method, or to be more precise, theprobability of non-
correspondence gets close to zero as we spent the time in experimenting. The quality
of the whole process is highly influenced by the proper designof cellModel. Every
small detail of the player’s strategy and the current context must be included in the
computing of the player’s payoff. It makes the differentiation between the strategies
easier.

We presented a very wide framework of all actions heading towards the imple-
mentation of an operating game theoretical computer model.Some of the details were
probably not discussed properly. However, the framework itself is a mosaic where any
its internal component may be substituted by another one. For example, the equilib-
rium solver (Figure 2) can be concretized with an implementation of Nash-equilibrium
solver, or correlated equilibrium solver (G-solve), or Stackelberg-equilibrium, or any
user-specific way of predicting the players’ behavior. The paper comes from the Com-
puter science background and its main contribution stays inmaking the sophisticated
algorithms of large problems and their use in computer simulations.
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Appendix. G-solve code

Algorithm 5 G-solve – solveRow(i,j,k)

pos := []; neg := [];
for s in S: # run this in parallel

if (s[i]==j and valid[s]):
s2 = s; s2[i] := k;
if (valid[s2]):

uj := getU(s,i);
uk := getU(s2,i);
if (uj != Nil and uk != Nil):

diff := uj - uk;
if (diff != 0):

if (diff>0):
pos.append( (s, diff) );

else:
neg.append( (s, diff) );

return (pos, neg);

Algorithm 6 G-solve – getU(s,i)

if (umap[s]==Nil):
# this is the main computation load
umap[s] := cellModel(s, C);

return umap[s][i];

Algorithm 7 G-solve – disableProf(it,s)

valid[s] := False
umap[s] := Nil # free the umap item
for i in [1,...,it]:
for j in S[i]:
for k in S[i]:

row := G[i,j,k]
row.neg.removeKeyIfPresent(s);
row.pos.removeKeyIfPresent(s);
if (row.pos == []):

for (s2,r) in row.neg:
disableProf(it, s2)

G[i,j,k] := Nil
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